1
|
Tu WC, He YK, Wang DW, Ming SX, Zhao Y. Progranulin enhances M2 macrophage polarization and renal fibrosis by modulating autophagy in chronic kidney disease. Cell Mol Life Sci 2025; 82:186. [PMID: 40293508 PMCID: PMC12037463 DOI: 10.1007/s00018-025-05716-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2025] [Revised: 04/08/2025] [Accepted: 04/13/2025] [Indexed: 04/30/2025]
Abstract
BACKGROUND Chronic kidney disease (CKD) is a prevalent global health issue characterized by progressive renal dysfunction and fibrosis, often leading to end-stage renal failure. Renal fibrosis, a hallmark of CKD, is driven by complex immune responses, including macrophage polarization and inflammatory signaling pathways. Progranulin (PGRN), a glycoprotein involved in inflammation and tissue repair, has emerged as a key regulator in various fibrotic diseases. However, the precise role of PGRN in macrophage polarization and renal fibrosis in CKD remains unclear and warrants further investigation. METHODS Renal tissue samples from CKD patients and unilateral ureteral obstruction (UUO)-induced mice were analyzed using immunohistochemistry, immunofluorescence, Western blotting, and qRT-PCR to assess fibrosis, macrophage infiltration, and key markers of autophagy and inflammation. Recombinant PGRN (rPGRN) was administered in vivo to assess its effects on renal fibrosis, macrophage polarization, and autophagic flux. To evaluate the role of PGRN, PGRN knockout (PGRN-/-) mice were also utilized. The effects of PGRN on autophagic flux and mitochondrial dynamics were studied using mCherry-GFP-LC3 dual-labeling, and macrophage polarization was analyzed by flow cytometry and cytokine profiling. RESULTS PGRN expression is significantly elevated in CKD patients and UUO mice and is associated with increased macrophage infiltration and renal fibrosis. rPGRN administration in vivo aggravated fibrosis and promoted M2 macrophage polarization. In contrast, PGRN-/- mice showed reduced renal fibrosis, significantly reduced collagen deposition, and reduced expression of pro-fibrotic cytokines. In addition, the mitochondrial function of PGRN-/- renal fibrosis mice was improved, the mtDNA content of mouse kidney tissue was increased, the results of electron microscopy showed that the mitochondrial structure was relatively normal, the mitochondrial biogenesis related genes PGC1α, TOMM20 and Fis1 were up-regulated, and the levels of MFN2 and Drp1 were significantly reduced. In addition, autophagy related gene LC3 was decreased and P62 protein level was increased in PGRN-/- model mice. Mechanically, PGRN interacts with autophagy related proteins ATG5 and ATG12 to regulate autophagy flux through the PI3K-Akt signaling pathway and promote the polarization of M2 macrophages. CONCLUSION PGRN plays a critical role in driving renal fibrosis by regulating macrophage polarization, autophagy, and mitochondrial dynamics. Our findings suggest that PGRN exacerbates CKD progression by promoting M2 macrophage polarization and disrupting autophagic processes, highlighting PGRN as a potential therapeutic target for the treatment of CKD and renal fibrosis.
Collapse
Affiliation(s)
- Wei-Chao Tu
- Department of Urology, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, No. 999 Hope Road, Jiading District, Shanghai, 201800, China
| | - Yi-Kun He
- Department of Rheumatism, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, 528 Zhangheng Road, Pudong New Area, Pudong, 201203, China
| | - Da-Wei Wang
- Department of Urology, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, No. 999 Hope Road, Jiading District, Shanghai, 201800, China
| | - Shao-Xiong Ming
- Department of Urology, Shanghai Changhai Hospital, No.168 Changhai Rd, Shanghai, 200433, China.
| | - Yang Zhao
- Department of Urology, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, No. 999 Hope Road, Jiading District, Shanghai, 201800, China.
| |
Collapse
|
2
|
Zhan P, Huang S, Chen D, Li Y, Chen D. Echinatin inhibits osteoarthritis through the NF-κB signaling pathway. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025:10.1007/s00210-024-03756-7. [PMID: 39747466 DOI: 10.1007/s00210-024-03756-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Accepted: 12/19/2024] [Indexed: 01/04/2025]
Abstract
Osteoarthritis (OA) is currently the most common degenerative joint disease in China and even worldwide and is the leading cause of disability in the elderly population. So far, due to an insufficient understanding of the pathogenesis and etiology of the disease, there is still no effective targeted treatment for early OA. Pro-inflammatory cytokine interleukin-1 is an important inflammatory mediator secreted in early OA, and IL-1β plays a crucial role in the pathogenesis of OA, affecting chondrocytes and the extracellular matrix of CARTILAGE. Echinatin has been used for years as a health supplement, retaining its antioxidant, anti-inflammatory, and autophagy-promoting effects. However, whether echinatin has inhibitory effects on OA is still unknown. In this study, we used an in vitro OA model of chondrocytes induced by IL-1β and an in vivo OA model of rats induced by anterior cruciate ligament transection (ACLT), and through experiments such as western blotting and IHC, we demonstrated that echinatin can be used as a novel drug for treating OA. Mechanistically, we found that echinatin inhibits the activity of chondrocytes induced by IL-1β through the NF-kB signaling pathway. This study can provide more effective treatment options for OA patients and further diagnostic and therapeutic methods for clinical treatment.
Collapse
Affiliation(s)
- Peng Zhan
- Department of Bone and Joint Sports Medicine, Longyan First Affiliated Hospital of Fujian Medical University, No.105 Jiuyi North Road, Longyan, Fujian, 364000, China
| | - Shiming Huang
- Department of Bone and Joint Sports Medicine, Longyan First Affiliated Hospital of Fujian Medical University, No.105 Jiuyi North Road, Longyan, Fujian, 364000, China
| | - Daohua Chen
- Department of Bone and Joint Sports Medicine, Longyan First Affiliated Hospital of Fujian Medical University, No.105 Jiuyi North Road, Longyan, Fujian, 364000, China
| | - Ying Li
- Department of Bone and Joint Sports Medicine, Longyan First Affiliated Hospital of Fujian Medical University, No.105 Jiuyi North Road, Longyan, Fujian, 364000, China
| | - Dongfeng Chen
- Department of Bone and Joint Sports Medicine, Longyan First Affiliated Hospital of Fujian Medical University, No.105 Jiuyi North Road, Longyan, Fujian, 364000, China.
| |
Collapse
|
3
|
Xiao S, Du J, Yuan G, Luo X, Song L. Granulosa Cells-Related MicroRNAs in Ovarian Diseases: Mechanism, Facts and Perspectives. Reprod Sci 2024; 31:3635-3650. [PMID: 38594585 DOI: 10.1007/s43032-024-01523-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Accepted: 03/19/2024] [Indexed: 04/11/2024]
Abstract
MicroRNAs (miRNAs) are a class of short single-stranded, noncoding RNAs that affect the translation of mRNAs by imperfectly binding to homologous 3'UTRs. Research on miRNAs in ovarian diseases is constantly expanding because miRNAs are powerful regulators of gene expression and cellular processes and are promising biomarkers. miRNA mimics, miRNA inhibitors and molecules targeting miRNAs (antimiRs) have shown promise as novel therapeutic agents in preclinical development. Granulosa cells (GCs) are supporting cells for developing oocytes in the ovary. GCs regulate female reproductive health by producing sex hormones and LH receptors. Increasing research has reported the relevance of miRNAs in GC pathophysiology. With in-depth studies of disease mechanisms, there are an increasing number of studies on the biomolecular pathways of miRNAs in gynecology and endocrinology. In the present review, we summarize the different functions of GC-related microRNAs in various ovarian disorders, such as polycystic ovary syndrome, premature ovarian insufficiency, premature ovarian failure and ovarian granulosa cell tumors.
Collapse
Affiliation(s)
- Shengmin Xiao
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, People's Republic of China
| | - Juan Du
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, People's Republic of China
| | - Guanghui Yuan
- Department of Oncology, Hejiang Hospital of Traditional Chinese Medicine, Luzhou, 611137, People's Republic of China
| | - Xiaohong Luo
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, People's Republic of China.
| | - Linjiang Song
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, People's Republic of China.
| |
Collapse
|
4
|
Yue Y, Chen P, Ren C. Piezo1 Modulates Neuronal Autophagy and Apoptosis in Cerebral Ischemia-Reperfusion Injury Through the AMPK-mTOR Signaling Pathway. Neurochem Res 2024; 50:32. [PMID: 39585469 DOI: 10.1007/s11064-024-04291-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 11/13/2024] [Accepted: 11/14/2024] [Indexed: 11/26/2024]
Abstract
Cerebral ischemia-reperfusion (I/R) injury is a complex pathophysiological process involving multiple mechanisms, including apoptosis and autophagy, which can lead to significant neuronal damage. PIEZO1, a stretch-activated ion channel, has recently emerged as a potential regulator of cellular responses to ischemic conditions. However, its role in neuronal cell survival and death during ischemic events is not well elucidated. This study aimed to ascertain the regulatory function of PIEZO1 in neuronal cell apoptosis and autophagy in an in vitro model of hypoxia-reoxygenation and an in vivo model of brain I/R injury. HT22 hippocampal neuronal cells were subjected to oxygen-glucose deprivation/reoxygenation (OGD/R) to simulate ischemic conditions, with subsequent reoxygenation. In vitro, PIEZO1 expression was silenced using small interfering RNA (si-RNA) transfection. The effects on cell viability, apoptosis, and autophagy were assessed using CCK-8 assays, PI-Annexin/V staining combined with flow cytometry, and Western blot analysis. Additionally, intracellular Ca2+ levels in HT22 cells were measured using a Ca2+ probe. The involvement of the AMPK-mTOR pathway was investigated using rapamycin. For in vivo validation, middle cerebral artery occlusion/reperfusion (MCAO/R) in rats was employed. To determine the neuroprotective role of PIEZO1 silencing, sh-PIEZO1 adeno-associated virus was stereotaxically injected into the cerebral ventricle, and neurological and histological outcomes were assessed using neurological scoring, TTC staining, H&E staining, Nissl staining, and immunofluorescence. In HT22 cells, OGD/R injury notably upregulated PIEZO1 expression and intracellular Ca2+ levels. Silencing PIEZO1 significantly diminished OGD/R-induced Ca2+ influx, apoptosis, and autophagy, as indicated by lower levels of pro-apoptotic and autophagy-related proteins and improved cell viability. Additionally, PIEZO1 modulated the AMPK-mTOR signaling pathway, an effect that was counteracted by rapamycin treatment, implying its regulatory role. In vivo, PIEZO1 silencing ameliorated brain I/R injury in MCAO/R rats, demonstrated by improved neurological function scores and reduced neuronal apoptosis and autophagy. However, these neuroprotective effects were reversed through rapamycin treatment. Our findings indicate that PIEZO1 is upregulated following ischemic injury and facilitates Ca2+ influx, apoptosis, and autophagy via the AMPK-mTOR pathway. Silencing PIEZO1 confers neuroprotection against I/R injury both in vitro and in vivo, highlighting its potential as a therapeutic target for stroke management.
Collapse
Affiliation(s)
- Yingjie Yue
- Department of Neurointerventional, Dongying People's Hospital, No. 317 Dongcheng South Road, Dongying, 257091, Shandong Province, China
| | - Pingping Chen
- Department of Neurointerventional, Dongying People's Hospital, No. 317 Dongcheng South Road, Dongying, 257091, Shandong Province, China
| | - Chongwen Ren
- Department of Neurointerventional, Dongying People's Hospital, No. 317 Dongcheng South Road, Dongying, 257091, Shandong Province, China.
| |
Collapse
|
5
|
Jia Z, Yue W, Zhang X, Xue B, He J. Erianin alleviates cerebral ischemia-reperfusion injury by inhibiting microglial cell polarization and inflammation via the PI3K/AKT and NF-κB pathways. Int Immunopharmacol 2024; 141:112915. [PMID: 39146784 DOI: 10.1016/j.intimp.2024.112915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 07/29/2024] [Accepted: 08/06/2024] [Indexed: 08/17/2024]
Abstract
Cerebral ischemia-reperfusion injury (CI/RI) is a leading cause of disability and mortality worldwide, with limited therapeutic options available. Erianin, a natural compound derived from traditional Chinese medicine, has been reported to possess anti-inflammatory and neuroprotective properties. This study aimed to investigate the therapeutic potential of Erianin in CI/RI and elucidate its underlying mechanisms. Network pharmacology analysis predicted that Erianin could target the PI3K/AKT pathway, which are closely associated with CI/RI. In vivo experiments using a rat model of CI/RI demonstrated that Erianin treatment significantly alleviated neurological deficits, reduced infarct volume, and attenuated neuronal damage. Mechanistically, Erianin inhibited microglial cell polarization towards the pro-inflammatory M1 phenotype, as evidenced by the modulation of specific markers. Furthermore, Erianin suppressed the expression of pro-inflammatory cytokines and mediators, such as TNF-α, IL-6, and COX-2, while enhancing the production of anti-inflammatory factors, including Arg1, CD206, IL-4 and IL-10. In vitro studies using oxygen-glucose deprivation/reoxygenation (OGD/R)-stimulated microglial cells corroborated the anti-inflammatory and anti-apoptotic effects of Erianin. Notably, Erianin inhibited the NF-κB signaling pathway by inhibiting p65 phosphorylation and preventing the nuclear translocation of the p65 subunit. Collectively, these findings suggest that Erianin represents a promising therapeutic candidate for CI/RI by targeting microglial cell polarization and inflammation.
Collapse
Affiliation(s)
- Zengqiang Jia
- Department of Neurointerventional, Dongying People's Hospital, No. 317 Dongcheng South Road, Dongying 257091, China
| | - Wenfeng Yue
- Department of Neurointerventional, Dongying People's Hospital, No. 317 Dongcheng South Road, Dongying 257091, China
| | - Xiuyun Zhang
- Department of Health Management, Dongying People's Hospital, No. 317 Dongcheng South Road, Dongying 257091, China
| | - Bingxia Xue
- Department of Otolaryngology, Dongying People's Hospital, No. 317 Dongcheng South Road, Dongying 257091, China
| | - Jinchao He
- Department of Neurosurgery, Dongying People's Hospital, No. 317 Dongcheng South Road, Dongying 257091, China.
| |
Collapse
|
6
|
Kovac L, Speckmann T, Jähnert M, Gottmann P, Fritsche L, Häring HU, Birkenfeld AL, Fritsche A, Schürmann A, Ouni M. Identification of MicroRNAs Associated with Prediabetic Status in Obese Women. Int J Mol Sci 2023; 24:15673. [PMID: 37958657 PMCID: PMC10648886 DOI: 10.3390/ijms242115673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 10/23/2023] [Accepted: 10/25/2023] [Indexed: 11/15/2023] Open
Abstract
MicroRNAs (miRNAs) recently emerged as means of communication between insulin-sensitive tissues to mediate diabetes development and progression, and as such they present a valuable proxy for epigenetic alterations associated with type 2 diabetes. In order to identify miRNA markers for the precursor of diabetes called prediabetes, we applied a translational approach encompassing analysis of human plasma samples, mouse tissues and an in vitro validation system. MiR-652-3p, miR-877-5p, miR-93-5p, miR-130a-3p, miR-152-3p and let-7i-5p were increased in plasma of women with impaired fasting glucose levels (IFG) compared to those with normal fasting glucose and normal glucose tolerance (NGT). Among these, let-7i-5p and miR-93-5p correlated with fasting blood glucose levels. Human data were then compared to miRNome data obtained from islets of Langerhans and adipose tissue of 10-week-old female New Zealand Obese mice, which differ in their degree of hyperglycemia and liver fat content. Similar to human plasma, let-7i-5p was increased in adipose tissue and islets of Langerhans of diabetes-prone mice. As predicted by the in silico analysis, overexpression of let-7i-5p in the rat β-cell line INS-1 832/12 resulted in downregulation of insulin signaling pathway components (Insr, Rictor, Prkcb, Clock, Sos1 and Kcnma1). Taken together, our integrated approach highlighted let-7i-5p as a potential regulator of whole-body insulin sensitivity and a novel marker of prediabetes in women.
Collapse
Affiliation(s)
- Leona Kovac
- Department of Experimental Diabetology, German Institute of Human Nutrition Potsdam-Rehbruecke (DIfE), 14558 Nuthetal, Germany; (L.K.); (M.J.); (P.G.); (M.O.)
- German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany; (L.F.); (H.-U.H.); (A.L.B.); (A.F.)
| | - Thilo Speckmann
- Department of Experimental Diabetology, German Institute of Human Nutrition Potsdam-Rehbruecke (DIfE), 14558 Nuthetal, Germany; (L.K.); (M.J.); (P.G.); (M.O.)
- German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany; (L.F.); (H.-U.H.); (A.L.B.); (A.F.)
| | - Markus Jähnert
- Department of Experimental Diabetology, German Institute of Human Nutrition Potsdam-Rehbruecke (DIfE), 14558 Nuthetal, Germany; (L.K.); (M.J.); (P.G.); (M.O.)
- German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany; (L.F.); (H.-U.H.); (A.L.B.); (A.F.)
| | - Pascal Gottmann
- Department of Experimental Diabetology, German Institute of Human Nutrition Potsdam-Rehbruecke (DIfE), 14558 Nuthetal, Germany; (L.K.); (M.J.); (P.G.); (M.O.)
- German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany; (L.F.); (H.-U.H.); (A.L.B.); (A.F.)
| | - Louise Fritsche
- German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany; (L.F.); (H.-U.H.); (A.L.B.); (A.F.)
- Institute of Diabetes Research and Metabolic Diseases (IDM) of the Helmholtz Center Munich, University of Tübingen, 72074 Tübingen, Germany
| | - Hans-Ulrich Häring
- German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany; (L.F.); (H.-U.H.); (A.L.B.); (A.F.)
- Institute of Diabetes Research and Metabolic Diseases (IDM) of the Helmholtz Center Munich, University of Tübingen, 72074 Tübingen, Germany
- Department of Internal Medicine IV, University Hospital Tübingen, 72076 Tübingen, Germany
| | - Andreas L. Birkenfeld
- German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany; (L.F.); (H.-U.H.); (A.L.B.); (A.F.)
- Institute of Diabetes Research and Metabolic Diseases (IDM) of the Helmholtz Center Munich, University of Tübingen, 72074 Tübingen, Germany
- Department of Internal Medicine IV, University Hospital Tübingen, 72076 Tübingen, Germany
| | - Andreas Fritsche
- German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany; (L.F.); (H.-U.H.); (A.L.B.); (A.F.)
- Institute of Diabetes Research and Metabolic Diseases (IDM) of the Helmholtz Center Munich, University of Tübingen, 72074 Tübingen, Germany
- Department of Internal Medicine IV, University Hospital Tübingen, 72076 Tübingen, Germany
| | - Annette Schürmann
- Department of Experimental Diabetology, German Institute of Human Nutrition Potsdam-Rehbruecke (DIfE), 14558 Nuthetal, Germany; (L.K.); (M.J.); (P.G.); (M.O.)
- German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany; (L.F.); (H.-U.H.); (A.L.B.); (A.F.)
- Institute of Nutritional Sciences, University of Potsdam, 14558 Nuthetal, Germany
| | - Meriem Ouni
- Department of Experimental Diabetology, German Institute of Human Nutrition Potsdam-Rehbruecke (DIfE), 14558 Nuthetal, Germany; (L.K.); (M.J.); (P.G.); (M.O.)
- German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany; (L.F.); (H.-U.H.); (A.L.B.); (A.F.)
| |
Collapse
|
7
|
Zuo W, Liu X, Chen J, Zuo W, Yin Y, Nie X, Tang P, Huang Y, Yu Q, Hu Q, Zhou J, Tan Y, Huang X, Ren Q. Single-cell sequencing provides insights into the landscape of ovary in PCOS and alterations induced by CUMS. Am J Physiol Endocrinol Metab 2023; 325:E346-E362. [PMID: 37584608 DOI: 10.1152/ajpendo.00165.2023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 08/08/2023] [Accepted: 08/08/2023] [Indexed: 08/17/2023]
Abstract
Polycystic ovary syndrome (PCOS) is a common endocrine disorder related to psychological distress. However, the mechanism underlying increased prevalence of depression in PCOS remained unclear. This study aimed to explore the unique transcriptional landscape of ovary and offered a platform to explore the mechanism of PCOS, as well as the influences caused by depression. The PCOS rat model was established by letrozole whereas PCOS rat model with depression was established by letrozole combined with chronic unpredicted mild stress (CUMS). Then single-cell RNA sequencing (scRNA-Seq) was applied to analyze the transcriptional features of rat ovaries. Granulosa cells (GCs) and fibroblasts (Fibros) accounted for the top two clusters of total 12 cell types. There were nine clusters in GCs, related to inflammatory response, endoplasmic reticulum (ER) stress, and steroidogenesis. The expression of differentially expressed genes (DEG) Hes1 was higher in PCOS and PCOS + CUMS groups, exhibiting enhanced expression by pseudotime and positively related to inflammation. Pseudotemporal analysis revealed that inflammation contributed to the different GCs distributions. Moreover, analysis of DEGs and gene ontology (GO) function enrichment revealed CUMS aggravated inflammation in PCOS GCs possibly via interferon signaling pathway. In theca cells (TCs), nine clusters were observed and some of them were relevant to inflammation, ER stress, and lipid metabolism. DEGs Ass1, Insl3, and Ifi27 were positively related to Cyp17a1, and Ces1d might contribute to the different trajectory of TCs. Subsequent scRNA-seq revealed a signature profile of endothelial cells (ECs) and Fibros, which suggest that inflammation-induced damage of ECs and Fibro, further exacerbated by CUMS. Finally, analysis of T cells and mononuclear phagocytes (MPs) revealed the existence of immune dysfunction, among which interferon signaling played a critical role. These findings provided more knowledge for a better understanding PCOS from the view of inflammation and identified new biomarkers and targets for the treatment of PCOS with psychological diseases.NEW & NOTEWORTHY In this study, we mapped the landscape of polycystic ovary syndrome (PCOS) ovary with rat model induced by letrozole and provided a novel insight into the molecular mechanism of PCOS accompanied by chronic unpredicted mild stress (CUMS) at single-cell transcriptomic level. These observations highlight the importance of inflammation in the pathogenesis of PCOS, which might also be the bridge between PCOS and psychological diseases.
Collapse
Affiliation(s)
- Wenting Zuo
- Department of Reproductive Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, People's Republic of China
| | - Xiangfei Liu
- State Key Laboratory Cultivation Base for TCM Quality and Efficacy, Institute of TCM-Related Comorbid Depression, Nanjing University of Chinese Medicine, Nanjing, People's Republic of China
| | - Jianhuai Chen
- Department of Andrology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, People's Republic of China
| | - Wenren Zuo
- Department of Urology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, People's Republic of China
| | - Yanyun Yin
- Department of Reproductive Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, People's Republic of China
| | - Xiaowei Nie
- Department of Reproductive Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, People's Republic of China
| | - Peipei Tang
- Department of Reproductive Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, People's Republic of China
| | - Yunke Huang
- Department of Gynaecology, Women's Hospital School of Zhejiang University, Hangzhou, People's Republic of China
| | - Qian Yu
- Department of Science and Technology, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, People's Republic of China
| | - Qiaoyun Hu
- Singleron Biotechnologies, Nanjing, People's Republic of China
| | - Jie Zhou
- Department of Traditional Chinese Medicine, The First People's Hospital of Nantong, Nantong, People's Republic of China
| | - Yong Tan
- Department of Reproductive Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, People's Republic of China
| | - Xi Huang
- State Key Laboratory Cultivation Base for TCM Quality and Efficacy, Institute of TCM-Related Comorbid Depression, Nanjing University of Chinese Medicine, Nanjing, People's Republic of China
| | - Qingling Ren
- Department of Gynaecology, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, People's Republic of China
| |
Collapse
|
8
|
Li X, He Y, Wu S, Zhang P, Gan M, Chen L, Zhao Y, Niu L, Zhang S, Jiang Y, Guo Z, Wang J, Shen L, Zhu L. Regulation of SIRT1 in Ovarian Function: PCOS Treatment. Curr Issues Mol Biol 2023; 45:2073-2089. [PMID: 36975503 PMCID: PMC10047008 DOI: 10.3390/cimb45030133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 02/27/2023] [Accepted: 03/01/2023] [Indexed: 03/06/2023] Open
Abstract
The sirtuin family, a group of NAD+-dependent class 3 histone deacetylases (HDACs), was extensively studied initially as a group of longevity genes that are activated in caloric restriction and act in concert with nicotinamide adenine dinucleotides to extend the lifespan. Subsequent studies have found that sirtuins are involved in various physiological processes, including cell proliferation, apoptosis, cell cycle progression, and insulin signaling, and they have been extensively studied as cancer genes. In recent years, it has been found that caloric restriction increases ovarian reserves, suggesting that sirtuins may play a regulatory role in reproductive capacity, and interest in the sirtuin family has continued to increase. The purpose of this paper is to summarize the existing studies and analyze the role and mechanism of SIRT1, a member of the sirtuin family, in regulating ovarian function. Research and review on the positive regulation of SIRT1 in ovarian function and its therapeutic effect on PCOS syndrome.
Collapse
Affiliation(s)
- Xinrong Li
- Department of Animal Science, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
- Farm Animal Genetic Resource Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Yuxu He
- Department of Animal Science, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
- Farm Animal Genetic Resource Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Shuang Wu
- Department of Animal Science, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
- Farm Animal Genetic Resource Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Peiwen Zhang
- Department of Animal Science, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
- Farm Animal Genetic Resource Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Mailin Gan
- Department of Animal Science, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
- Farm Animal Genetic Resource Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Lei Chen
- Department of Animal Science, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
- Farm Animal Genetic Resource Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Ye Zhao
- Department of Animal Science, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
- Farm Animal Genetic Resource Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Lili Niu
- Department of Animal Science, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
- Farm Animal Genetic Resource Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Shunhua Zhang
- Department of Animal Science, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
- Farm Animal Genetic Resource Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Yanzhi Jiang
- College of Life Science, Sichuan Agricultural University, Chengdu 611130, China
| | - Zongyi Guo
- Chongqing Academy of Animal Science, Rongchang, Chongqing 402460, China
| | - Jinyong Wang
- Chongqing Academy of Animal Science, Rongchang, Chongqing 402460, China
| | - Linyuan Shen
- Department of Animal Science, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
- Farm Animal Genetic Resource Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
- Correspondence: (L.S.); (L.Z.)
| | - Li Zhu
- Department of Animal Science, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
- Farm Animal Genetic Resource Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
- Correspondence: (L.S.); (L.Z.)
| |
Collapse
|
9
|
Hatmal MM, Al-Hatamleh MAI, Olaimat AN, Alshaer W, Hasan H, Albakri KA, Alkhafaji E, Issa NN, Al-Holy MA, Abderrahman SM, Abdallah AM, Mohamud R. Immunomodulatory Properties of Human Breast Milk: MicroRNA Contents and Potential Epigenetic Effects. Biomedicines 2022; 10:1219. [PMID: 35740242 PMCID: PMC9219990 DOI: 10.3390/biomedicines10061219] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 05/15/2022] [Accepted: 05/17/2022] [Indexed: 02/07/2023] Open
Abstract
Infants who are exclusively breastfed in the first six months of age receive adequate nutrients, achieving optimal immune protection and growth. In addition to the known nutritional components of human breast milk (HBM), i.e., water, carbohydrates, fats and proteins, it is also a rich source of microRNAs, which impact epigenetic mechanisms. This comprehensive work presents an up-to-date overview of the immunomodulatory constituents of HBM, highlighting its content of circulating microRNAs. The epigenetic effects of HBM are discussed, especially those regulated by miRNAs. HBM contains more than 1400 microRNAs. The majority of these microRNAs originate from the lactating gland and are based on the remodeling of cells in the gland during breastfeeding. These miRNAs can affect epigenetic patterns by several mechanisms, including DNA methylation, histone modifications and RNA regulation, which could ultimately result in alterations in gene expressions. Therefore, the unique microRNA profile of HBM, including exosomal microRNAs, is implicated in the regulation of the genes responsible for a variety of immunological and physiological functions, such as FTO, INS, IGF1, NRF2, GLUT1 and FOXP3 genes. Hence, studying the HBM miRNA composition is important for improving the nutritional approaches for pregnancy and infant's early life and preventing diseases that could occur in the future. Interestingly, the composition of miRNAs in HBM is affected by multiple factors, including diet, environmental and genetic factors.
Collapse
Affiliation(s)
- Ma’mon M. Hatmal
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, The Hashemite University, P.O. Box 330127, Zarqa 13133, Jordan;
| | - Mohammad A. I. Al-Hatamleh
- Department of Immunology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Kota Bharu 16150, Malaysia;
| | - Amin N. Olaimat
- Department of Clinical Nutrition and Dietetics, Faculty of Applied Medical Sciences, The Hashemite University, P.O. Box 330127, Zarqa 13133, Jordan; (A.N.O.); (M.A.A.-H.)
| | - Walhan Alshaer
- Cell Therapy Center (CTC), The University of Jordan, Amman 11942, Jordan;
| | - Hanan Hasan
- Department of Pathology, Microbiology and Forensic Medicine, School of Medicine, The University of Jordan, Amman 11942, Jordan;
| | - Khaled A. Albakri
- Faculty of Medicine, The Hashemite University, P.O. Box 330127, Zarqa 13133, Jordan;
| | - Enas Alkhafaji
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, The University of Jordan, Amman 11942, Jordan;
| | - Nada N. Issa
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, The Hashemite University, P.O. Box 330127, Zarqa 13133, Jordan;
| | - Murad A. Al-Holy
- Department of Clinical Nutrition and Dietetics, Faculty of Applied Medical Sciences, The Hashemite University, P.O. Box 330127, Zarqa 13133, Jordan; (A.N.O.); (M.A.A.-H.)
| | - Salim M. Abderrahman
- Department of Biology and Biotechnology, Faculty of Sciences, The Hashemite University, P.O. Box 330127, Zarqa 13133, Jordan;
| | - Atiyeh M. Abdallah
- Department of Biomedical Sciences, College of Health Sciences, QU Health, Qatar University, Doha 2713, Qatar;
| | - Rohimah Mohamud
- Department of Immunology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Kota Bharu 16150, Malaysia;
| |
Collapse
|