1
|
Pandey N, Iyer P, Kadapure TD, Yang J, Nguyen KT, Wadajkar AS. Dual-imaging nanoparticles based on surface-modified magnetic nanoparticles and biodegradable photoluminescent polymers. Front Bioeng Biotechnol 2025; 13:1558817. [PMID: 40276037 PMCID: PMC12018434 DOI: 10.3389/fbioe.2025.1558817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2025] [Accepted: 03/26/2025] [Indexed: 04/26/2025] Open
Abstract
Theranostic nanoparticles, which combine diagnostic and therapeutic capabilities, have gained significant interest in disease management. We previously developed dual-imaging enabled cancer-targeting nanoparticles (DICT-NPs) composed of a biodegradable photoluminescent polymer (BPLP) and iron oxide-based superparamagnetic nanoparticles (MNPs). While DICT-NPs demonstrated cytocompatibility, magnetic targeting, and imaging capabilities, their fluorescence was inconsistent due to quenching by the MNP core and inefficient BPLP grafting. To address these limitations, we modified the MNP surface with silane, hydroxyapatite, or silane-coupled azide coatings before conjugating with BPLP. The resulting surface-modified DICT-NPs (mDICT-NPs) ranged in size from 200-350 nm and were cyto-compatible with human dermal fibroblasts and normal human prostate epithelial cells. Surface modifications and BPLP conjugation did not affect the superparamagnetic properties of the nanoparticles but enhanced fluorescence by ∼50% compared to the original DICT-NPs. Hydroxyapatite-modified DICT-NPs exhibited significant improvements, including sustained drug release of Paclitaxel and Docetaxel (71% and 68%, respectively, over 21 days), dose-dependent tumor cell uptake in melanoma, thyroid, and prostate cancer cells (with the highest uptake exceeding 60% at 500 μg/mL), and a reduction in cancer cell viability (less than 50% viability in TT thyroid cancer and KAT-4 cancer cell lines). These advancements represent a significant step in overcoming the fluorescence quenching issues associated with iron oxide-based magneto-fluorescent theranostic nanoparticle platforms, enhancing both their imaging and therapeutic potential in cancer treatment.
Collapse
Affiliation(s)
- Nikhil Pandey
- Department of Bioengineering, The University of Texas at Arlington, Arlington, TX, United States
- Department of Biomedical Engineering, The University of Texas Southwestern Medical Center (UTSW), Dallas, TX, United States
- Department of Neurosurgery, The University of Maryland School of Medicine, Baltimore, MD, United States
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, The University of Maryland School of Medicine, Baltimore, MD, United States
| | - Priyanka Iyer
- Department of Bioengineering, The University of Texas at Arlington, Arlington, TX, United States
- Department of Biomedical Engineering, The University of Texas Southwestern Medical Center (UTSW), Dallas, TX, United States
| | - Tejaswi D. Kadapure
- Department of Bioengineering, The University of Texas at Arlington, Arlington, TX, United States
- Department of Biomedical Engineering, The University of Texas Southwestern Medical Center (UTSW), Dallas, TX, United States
| | - Jian Yang
- Department of Materials Science and Engineering, Westlake University, Hangzhou, Zhejiang, China
- Research Centre for Industries of the Future, Westlake University, Hangzhou, Zhejiang, China
| | - Kytai T. Nguyen
- Department of Bioengineering, The University of Texas at Arlington, Arlington, TX, United States
- Department of Biomedical Engineering, The University of Texas Southwestern Medical Center (UTSW), Dallas, TX, United States
| | - Aniket S. Wadajkar
- Department of Bioengineering, The University of Texas at Arlington, Arlington, TX, United States
- Department of Biomedical Engineering, The University of Texas Southwestern Medical Center (UTSW), Dallas, TX, United States
| |
Collapse
|
2
|
Demir D, Ulusal F, Ulusal H, Ceylan S, Dağlı S, Özdemir N, Tarakçıoğlu M. Imparting of Nearly Superparamagnetic Properties to Cryogel Scaffolds With Mesoporous MNPs for Magneto-Sensitive Tissue Engineering Strategies. Biopolymers 2024; 115:e23623. [PMID: 39158278 PMCID: PMC11579221 DOI: 10.1002/bip.23623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 08/01/2024] [Accepted: 08/01/2024] [Indexed: 08/20/2024]
Abstract
This work reports the assembly of mesoporous iron oxide nanoparticles (meso-MNPs) with cryogel scaffolds composed of chitosan and gelatin. Meso-MNPs with a particle size ranging from 2 and 50 nm, a surface area of 140.52 m2 g-1, and a pore volume of 0.27 cm3 g-1 were synthesized on a porous SiO2 template in the presence of PEG 6000 followed by leaching of SiO2. Different ratios of meso-MNPs were successfully incorporated into chitosan:gelatin cryogels up to an amount equivalent to the entire amount of polymer. The morphological structure and physicochemical properties of the cryogels were directly affected by the amount of MNPs. VSM curves showed that all composite cryogels could be magnetized by applying a magnetic field. In the context of the safety of magnetic cryogel scaffolds for use in biomedicine, it is important to note that all values are below the exposure limit for static magnetic fields, and according to cytotoxicity data, scaffolds containing meso-MNPs showed nontoxicity with cell viability ranging from 150% to 275%. In addition, microbial analysis with gram-negative and gram-positive bacteria showed that the scaffolds exhibited activity against these bacteria.
Collapse
Affiliation(s)
- Didem Demir
- Department of Chemistry and Chemical Process Technologies, Vocational School of Technical Sciences at Mersin Tarsus Organized Industrial ZoneTarsus UniversityMersinTurkey
| | - Fatma Ulusal
- Department of Chemistry and Chemical Process Technologies, Vocational School of Technical Sciences at Mersin Tarsus Organized Industrial ZoneTarsus UniversityMersinTurkey
| | - Hasan Ulusal
- Department of Medical Biochemistry, Faculty of MedicineGaziantep UniversityGaziantepTurkey
| | - Seda Ceylan
- Department of Bioengineering, Faculty of EngineeringAdana Alparslan Türkeş Science and Technology UniversityAdanaTurkey
| | - Sibel Dağlı
- Department of Medical Microbiology, Faculty of MedicineHatay Mustafa Kemal UniversityAntakyaTurkey
| | - Nalan Özdemir
- Chemistry Department, Faculty of ScienceErciyes UniversityKayseriTurkey
| | - Mehmet Tarakçıoğlu
- Department of Medical Biochemistry, Faculty of MedicineGaziantep UniversityGaziantepTurkey
- Department of Medical Biochemistry, Medical SchoolGaziantep Islamic Science and Technology UniversityGaziantepTurkey
| |
Collapse
|
3
|
Razmimanesh F, Sodeifian G. Evaluation of a temperature-responsive magnetotocosome as a magnetic targeting drug delivery system for sorafenib tosylate anticancer drug. Heliyon 2023; 9:e21794. [PMID: 38027677 PMCID: PMC10658271 DOI: 10.1016/j.heliyon.2023.e21794] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 10/15/2023] [Accepted: 10/28/2023] [Indexed: 12/01/2023] Open
Abstract
In this investigation, a polymeric fusion of chitosan (CS) and thermosensitive poly (N-isopropyl acrylamide) - PNIPAAm - encapsulated a magnetotocosome, biocompatible nanocarrier. This encapsulation strategy demonstrated improved drug entrapment efficiency, achieving up to 98.8 %. Additionally, it exhibited extended stability, optimal particle dimensions, and the potential for industrial scaling, thus facilitating controlled drug delivery of sorafenib tosylate to cancerous tissue. Reversible Addition-Fragmentation Chain Transfer (RAFT) techniques were employed to synthesize PNIPAAm. The effects of polymer molecular weight and polydispersity index on the lower critical solution temperature (LCST) were evaluated. The resulting polymeric amalgamation, involving the thermosensitive PNIPAAm synthesized using RAFT techniques and CS that coated the magnetotocosome (CS-Raft PNIPAAm-magnetotocosome) with an LCST approximately at 45 °C, holds the potential to enhance drug bioavailability and enable applications in hyperthermia treatment, controlled release, and targeted drug delivery.
Collapse
Affiliation(s)
- Fariba Razmimanesh
- Department of Chemical Engineering, Faculty of Engineering, University of Kashan, 87317-53153, Kashan, Iran
- Laboratory of Biotechnology and Nanotechnology, University of Kashan, 87317-53153, Kashan, Iran
- Biotechnology Centre, Faculty of Engineering, University of Kashan, 87317-53153, Kashan, Iran
| | - Gholamhossein Sodeifian
- Department of Chemical Engineering, Faculty of Engineering, University of Kashan, 87317-53153, Kashan, Iran
- Laboratory of Biotechnology and Nanotechnology, University of Kashan, 87317-53153, Kashan, Iran
- Biotechnology Centre, Faculty of Engineering, University of Kashan, 87317-53153, Kashan, Iran
| |
Collapse
|
4
|
Verma D, Okhawilai M, Goh KL, Thakur VK, Senthilkumar N, Sharma M, Uyama H. Sustainable functionalized chitosan based nano-composites for wound dressings applications: A review. ENVIRONMENTAL RESEARCH 2023; 235:116580. [PMID: 37474094 DOI: 10.1016/j.envres.2023.116580] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 06/27/2023] [Accepted: 07/06/2023] [Indexed: 07/22/2023]
Abstract
Functionalized chitosan nanocomposites have been studied for wound dressing applications due to their excellent antibacterial and anti-fungal properties. Polysaccharides show excellent antibacterial and drug-release properties and can be utilized for wound healing. In this article, we comprise distinct approaches for chitosan functionalization, such as photosensitizers, dendrimers, graft copolymerization, quaternization, acylation, carboxyalkylation, phosphorylation, sulfation, and thiolation. The current review article has also discussed brief insights on chitosan nanoparticle processing for biomedical applications, including wound dressings. The chitosan nanoparticle preparation technologies have been discussed, focusing on wound dressings owing to their targeted and controlled drug release behavior. The future directions of chitosan research include; a) finding an effective solution for chronic wounds, which are unable to heal completely; b) providing effective wound healing solutions for diabetic wounds and venous leg ulcers; c) to better understanding the wound healing mechanism with such materials which can help provide the optimum solution for wound dressing; d) to provide an improved treatment option for wound healing.
Collapse
Affiliation(s)
- Deepak Verma
- International Graduate Program of Nanoscience and Technology, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Manunya Okhawilai
- Metallurgy and Materials Science Research Institute, Chulalongkorn University, Bangkok, 10330, Thailand; Center of Excellence in Polymeric Materials for Medical Practice Devices, Department of Chemical Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok, 10330, Thailand.
| | - Kheng Lim Goh
- Faculty of Science, Agriculture and Engineering, Newcastle University, Newcastle Upon Tyne, NE1 7RU, UK; Newcastle University in Singapore, 567739, Singapore
| | - Vijay Kumar Thakur
- Biorefining and Advanced Materials Research Center, SRUC, Barony Campus, Parkgate, Dumfries DG1 3NE, United Kingdom
| | - Nangan Senthilkumar
- Metallurgy and Materials Science Research Institute, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Mohit Sharma
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, 138634, Republic of Singapore
| | - Hiroshi Uyama
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Osaka, 565-0871, Japan
| |
Collapse
|
5
|
Moharramzadeh F, Seyyed Ebrahimi SA, Zarghami V, Lalegani Z, Hamawandi B. Synthesis and Characterization of Hydrogel Droplets Containing Magnetic Nano Particles, in a Microfluidic Flow-Focusing Chip. Gels 2023; 9:501. [PMID: 37367170 DOI: 10.3390/gels9060501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 06/11/2023] [Accepted: 06/16/2023] [Indexed: 06/28/2023] Open
Abstract
Magnetic hybrid hydrogels have exhibited remarkable efficacy in various areas, particularly in the biomedical sciences, where these inventive substances exhibit intriguing prospects for controlled drug delivery, tissue engineering, magnetic separation, MRI contrast agents, hyperthermia, and thermal ablation. Additionally, droplet-based microfluidic technology enables the fabrication of microgels possessing monodisperse characteristics and controlled morphological shapes. Here, alginate microgels containing citrated magnetic nanoparticles (MNPs) were produced by a microfluidic flow-focusing system. Superparamagnetic magnetite nanoparticles with an average size of 29.1 ± 2.5 nm and saturation magnetization of 66.92 emu/g were synthesized via the co-precipitation method. The hydrodynamic size of MNPs was changed from 142 nm to 826.7 nm after the citrate group's attachment led to an increase in dispersion and the stability of the aqueous phase. A microfluidic flow-focusing chip was designed, and the mold was 3D printed by stereo lithographic technology. Depending on inlet fluid rates, monodisperse and polydisperse microgels in the range of 20-120 μm were produced. Different conditions of droplet generation in the microfluidic device (break-up) were discussed considering the model of rate-of-flow-controlled-breakup (squeezing). Practically, this study indicates guidelines for generating droplets with a predetermined size and polydispersity from liquids with well-defined macroscopic properties, utilizing a microfluidic flow-focusing device (MFFD). Fourier transform infrared spectrometer (FT-IR) results indicated a chemical attachment of citrate groups on MNPs and the existence of MNPs in the hydrogels. Magnetic hydrogel proliferation assay after 72 h showed a better rate of cell growth in comparison to the control group (p = 0.042).
Collapse
Affiliation(s)
- Fereshteh Moharramzadeh
- Advanced Magnetic Materials Research Center, School of Metallurgy and Materials, University of Tehran, Tehran 11155 4563, Iran
| | - Seyyed Ali Seyyed Ebrahimi
- Advanced Magnetic Materials Research Center, School of Metallurgy and Materials, University of Tehran, Tehran 11155 4563, Iran
| | - Vahid Zarghami
- Department of Materials and Metallurgy, Faculty of Mechanical and Energy Engineering, Shahid Beheshti University, Tehran 16589 53571, Iran
| | - Zahra Lalegani
- Advanced Magnetic Materials Research Center, School of Metallurgy and Materials, University of Tehran, Tehran 11155 4563, Iran
| | - Bejan Hamawandi
- Department of Applied Physics, KTH Royal Institute of Technology, SE-106 91 Stockholm, Sweden
| |
Collapse
|
6
|
Hu C, Zheng Z, Huang M, Yang F, Wu X, Zhang A. Adsorption Characterization of Cu(II) and Cd(II) by a Magnetite-Chitosan Composite: Kinetic, Thermodynamic and Equilibrium Studies. Polymers (Basel) 2023; 15:2710. [PMID: 37376356 DOI: 10.3390/polym15122710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 06/11/2023] [Accepted: 06/14/2023] [Indexed: 06/29/2023] Open
Abstract
Optimizing the use of magnetite-chitosan composites for heavy metal adsorption has been of great interest due to their environmental friendliness. To gain insights into their potential with green synthesis, this study analyzed one of these composites through X-ray diffraction, Fourier-transform infrared spectroscopy and scanning electron microscopy. Adsorption properties were then explored via static experiments to evaluate the pH dependence, isotherms, kinetics, thermodynamics and regeneration adsorption of Cu(II) and Cd(II). Results disclosed that the optimum pH of adsorption was 5.0, the equilibrium time was about 10 min, and the capacity for Cu(II) and Cd(II) reached 26.28 and 18.67 mg/g, respectively. The adsorption amount of cations increased with temperature from 25 °C to 35 °C and decreased with further increase in temperature from 40 °C to 50 °C, which might be related to the unfolding of chitosan; the adsorption capacity was above 80% of the initial value after two regenerations and about 60% after five regenerations. The composite has a relatively rough outer surface, but its inner surface and porosity are not obvious; it has functional groups of magnetite and chitosan, and chitosan might dominate the adsorption. Consequently, this research proposes the value of maintaining green synthesis research to further optimize the composite system of heavy metal adsorption.
Collapse
Affiliation(s)
- Chao Hu
- Hubei Province Research Center of Engineering Technology for Utilization of Botanical Functional Ingredients, Hubei Engineering University, Xiaogan 432000, China
- College of Life Science and Technology, Hubei Engineering University, Xiaogan 432000, China
| | - Zuhong Zheng
- Hubei Province Research Center of Engineering Technology for Utilization of Botanical Functional Ingredients, Hubei Engineering University, Xiaogan 432000, China
- College of Life Science and Technology, Hubei Engineering University, Xiaogan 432000, China
| | - Mengyao Huang
- College of Life Science and Technology, Hubei Engineering University, Xiaogan 432000, China
| | - Fan Yang
- College of Life Science and Technology, Hubei Engineering University, Xiaogan 432000, China
| | - Xuewei Wu
- College of Life Science and Technology, Hubei Engineering University, Xiaogan 432000, China
| | - Aiqun Zhang
- College of Life Science and Technology, Hubei Engineering University, Xiaogan 432000, China
| |
Collapse
|
7
|
Kumar R, Basu A, Bishayee B, Chatterjee RP, Behera M, Ang WL, Pal P, Shah M, Tripathy SK, Ambika S, Janani VA, Chakrabortty S, Nayak J, Jeon BH. Management of tannery waste effluents towards the reclamation of clean water using an integrated membrane system: A state-of-the-art review. ENVIRONMENTAL RESEARCH 2023; 229:115881. [PMID: 37084947 DOI: 10.1016/j.envres.2023.115881] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 01/13/2023] [Accepted: 04/09/2023] [Indexed: 05/03/2023]
Abstract
Tanning and other leather processing methods utilize a large amount of freshwater, dyes, chemicals, and salts and produce toxic waste, raising questions regarding their environmental sensitivity and eco-friendly nature. Total suspended solids, total dissolved solids, chemical oxygen demand, and ions such as chromium, sulfate, and chloride turn tannery wastewater exceedingly toxic for any living species. Therefore, it is imperative to treat tannery effluent, and existing plants must be examined and upgraded to keep up with recent technological developments. Different conventional techniques to treat tannery wastewater have been reported based on their pollutant removal efficiencies, advantages, and disadvantages. Research on photo-assisted catalyst-enhanced deterioration has inferred that both homogeneous and heterogeneous catalysis can be established as green initiatives, the latter being more efficient at degrading organic pollutants. However, the scientific community experiences significant problems developing a feasible treatment technique owing to the long degradation times and low removal efficiency. Hence, there is a chance for an improved solution to the problem of treating tannery wastewater through the development of a hybrid technology that uses flocculation as the primary treatment, a unique integrated photo-catalyst in a precision-designed reactor as the secondary method, and finally, membrane-based tertiary treatment to recover the spent catalyst and reclaimable water. This review gives an understanding of the progressive advancement of a cutting-edge membrane-based system for the management of tanning industrial waste effluents towards the reclamation of clean water. Adaptable routes toward sludge disposal and the reviews on techno-economic assessments have been shown in detail, strengthening the scale-up confidence for implementing such innovative hybrid systems.
Collapse
Affiliation(s)
- Ramesh Kumar
- Department of Earth Resources & Environmental Engineering, Hanyang University, 222-Wangsimni-ro, Seongdong-gu, Seoul, 04763, Republic of Korea
| | - Aradhana Basu
- School of Sustainability, XIM University, Bhubaneswar, 752050, India
| | - Bhaskar Bishayee
- EEG Lab, CSIR-Central Mechanical Engineering Research Institute, Durgapur, 713209, West Bengal, India
| | - Rishya Prava Chatterjee
- EEG Lab, CSIR-Central Mechanical Engineering Research Institute, Durgapur, 713209, West Bengal, India
| | - Meeraambika Behera
- School of Chemical Technology, Kalinga Institute of Industrial Technology, Bhubaneswar, 751024, India
| | - Wei Lun Ang
- Department of Chemical and Process Engineering, Universiti Kebangsaan Malaysia, 43600, UKM Bangi, Selangor Darul Ehsan, Malaysia
| | - Parimal Pal
- Department of Chemical Engineering, NIT Durgapur, M.G Avenue, Durgapur, 713209, India
| | - Maulin Shah
- Environmental Microbiology Lab, Ankelswar, Gujarat, India
| | - Suraj K Tripathy
- School of Chemical Technology, Kalinga Institute of Industrial Technology, Bhubaneswar, 751024, India; School of Biotechnology, Kalinga Institute of Industrial Technology, Bhubaneswar, 751024, India
| | - Selvaraj Ambika
- Department of Civil Engineering, Indian Institute of Technology Hyderabad, Telangana, 502285, India
| | - V Aruna Janani
- Department of Chemical Engineering, Kalasalingam Academy of Research and Education, Tamil Nadu, 626126, India
| | - Sankha Chakrabortty
- School of Chemical Technology, Kalinga Institute of Industrial Technology, Bhubaneswar, 751024, India; School of Biotechnology, Kalinga Institute of Industrial Technology, Bhubaneswar, 751024, India.
| | - Jayato Nayak
- Center for Life Science, Mahindra University, Hyderabad, India.
| | - Byong-Hun Jeon
- Department of Earth Resources & Environmental Engineering, Hanyang University, 222-Wangsimni-ro, Seongdong-gu, Seoul, 04763, Republic of Korea.
| |
Collapse
|
8
|
Durkut S. Fe 3O 4 magnetic nanoparticles-loaded thermoresponsive poly( N-vinylcaprolactam)- g-galactosylated chitosan microparticles: investigation of physicochemical, morphological and magnetic properties. JOURNAL OF MACROMOLECULAR SCIENCE PART A-PURE AND APPLIED CHEMISTRY 2023. [DOI: 10.1080/10601325.2023.2185530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
Affiliation(s)
- Serap Durkut
- Tissue Engineering, Biomaterials and Nanobiotechnology Laboratory, Ankara University Faculty of Science, Ankara, Turkey
| |
Collapse
|
9
|
Microwave-assisted fabrication for synthesis of magnetite chitosan-modified polymer composite hydrogel as rapid removal adsorbent for effective remediation of hazardous contaminants. Polym Bull (Berl) 2023. [DOI: 10.1007/s00289-023-04721-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
|
10
|
Wang J, Shan K, Tang Y, Wu N, Li N. The Adsorption of CTC onto CFBs: A Study on Fabrication of Magnetic Cellulose/Fe 3O 4 Beads (CFBs) and Adsorption Kinetics. MATERIALS (BASEL, SWITZERLAND) 2023; 16:1189. [PMID: 36770196 PMCID: PMC9918938 DOI: 10.3390/ma16031189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 01/03/2023] [Accepted: 01/05/2023] [Indexed: 06/18/2023]
Abstract
Magnetic cellulose/Fe3O4 beads (CFBs) were fabricated by dispersing Fe3O4 particles in a microcrystalline cellulose (MCC) matrix. The CFBs were characterized by X-ray diffraction (XRD), vibrating sample magnetometry (VSM), energy dispersive X-ray spectrometry (EDS), Brunauer-Emmett-Teller (BET) analysis and scanning electron microscopy (SEM). The adsorption behaviors of CFBs were studied by chlortetracycline hydrochloride (CTC) adsorption experiments. By means of adsorption kinetics and isotherms, the adsorption mechanisms were explored. The results show that quasi-spherical CFBs with a BET surface area as high as 119.63 m2/g were successfully tailored, with the high saturation magnetization (Ms > 40 emu/g) guaranteeing the magnetic separation of CFBs from wastewater. The process of adsorbing CTC onto CFBs involves monolayer chemical adsorption, and the maximum adsorption capacity for CTC estimated by the Langmuir model is 89.53 mg/g. The CFB product shows better adsorption performance in acidic solution than in basic solution.
Collapse
|
11
|
Abdelaziz M, Hefnawy A, Anter A, Abdellatif MM, Khalil MAF, Khalil IA. Silica-Coated Magnetic Nanoparticles for Vancomycin Conjugation. ACS OMEGA 2022; 7:30161-30170. [PMID: 36061717 PMCID: PMC9434613 DOI: 10.1021/acsomega.2c03226] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 08/03/2022] [Indexed: 06/15/2023]
Abstract
Drug resistance is a global health challenge with thousands of deaths annually caused by bacterial multidrug resistance (MDR). Efforts to develop new antibacterial molecules do not meet the mounting needs imposed by the evolution of MDR. An alternative approach to overcome this challenge is developing targeted formulations that can enhance the therapeutic efficiency and limit side effects. In this aspect, vancomycin is a potent antibacterial agent that has inherent bacterial targeting properties by binding to the D-Ala-D-Ala moiety of the bacterial peptidoglycan. However, the use of vancomycin is associated with serious side effects that limit its clinical use. Herein, we report the development of vancomycin-conjugated magnetic nanoparticles using a simple conjugation method for targeted antibacterial activity. The nanoparticles were synthesized using a multistep process that starts by coating the nanoparticles with a silica layer, followed by binding an amide linker and then binding the vancomycin glycopeptide. The developed vancomycin-conjugated magnetic nanoparticles were observed to exhibit a spherical morphology and a particle size of 16.3 ± 2.6 nm, with a silica coating thickness of 5 nm and a total coating thickness of 8 nm. The vancomycin conjugation efficiency on the nanoparticles was measured spectrophotometrically to be 25.1%. Additionally, the developed formulation retained the magnetic activity of the nanoparticles, where it showed a saturation magnetization value of 51 emu/g, compared to 60 emu/g for bare magnetic nanoparticles. The in vitro cell biocompatibility demonstrated improved safety where vancomycin-conjugated nanoparticles showed IC50 of 183.43 μg/mL, compared to a much lower value of 54.11 μg/mL for free vancomycin. While the antibacterial studies showed a comparable activity of the developed formulation, the minimum inhibitory concentration was 25 μg/mL, compared to 20 μg/mL for free vancomycin. Accordingly, the reported formulation can be used as a platform for the targeted and efficient delivery of other drugs.
Collapse
Affiliation(s)
- Moustafa
M. Abdelaziz
- Department
of Bioengineering, The University of Kansas, Lawrence, Kansas 66045, United States
| | - Amr Hefnawy
- Smyth
Laboratory, College of Pharmacy, University
of Texas at Austin, Austin, Texas 78712, United States
| | - Asem Anter
- Microbiology
Unit, Drug Factory, College of Pharmaceutical Sciences and Drug Manufacturing, Misr University of Science and Technology (MUST),
6th of October, Giza 12582, Egypt
| | - Menna M. Abdellatif
- Department
of Industrial Pharmacy, College of Pharmaceutical Sciences and Drug
Manufacturing, Misr University for Science
and Technology, Giza 12582, Egypt
| | - Mahmoud A. F. Khalil
- Department
of Microbiology and Immunology, Faculty of Pharmacy, Fayoum University, Fayoum 63514, Egypt
| | - Islam A. Khalil
- Department
of Pharmaceutics, College of Pharmaceutical Sciences and Drug Manufacturing, Misr University of Science and Technology (MUST), 6th of October, Giza 12582, Egypt
| |
Collapse
|
12
|
Ajalli N, Pourmadadi M, Yazdian F, Rashedi H, Navaei-Nigjeh M, Díez-Pascual AM. Chitosan/Gamma-Alumina/Fe3O4@5-FU Nanostructures as Promising Nanocarriers: Physiochemical Characterization and Toxicity Activity. Molecules 2022; 27:molecules27175369. [PMID: 36080138 PMCID: PMC9458215 DOI: 10.3390/molecules27175369] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 08/15/2022] [Accepted: 08/16/2022] [Indexed: 01/07/2023] Open
Abstract
Today, cancer treatment is an important issue in the medical world due to the challenges and side effects of ongoing treatment procedures. Current methods can be replaced with targeted nano-drug delivery systems to overcome such side effects. In the present work, an intelligent nano-system consisting of Chitosan (Ch)/Gamma alumina (γAl)/Fe3O4 and 5-Fluorouracil (5-FU) was synthesized and designed for the first time in order to influence the Michigan Cancer Foundation-7 (MCF-7) cell line in the treatment of breast cancer. Physico-chemical characterization of the nanocarriers was carried out using X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR), vibrating sample magnetometry (VSM), dynamic light scattering (DLS), and scanning electron microscopy (SEM). SEM analysis revealed smooth and homogeneous spherical nanoparticles. The high stability of the nanoparticles and their narrow size distribution was confirmed by DLS. The results of the loading study demonstrated that these nano-systems cause controlled, stable, and pH-sensitive release in cancerous environments with an inactive targeting mechanism. Finally, the results of MTT and flow cytometry tests indicated that this nano-system increased the rate of apoptosis induction on cancerous masses and could be an effective alternative to current treatments.
Collapse
Affiliation(s)
- Narges Ajalli
- Department of Chemical Engineering, Faculty of Engineering, University of Tehran, Tehran 1417935840, Iran
| | - Mehrab Pourmadadi
- Department of Chemical Engineering, Faculty of Engineering, University of Tehran, Tehran 1417935840, Iran
| | - Fatemeh Yazdian
- Department of Life Science Engineering, Faculty of New Science and Technologies, University of Tehran, Tehran 1439956191, Iran
- Correspondence: (F.Y.); (H.R.); (A.M.D.-P.)
| | - Hamid Rashedi
- Department of Chemical Engineering, Faculty of Engineering, University of Tehran, Tehran 1417935840, Iran
- Correspondence: (F.Y.); (H.R.); (A.M.D.-P.)
| | - Mona Navaei-Nigjeh
- Pharmaceutical Sciences Research Center, Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran 1417613151, Iran
- Department of Pharmaceutical Biomaterials, Medical Biomaterials Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran 1417614411, Iran
| | - Ana M. Díez-Pascual
- Universidad de Alcalá, Facultad de Ciencias, Departamento de Química Analítica, Química Física e Ingeniería Química, Ctra. Madrid-Barcelona, Km. 33.6, 28805 Alcalá de Henares, Madrid, Spain
- Correspondence: (F.Y.); (H.R.); (A.M.D.-P.)
| |
Collapse
|
13
|
Zhang W, Zhang Z, Lou S, Chang Z, Wen B, Zhang T. Hyaluronic Acid–Stabilized Fe3O4 Nanoparticles for Promoting In Vivo Magnetic Resonance Imaging of Tumors. Front Pharmacol 2022; 13:918819. [PMID: 35910362 PMCID: PMC9337838 DOI: 10.3389/fphar.2022.918819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 05/27/2022] [Indexed: 11/13/2022] Open
Abstract
The use of iron oxide (Fe3O4) nanoparticles as novel contrast agents for magnetic resonance imaging (MRI) has attracted great interest due to their high r2 relaxivity. However, both poor colloidal stability and lack of effective targeting ability have impeded their further expansion in the clinics. Here, we reported the creation of hyaluronic acid (HA)-stabilized Fe3O4 nanoparticles prepared by a hydrothermal co-precipitation method and followed by electrostatic adsorption of HA onto the nanoparticle surface. The water-soluble HA functions not only as a stabilizer but also as a targeting ligand with high affinity for the CD44 receptor overexpressed in many tumors. The resulting HA-stabilized Fe3O4 nanoparticles have an estimated size of sub-20 nm as observed by transmission electron microscopy (TEM) imaging and exhibited long-term colloidal stability in aqueous solution. We found that the nanoparticles are hemocompatible and cytocompatible under certain concentrations. As verified by quantifying the cellular uptake, the Fe3O4@HA nanoparticles were able to target a model cell line (HeLa cells) overexpressing the CD44 receptor through an active pathway. In addition, we showed that the nanoparticles can be used as effective contrast agents for MRI both in vitro in HeLa cells and in vivo in a xenografted HeLa tumor model in rodents. We believe that our findings shed important light on the use of active targeting ligands to improve the contrast of lesion for tumor-specific MRI in the nano-based diagnosis systems.
Collapse
Affiliation(s)
- Weijie Zhang
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- *Correspondence: Weijie Zhang,
| | - Zhongyue Zhang
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Shitong Lou
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zhiwei Chang
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Baohong Wen
- Department of MRI, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Tao Zhang
- College of Pharmacy, Xinxiang Medical University, Xinxiang, China
| |
Collapse
|
14
|
Villela Zumaya AL, Mincheva R, Raquez JM, Hassouna F. Nanocluster-Based Drug Delivery and Theranostic Systems: Towards Cancer Therapy. Polymers (Basel) 2022; 14:1188. [PMID: 35335518 PMCID: PMC8955999 DOI: 10.3390/polym14061188] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/14/2022] [Accepted: 03/15/2022] [Indexed: 12/12/2022] Open
Abstract
Over the last decades, the global life expectancy of the population has increased, and so, consequently, has the risk of cancer development. Despite the improvement in cancer therapies (e.g., drug delivery systems (DDS) and theranostics), in many cases recurrence continues to be a challenging issue. In this matter, the development of nanotechnology has led to an array of possibilities for cancer treatment. One of the most promising therapies focuses on the assembly of hierarchical structures in the form of nanoclusters, as this approach involves preparing individual building blocks while avoiding handling toxic chemicals in the presence of biomolecules. This review aims at presenting an overview of the major advances made in developing nanoclusters based on polymeric nanoparticles (PNPs) and/or inorganic NPs. The preparation methods and the features of the NPs used in the construction of the nanoclusters were described. Afterwards, the design, fabrication and properties of the two main classes of nanoclusters, namely noble-metal nanoclusters and hybrid (i.e., hetero) nanoclusters and their mode of action in cancer therapy, were summarized.
Collapse
Affiliation(s)
- Alma Lucia Villela Zumaya
- Faculty of Chemical Engineering, University of Chemistry and Technology Prague, 166 28 Prague, Czech Republic;
| | - Rosica Mincheva
- Laboratory of Polymeric and Composite Materials, University of Mons (UMONS), Place du Parc 20, 7000 Mons, Belgium; (R.M.); (J.-M.R.)
| | - Jean-Marie Raquez
- Laboratory of Polymeric and Composite Materials, University of Mons (UMONS), Place du Parc 20, 7000 Mons, Belgium; (R.M.); (J.-M.R.)
| | - Fatima Hassouna
- Faculty of Chemical Engineering, University of Chemistry and Technology Prague, 166 28 Prague, Czech Republic;
| |
Collapse
|
15
|
Abdelaziz MM, Hefnawy A, Anter A, Abdellatif MM, Khalil MAF, Khalil IA. Respirable spray dried vancomycin coated magnetic nanoparticles for localized lung delivery. Int J Pharm 2022; 611:121318. [PMID: 34838622 DOI: 10.1016/j.ijpharm.2021.121318] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 11/19/2021] [Accepted: 11/22/2021] [Indexed: 01/28/2023]
Abstract
Bacterial pneumonia is a common pulmonary infection responsible for premature death. Biomaterials based-carriers loaded with antibiotics enhance drug potency through localizing the therapy, minimizing the associated adverse effects, and improving patient compliance. Herein, this study reports the preparation of an inhalable dry powder formulation composed of a nano-in-microparticles. Vancomycin was adsorbed on the core of magnetic nanoparticles followed by spray drying into lactose/dextran to optimize the aerodynamic performance and allow the local delivery of the drug into the bacterial pneumonia infection site. Lactose and Dextran are polysaccharides commonly used for pulmonary delivery due to their optimum aerodynamic performance and biocompatibility. The preparation of the nano-in-micro particles with optimum properties was confirmed using FTIR, TEM, SEM, Laser-diffraction, ICP-AES and TGA. The TEM micrographs confirmed the formation of spherical magnetic nanoparticles with a diameter 14.7 ± 5.9 nm and a coating thickness 3 - 16 nm, while laser diffraction showed that outer microparticles exhibited a mean diameter < 5 µm. The formulations demonstrated a promising activity against S. aureus and MRSA and better biocompatibility using MTT assay. In vivo safety and pharmacokinetic studies confirmed the localization of VAN in lung tissue and minimized adverse effects compared to free VAN. Therefore, the developed nano-in-microparticles confers a good potential for eradication of lung infections.
Collapse
Affiliation(s)
| | - Amr Hefnawy
- Smyth Lab, College of Pharmacy, University of Texas at Austin, TX 78712, USA
| | - Asem Anter
- Microbiology Unit, Drug Factory, College of Pharmacy and Drug Manufacturing, Misr University of Science and Technology (MUST), 6th of October, Giza 12566, Egypt
| | - Menna M Abdellatif
- Department of Industrial Pharmacy, College of Pharmaceutical Sciences and Drug Manufacturing, Misr University for Science and Technology, Giza, Egypt
| | - Mahmoud A F Khalil
- Department of Microbiology and Immunology, Faculty of Pharmacy, Fayoum University, Fayoum, Egypt
| | - Islam A Khalil
- Department of Pharmaceutics, College of Pharmacy and Drug Manufacturing, Misr University of Science and Technology (MUST), 6th of October, Giza 12582, Egypt.
| |
Collapse
|
16
|
Lu C, Han L, Wang J, Wan J, Song G, Rao J. Engineering of magnetic nanoparticles as magnetic particle imaging tracers. Chem Soc Rev 2021; 50:8102-8146. [PMID: 34047311 DOI: 10.1039/d0cs00260g] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Magnetic particle imaging (MPI) has recently emerged as a promising non-invasive imaging technique because of its signal linearly propotional to the tracer mass, ability to generate positive contrast, low tissue background, unlimited tissue penetration depth, and lack of ionizing radiation. The sensitivity and resolution of MPI are highly dependent on the properties of magnetic nanoparticles (MNPs), and extensive research efforts have been focused on the design and synthesis of tracers. This review examines parameters that dictate the performance of MNPs, including size, shape, composition, surface property, crystallinity, the surrounding environment, and aggregation state to provide guidance for engineering MPI tracers with better performance. Finally, we discuss applications of MPI imaging and its challenges and perspectives in clinical translation.
Collapse
Affiliation(s)
- Chang Lu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China.
| | - Linbo Han
- College of Health Science and Environmental Engineering, Shenzhen Technology University, Shenzhen 518118, P. R. China
| | - Joanna Wang
- Molecular Imaging Program at Stanford, Department of Radiology, Stanford University School of Medicine, 1201 Welch Road, Stanford, California 94305-5484, USA.
| | - Jiacheng Wan
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China.
| | - Guosheng Song
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China.
| | - Jianghong Rao
- Molecular Imaging Program at Stanford, Department of Radiology, Stanford University School of Medicine, 1201 Welch Road, Stanford, California 94305-5484, USA.
| |
Collapse
|
17
|
Wang Q, Zhang Z, Xu G, Li G. Magnetic porous biochar with nanostructure surface derived from penicillin fermentation dregs pyrolysis with K 2FeO 4 activation: Characterization and application in penicillin adsorption. BIORESOURCE TECHNOLOGY 2021; 327:124818. [PMID: 33581375 DOI: 10.1016/j.biortech.2021.124818] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 01/29/2021] [Accepted: 01/31/2021] [Indexed: 05/27/2023]
Abstract
Magnetic porous biochars (MCHCl, MCHAc) with nanostructure on surfaces were prepared from penicillin fermentation dregs by pyrolysis with K2FeO4 activation and used in penicillin adsorption. MCHCl and MCHAc had high BET surface areas of 672 and 735 m2/g, respectively; mainly be attributed to the activation of K2FeO4 as well as acid pickling. Saturation magnetizations of MCHCl and MCHAc were 75.29 and 42.45 emu/g, respectively; the magnetism was mainly derived from the Fe3O4 and Fe3C in magnetic biochars. MCHCl had nano sticks of ~ 80 nm and MCHAc had petal-like slice of ~ 30 nm on surfaces. The maximum adsorption capacities of penicillin on MCHCl and MCHAc were 196 and 322 mg/g at 308 K, respectively. The adsorptions of penicillin on MCHCl and MCHAc were consistent with pseudo primary kinetics and the Langmuir adsorption isotherm model, and thermodynamic analysis indicated that the adsorption mechanism included physical and chemical adsorption.
Collapse
Affiliation(s)
- Qiuju Wang
- School of Environment, Harbin Institute of Technology, P.O. Box 2602, Harbin 150090, China
| | - Zhao Zhang
- College of Resources and Environment, University of Chinese Academy of Sciences (UCAS), Beijing 100049, China
| | - Guoren Xu
- School of Environment, Harbin Institute of Technology, P.O. Box 2602, Harbin 150090, China; College of Resources and Environment, University of Chinese Academy of Sciences (UCAS), Beijing 100049, China.
| | - Guibai Li
- School of Environment, Harbin Institute of Technology, P.O. Box 2602, Harbin 150090, China
| |
Collapse
|
18
|
Bilal M, Iqbal HMN. Armoring bio-catalysis via structural and functional coordination between nanostructured materials and lipases for tailored applications. Int J Biol Macromol 2021; 166:818-838. [PMID: 33144258 DOI: 10.1016/j.ijbiomac.2020.10.239] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 09/10/2020] [Accepted: 10/30/2020] [Indexed: 02/08/2023]
Abstract
Nanostructured materials represent an interesting and novel class of support matrices for the immobilization of different enzymes. Owing to the high surface area, robust mechanical stability, outstanding optical, thermal, and electrical properties, nanomaterials have been rightly perceived as desired immobilization matrices for lipases immobilization with a wide array of biotechnological applications such as dairy, food technology, fine chemical, pharmaceutical, detergent, and oleochemical industries. Lipases immobilized on nanomaterials have demonstrated superior attributes than free counterparts, such as aggrandized pH and thermal stability, robustness, long-term stability, and the possibility of reuse and recycling in several times. Here we review current and state-of-the-art literature on the use of nanomaterials as novel platforms for the immobilization of lipase enzymes. The physicochemical properties and exploitation of a large number of new nanostructured materials such as carbon nanotubes, nano-silica, graphene/graphene oxide, metal nanoparticles, magnetic nanostructures, metal-organic frameworks, and hybrid nanoflowers as a host matrix to constitute robust lipases-based nanobiocatalytic systems are discussed. Conclusive remarks, trends, and future recommendations for nanomaterial immobilized enzymes are also given.
Collapse
Affiliation(s)
- Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian 223003, China.
| | - Hafiz M N Iqbal
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey 64849, Mexico.
| |
Collapse
|
19
|
Bi Q, Song X, Hu A, Luo T, Jin R, Ai H, Nie Y. Magnetofection: Magic magnetic nanoparticles for efficient gene delivery. CHINESE CHEM LETT 2020. [DOI: 10.1016/j.cclet.2020.07.030] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
20
|
Bani Ali E, Kazemi M, Ali Ghasemzadeh M. A Novel Preparation of Blankophor R Nanoparticles by Reverse Microemulsion Method. Polycycl Aromat Compd 2020. [DOI: 10.1080/10406638.2018.1563553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Elahe Bani Ali
- Department of Chemistry, Qom Branch Islamic Azad University, Qom, I. R. Iran
| | - Masoud Kazemi
- Department of Chemistry, Qom Branch Islamic Azad University, Qom, I. R. Iran
| | | |
Collapse
|
21
|
A Review on Bio-Based Catalysts (Immobilized Enzymes) Used for Biodiesel Production. ENERGIES 2020. [DOI: 10.3390/en13113013] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The continuous increase of the world’s population results in an increased demand for energy drastically from the industrial and domestic sectors as well. Moreover, the current public awareness regarding issues such as pollution and overuse of petroleum fuel has resulted in the development of research approaches concerning alternative renewable energy sources. Amongst the various options for renewable energies used in transportation systems, biodiesel is considered the most suitable replacement for fossil-based diesel. In what concerns the industrial application for biodiesel production, homogeneous catalysts such as sodium hydroxide, potassium hydroxide, sulfuric acid, and hydrochloric acid are usually selected, but their removal after reaction could prove to be rather complex and sometimes polluting, resulting in increases on the production costs. Therefore, there is an open field for research on new catalysts regarding biodiesel production, which can comprise heterogeneous catalysts. Apart from that, there are other alternatives to these chemical catalysts. Enzymatic catalysts have also been used in biodiesel production by employing lipases as biocatalysts. For economic reasons, and reusability and recycling, the lipases urged to be immobilized on suitable supports, thus the concept of heterogeneous biocatalysis comes in existence. Just like other heterogeneous catalytic materials, this one also presents similar issues with inefficiency and mass-transfer limitations. A solution to overcome the said limitations can be to consider the use of nanostructures to support enzyme immobilization, thus obtaining new heterogeneous biocatalysts. This review mainly focuses on the application of enzymatic catalysts as well as nano(bio)catalysts in transesterification reaction and their multiple methods of synthesis.
Collapse
|
22
|
Novel Antibacterial Food Packaging Based on Chitosan Loaded ZnO Nano Particles Prepared by Green Synthesis from Nettle Leaf Extract. J Inorg Organomet Polym Mater 2020. [DOI: 10.1007/s10904-020-01621-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
23
|
Özaytekin İ, Oflaz K. Synthesis and characterization of high-temperature resistant and thermally conductive magnetic PBI/Fe 3O 4 nanofibers. HIGH PERFORM POLYM 2020. [DOI: 10.1177/0954008320911985] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In the present study, magnetite nanoparticles were added to an electrospinning solution of polyvinylidene fluoride (PVDF)/polybenzimidazole (PBI) polymers to prepare PBI/Fe3O4 nanofibers (NFs). The operating voltage of the electrospinning device was set to 15 kV, the distance between the needle and the plate was 10 cm, and the feed rate was set to 0.3 mL h−1. The microstructures of the as-prepared NFs were investigated by Fourier transform infrared spectrophotometry, atomic force microscopy, thermogravimetric analysis, and vibration sample magnetometry. Magnetite-doped PVDF/PBI NFs exhibited superior magnetism and saturation magnetization in the range of 1.5–5 emu g−1. It was observed that the thermal resistance of the fibers increased with the increasing amount of magnetic particles and nanocomposite fiber (NCF) 1 and NCF2 exhibited excellent thermal resistance up to 415°C and 450°C, respectively. The heat conduction coefficient of the fibers was measured at 4, 6, and 8 W. The thermal conductivity of the NFs increased with the increasing amount of magnetite nanoparticles, and the highest thermal conductivity coefficient for NCF2 (1.83 W mK−1) was measured at 4 W.
Collapse
Affiliation(s)
- İlkay Özaytekin
- Department of Chemical Engineering, Faculty of Engineering and Natural Sciences, Konya Technical University, Konya, Turkey
| | - Kamil Oflaz
- Department of Chemical Engineering, Faculty of Engineering and Natural Sciences, Konya Technical University, Konya, Turkey
| |
Collapse
|
24
|
Adeogun AI, Osideko OA, Idowu MA, Shappur V, Akinloye OA, Ramesh Babu B. Chitosan supported CoFe2O4 for the removal of anthraquinone dyes: kinetics, equilibrium and thermodynamics studies. SN APPLIED SCIENCES 2020. [DOI: 10.1007/s42452-020-2552-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
|
25
|
Farid RM, Gaafar PM, Hazzah HA, Helmy MW, Abdallah OY. Chemotherapeutic potential of L-carnosine from stimuli-responsive magnetic nanoparticles against breast cancer model. Nanomedicine (Lond) 2020; 15:891-911. [DOI: 10.2217/nnm-2019-0428] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Aim: L-carnosine-coated magnetic nanoparticles (CCMNPs) were developed to enhance chemotherapeutic activity of carnosine-dipeptide. Materials & methods: Surface grafting of MNPs with carnosine was contended by differential scanning calorimetry, infrared spectroscopy and x-ray diffraction. Physicochemical characterization and in vitro cytotoxicity on MCF-7 cell line was carried out. In vivo chemotherapeutic activity and toxicity was assessed by an Ehrlich Ascites tumor model. Results: CCMNPs possessed monodispersed size (120 nm), ζ (-27.3 mV), magnetization (51.52 emu/g) and entrapment efficiency (88.3%) with sustained release rate. CCMNPs showed 2.3-folds lower IC50 values compared with carnosine solution after 48 h. Targeted CCMNPs were specifically accumulated in tumor showing significant reduction in tumor size with no systemic toxicity. Significant reduction in VEGF and cyclin D1 levels were observed. Conclusion: The developed system endowed with responsiveness to an external stimulus can represent a promising magnetically targeted delivery system for carnosine site specific delivery.
Collapse
Affiliation(s)
- Ragwa M Farid
- Department of Pharmaceutics & Pharmaceutical Technology, Faculty of Pharmacy & Drug Manufacturing, Pharos University in Alexandria, Alexandria, Egypt
| | - Passent M E Gaafar
- Department of Pharmaceutics, College of Pharmacy, Arab Academy for Science, Technology & Maritime Transport, Alexandria, Egypt
| | - Heba A Hazzah
- Department of Pharmaceutics & Pharmaceutical Technology, Faculty of Pharmacy & Drug Manufacturing, Pharos University in Alexandria, Alexandria, Egypt
| | - Maged W Helmy
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Damanhour University, Damanhour, Egypt
| | - Ossama Y Abdallah
- Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| |
Collapse
|
26
|
Vasić K, Knez Ž, Konstantinova EA, Kokorin AI, Gyergyek S, Leitgeb M. Structural and magnetic characteristics of carboxymethyl dextran coated magnetic nanoparticles: From characterization to immobilization application. REACT FUNCT POLYM 2020. [DOI: 10.1016/j.reactfunctpolym.2020.104481] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
27
|
Zhong L, Feng Y, Wang G, Wang Z, Bilal M, Lv H, Jia S, Cui J. Production and use of immobilized lipases in/on nanomaterials: A review from the waste to biodiesel production. Int J Biol Macromol 2020; 152:207-222. [PMID: 32109471 DOI: 10.1016/j.ijbiomac.2020.02.258] [Citation(s) in RCA: 132] [Impact Index Per Article: 26.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 02/20/2020] [Accepted: 02/23/2020] [Indexed: 01/19/2023]
Abstract
As a highly efficient and environmentally friendly biocatalyst, immobilized lipase has received incredible interest among the biotechnology community for the production of biodiesel. Nanomaterials possess high enzyme loading, low mass transfer limitation, and good dispersibility, making them suitable biocatalytic supports for biodiesel production. In addition to traditional nanomaterials such as nano‑silicon, magnetic nanoparticles and nano metal particles, novel nanostructured forms such as nanoflowers, carbon nanotubes, nanofibers and metal-organic frameworks (MOFs) have also been studied for biodiesel production in the recent years. However, some problems still exist that need to be overcome in achieving large-scale biodiesel production using immobilized lipase on/in nanomaterials. This article mainly presents an overview of the current and state-of-the-art research on biodiesel production by immobilized lipases in/on nanomaterials. Various immobilization strategies of lipase on various advanced nanomaterial supports and its applications in biodiesel production are highlighted. Influential factors such as source of lipase, immobilization methods, feedstocks, and production process are also critically discussed. Finally, the current challenges and future directions in developing immobilized lipase-based biocatalytic systems for high-level production of biodiesel from waste resources are also recommended.
Collapse
Affiliation(s)
- Le Zhong
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin University of Science and Technology, No 29, 13th Avenue, Tianjin Economic and Technological Development Area (TEDA), Tianjin 300457, PR China
| | - Yuxiao Feng
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin University of Science and Technology, No 29, 13th Avenue, Tianjin Economic and Technological Development Area (TEDA), Tianjin 300457, PR China
| | - Gaoyang Wang
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin University of Science and Technology, No 29, 13th Avenue, Tianjin Economic and Technological Development Area (TEDA), Tianjin 300457, PR China
| | - Ziyuan Wang
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin University of Science and Technology, No 29, 13th Avenue, Tianjin Economic and Technological Development Area (TEDA), Tianjin 300457, PR China
| | - Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian 223003, China
| | - Hexin Lv
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin University of Science and Technology, No 29, 13th Avenue, Tianjin Economic and Technological Development Area (TEDA), Tianjin 300457, PR China.
| | - Shiru Jia
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin University of Science and Technology, No 29, 13th Avenue, Tianjin Economic and Technological Development Area (TEDA), Tianjin 300457, PR China
| | - Jiandong Cui
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin University of Science and Technology, No 29, 13th Avenue, Tianjin Economic and Technological Development Area (TEDA), Tianjin 300457, PR China.
| |
Collapse
|
28
|
Comparative Study of the Adsorption of Acid Blue 40 on Polyaniline, Magnetic Oxide and Their Composites: Synthesis, Characterization and Application. MATERIALS 2019; 12:ma12182854. [PMID: 31487925 PMCID: PMC6765991 DOI: 10.3390/ma12182854] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 08/30/2019] [Accepted: 08/31/2019] [Indexed: 11/16/2022]
Abstract
Conducting polymers (CPs), especially polyaniline (PANI) based hybrid materials have emerged as very interesting materials for the adsorption of heavy metals and dyes from an aqueous environment due to their electrical transport properties, fascinating doping/de-doping chemistry and porous surface texture. Acid Blue 40 (AB40) is one of the common dyes present in the industrial effluents. We have performed a comparative study on the removal of AB40 from water through the application of PANI, magnetic oxide (Fe3O4) and their composites. Prior to this study, PANI and its composites with magnetic oxide were synthesized through our previously reported chemical oxidative synthesis route. The adsorption of AB40 on the synthesized materials was investigated with UV-Vis spectroscopy and resulting data were analyzed by fitting into Tempkin, Freundlich, Dubinin-Radushkevich (D-R) and Langmuir isotherm models. The Freundlich isotherm model fits more closely to the adsorptions data with R2 values of 0.933, 0.971 and 0.941 for Fe3O4, PANI and composites, respectively. The maximum adsorption capacity of Fe3O4, PANI and composites was, respectively, 130.5, 264.9 and 216.9 mg g-1. Comparatively good adsorption capability of PANI in the present case is attributed to electrostatic interactions and a greater number of H-bonding. Effect of pH of solution, temperature, initial concentration of AB40, contact time, ionic strength and dose of adsorbent were also investigated. Adsorption followed pseudo-second-order kinetics. The activation energy of adsorption of AB40 on Fe3O4, PANI and composites were 30.12, 22.09 and 26.13 kJmol-1 respectively. Enthalpy change, entropy change and Gibbs free energy changes are -6.077, -0.026 and -11.93 kJ mol-1 for adsorption of AB40 on Fe3O4. These values are -8.993, -0.032 and -19.87 kJ mol-1 for PANI and -10.62, -0.054 and -19.75 kJ mol-1 for adsorption of AB40 on PANI/Fe3O4 composites. The negative sign of entropy, enthalpy and Gibbs free energy changes indicate spontaneous and exothermic nature of adsorption.
Collapse
|
29
|
Synthesis of a novel CoFe2O4/chitosan magnetic composite for fast adsorption of indigotine blue dye. Carbohydr Polym 2019; 217:6-14. [DOI: 10.1016/j.carbpol.2019.04.054] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 04/13/2019] [Accepted: 04/13/2019] [Indexed: 01/08/2023]
|
30
|
Muhammad A, Shah AUHA, Bilal S, Rahman G. Basic Blue Dye Adsorption from Water using Polyaniline/Magnetite(Fe 3O 4) Composites: Kinetic and Thermodynamic Aspects. MATERIALS (BASEL, SWITZERLAND) 2019; 12:E1764. [PMID: 31151258 PMCID: PMC6600751 DOI: 10.3390/ma12111764] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/04/2019] [Revised: 05/22/2019] [Accepted: 05/28/2019] [Indexed: 02/07/2023]
Abstract
Owing to its exciting physicochemical properties and doping-dedoping chemistry, polyaniline (PANI) has emerged as a potential adsorbent for removal of dyes and heavy metals from aqueous solution. Herein, we report on the synthesis of PANI composites with magnetic oxide (Fe3O4) for efficient removal of Basic Blue 3 (BB3) dye from aqueous solution. PANI, Fe3O4, and their composites were characterized with several techniques and subsequently applied for adsorption of BB3. Effect of contact time, initial concentration of dye, pH, and ionic strength on adsorption behavior were systematically investigated. The data obtained were fitted into Langmuir, Frundlich, Dubbanin-Rudiskavich (D-R), and Tempkin adsorption isotherm models for evaluation of adsorption parameters. Langmuir isotherm fits closely to the adsorption data with R2 values of 0.9788, 0.9849, and 0.9985 for Fe3O4, PANI, and PANI/Fe3O4 composites, respectively. The maximum amount of dye adsorbed was 7.474, 47.977, and 78.13 mg/g for Fe3O4, PANI, and PANI/Fe3O4 composites, respectively. The enhanced adsorption capability of the composites is attributed to increase in surface area and pore volume of the hybrid materials. The adsorption followed pseudo second order kinetics with R2 values of 0.873, 0.979, and 0.999 for Fe3O4, PANI, and PANI/Fe3O4 composites, respectively. The activation energy, enthalpy, Gibbs free energy changes, and entropy changes were found to be 11.14, -32.84, -04.05, and -0.095 kJ/mol for Fe3O4, 11.97, -62.93, -07.78, and -0.18 kJ/mol for PANI and 09.94, -74.26, -10.63, and -0.210 kJ/mol for PANI/Fe3O4 respectively, which indicate the spontaneous and exothermic nature of the adsorption process.
Collapse
Affiliation(s)
- Amir Muhammad
- Institute of Chemical Sciences, University of Peshawar, Peshawar 25120, Pakistan.
| | | | - Salma Bilal
- National Centre of Excellence in Physical Chemistry, University of Peshawar, Peshawar 25120, Pakistan.
- TU Braunschweig Institute of Energy and Process Systems Engineering, Franz-Liszt-Straße 35, 38106 Braunschweig, Germany.
| | - Gul Rahman
- Institute of Chemical Sciences, University of Peshawar, Peshawar 25120, Pakistan.
| |
Collapse
|
31
|
Enhancement of catalytic activity of lipase-immobilized Fe3O4-chitosan microsphere for enantioselective acetylation of racemic 1-phenylethylamine. KOREAN J CHEM ENG 2019. [DOI: 10.1007/s11814-019-0249-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
32
|
Lipase-immobilized chitosan-crosslinked magnetic nanoparticle as a biocatalyst for ring opening esterification of itaconic anhydride. Biochem Eng J 2019. [DOI: 10.1016/j.bej.2018.12.022] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
33
|
Huang Q, Wang S. Synthesis of Fe3O4/PAM superparamagnetic nano-hydrogels in water-in-oil emulsion. J DISPER SCI TECHNOL 2018. [DOI: 10.1080/01932691.2018.1496830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Qingyu Huang
- College of Chemical Engineering, Daqing Normal University, Daqing, China
- Key Laboratory of Oilfield Applied Chemistry, College of Heilongjiang Province, Daqing, China
| | - Shuzhi Wang
- Organic Geochemical Laboratory, Daqing Oilfield Exploration and Development Research Institute, Daqing, China
| |
Collapse
|
34
|
pH-controlled sunitinib anticancer release from magnetic chitosan nanoparticles crosslinked with κ-carrageenan. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2018; 91:705-714. [DOI: 10.1016/j.msec.2018.06.019] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Revised: 05/27/2018] [Accepted: 06/10/2018] [Indexed: 11/17/2022]
|
35
|
Karimi MH, Mahdavinia GR, Massoumi B, Baghban A, Saraei M. Ionically crosslinked magnetic chitosan/κ-carrageenan bioadsorbents for removal of anionic eriochrome black-T. Int J Biol Macromol 2018; 113:361-375. [DOI: 10.1016/j.ijbiomac.2018.02.102] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2017] [Revised: 02/10/2018] [Accepted: 02/14/2018] [Indexed: 12/18/2022]
|
36
|
Gogoi P, Thakur AJ, Devi RR, Das B, Maji TK. Adsorption of As(V) from contaminated water over chitosan coated magnetite nanoparticle: Equilibrium and kinetics study. ACTA ACUST UNITED AC 2017. [DOI: 10.1016/j.enmm.2017.09.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
37
|
Raveendran S, Rochani AK, Maekawa T, Kumar DS. Smart Carriers and Nanohealers: A Nanomedical Insight on Natural Polymers. MATERIALS (BASEL, SWITZERLAND) 2017; 10:E929. [PMID: 28796191 PMCID: PMC5578295 DOI: 10.3390/ma10080929] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Revised: 07/24/2017] [Accepted: 07/31/2017] [Indexed: 02/07/2023]
Abstract
Biodegradable polymers are popularly being used in an increasing number of fields in the past few decades. The popularity and favorability of these materials are due to their remarkable properties, enabling a wide range of applications and market requirements to be met. Polymer biodegradable systems are a promising arena of research for targeted and site-specific controlled drug delivery, for developing artificial limbs, 3D porous scaffolds for cellular regeneration or tissue engineering and biosensing applications. Several natural polymers have been identified, blended, functionalized and applied for designing nanoscaffolds and drug carriers as a prerequisite for enumerable bionano technological applications. Apart from these, natural polymers have been well studied and are widely used in material science and industrial fields. The present review explains the prominent features of commonly used natural polymers (polysaccharides and proteins) in various nanomedical applications and reveals the current status of the polymer research in bionanotechnology and science sectors.
Collapse
Affiliation(s)
- Sreejith Raveendran
- Bio Nano Electronics Research Centre, Graduate School of Interdisciplinary New Science, Toyo University, Saitama 350-8585, Japan.
| | - Ankit K Rochani
- Bio Nano Electronics Research Centre, Graduate School of Interdisciplinary New Science, Toyo University, Saitama 350-8585, Japan.
| | - Toru Maekawa
- Bio Nano Electronics Research Centre, Graduate School of Interdisciplinary New Science, Toyo University, Saitama 350-8585, Japan.
| | - D Sakthi Kumar
- Bio Nano Electronics Research Centre, Graduate School of Interdisciplinary New Science, Toyo University, Saitama 350-8585, Japan.
| |
Collapse
|
38
|
Lv L, Chen N, Feng C, Zhang J, Li M. Heavy metal ions removal from aqueous solution by xanthate-modified cross-linked magnetic chitosan/poly(vinyl alcohol) particles. RSC Adv 2017. [DOI: 10.1039/c7ra02810e] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Xanthate-modified cross-linked magnetic chitosan/poly(vinyl alcohol) particles (XCMCP) were synthesized and applied to remove Pb(ii) and Cu(ii) ions from aqueous solutions.
Collapse
Affiliation(s)
- Long Lv
- School of Water Resources and Environment
- China University of Geosciences (Beijing)
- Beijing
- China
| | - Nan Chen
- School of Water Resources and Environment
- China University of Geosciences (Beijing)
- Beijing
- China
| | - Chuanping Feng
- School of Water Resources and Environment
- China University of Geosciences (Beijing)
- Beijing
- China
| | - Jing Zhang
- School of Water Resources and Environment
- China University of Geosciences (Beijing)
- Beijing
- China
| | - Miao Li
- School of Environment
- Tsinghua University
- Beijing 100084
- China
| |
Collapse
|
39
|
Chen P, Song H, Yao S, Tu X, Su M, Zhou L. Magnetic targeted nanoparticles based on β-cyclodextrin and chitosan for hydrophobic drug delivery and a study of their mechanism. RSC Adv 2017. [DOI: 10.1039/c7ra02398g] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Magnetic nanoparticles double coated with β-cyclodextrin and chitosan were prepared for hydrophobic drug delivery, and its related mechanism was discussed.
Collapse
Affiliation(s)
- Pengfei Chen
- School of Chemical Engineering
- Sichuan University
- Chengdu 610065
- China
| | - Hang Song
- School of Chemical Engineering
- Sichuan University
- Chengdu 610065
- China
| | - Shun Yao
- School of Chemical Engineering
- Sichuan University
- Chengdu 610065
- China
| | - Xianyu Tu
- School of Chemical Engineering
- Sichuan University
- Chengdu 610065
- China
| | - Miao Su
- School of Chemical Engineering
- Sichuan University
- Chengdu 610065
- China
| | - Lu Zhou
- School of Chemical Engineering
- Sichuan University
- Chengdu 610065
- China
| |
Collapse
|
40
|
Yu T, Peng M, Yang J, Huang X, Long S, Zhang G, Wang X, Yang J. PES magnetic microspheres: preparation and performance for the removal of endocrine disruptor-BPA. RSC Adv 2017. [DOI: 10.1039/c7ra09761a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
PES magnetic microspheres were prepared via electrospraying and in situ reaction, and they were applied for the removal of BPA.
Collapse
Affiliation(s)
- Ting Yu
- College of Polymer Science and Engineering
- Sichuan University
- Chengdu 610065
- China
| | - Minle Peng
- College of Polymer Science and Engineering
- Sichuan University
- Chengdu 610065
- China
| | - Jiacao Yang
- College of Polymer Science and Engineering
- Sichuan University
- Chengdu 610065
- China
| | - Xiang Huang
- College of Polymer Science and Engineering
- Sichuan University
- Chengdu 610065
- China
| | - Shengru Long
- Analytical & Testing Center
- Sichuan University
- Chengdu 610064
- China
| | - Gang Zhang
- Analytical & Testing Center
- Sichuan University
- Chengdu 610064
- China
| | - Xiaojun Wang
- Analytical & Testing Center
- Sichuan University
- Chengdu 610064
- China
- State Key Laboratory of Organic-Inorganic Composites
| | - Jie Yang
- Analytical & Testing Center
- Sichuan University
- Chengdu 610064
- China
- State Key Laboratory of Polymer Materials Engineering (Sichuan University)
| |
Collapse
|
41
|
Waifalkar P, Parit S, Chougale A, Sahoo SC, Patil P, Patil P. Immobilization of invertase on chitosan coated γ-Fe 2 O 3 magnetic nanoparticles to facilitate magnetic separation. J Colloid Interface Sci 2016; 482:159-164. [DOI: 10.1016/j.jcis.2016.07.082] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Revised: 07/29/2016] [Accepted: 07/29/2016] [Indexed: 10/21/2022]
|
42
|
Evaluation of perchlorate removal from aqueous solution by cross-linked magnetic chitosan/poly (vinyl alcohol) particles. J Taiwan Inst Chem Eng 2016. [DOI: 10.1016/j.jtice.2016.05.022] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
43
|
Perspective of Fe3O4 Nanoparticles Role in Biomedical Applications. Biochem Res Int 2016; 2016:7840161. [PMID: 27293893 PMCID: PMC4884576 DOI: 10.1155/2016/7840161] [Citation(s) in RCA: 93] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Revised: 03/25/2016] [Accepted: 04/04/2016] [Indexed: 12/30/2022] Open
Abstract
In recent years, although many review articles have been presented about bioapplications of magnetic nanoparticles by some research groups with different expertise such as chemistry, biology, medicine, pharmacology, and materials science and engineering, the majority of these reviews are insufficiently comprehensive in all related topics like magnetic aspects of process. In the current review, it is attempted to carry out the inclusive surveys on importance of magnetic nanoparticles and especially magnetite ones and their required conditions for appropriate performance in bioapplications. The main attentions of this paper are focused on magnetic features which are less considered. Accordingly, the review contains essential magnetic properties and their measurement methods, synthesis techniques, surface modification processes, and applications of magnetic nanoparticles.
Collapse
|
44
|
Jaiswal N, Pandey VP, Dwivedi UN. Immobilization of papaya laccase in chitosan led to improved multipronged stability and dye discoloration. Int J Biol Macromol 2016; 86:288-95. [DOI: 10.1016/j.ijbiomac.2016.01.079] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Revised: 01/18/2016] [Accepted: 01/21/2016] [Indexed: 12/07/2022]
|
45
|
Structural and Magnetic Response in Bimetallic Core/Shell Magnetic Nanoparticles. NANOMATERIALS 2016; 6:nano6040072. [PMID: 28335200 PMCID: PMC5302569 DOI: 10.3390/nano6040072] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Revised: 01/30/2016] [Accepted: 02/05/2016] [Indexed: 11/16/2022]
Abstract
Bimagnetic monodisperse CoFe2O4/Fe3O4 core/shell nanoparticles have been prepared by solution evaporation route. To demonstrate preferential coating of iron oxide onto the surface of ferrite nanoparticles X-ray diffraction (XRD), High resolution transmission electron microscope (HR-TEM) and Raman spectroscopy have been performed. XRD analysis using Rietveld refinement technique confirms single phase nanoparticles with average seed size of about 18 nm and thickness of shell is 3 nm, which corroborates with transmission electron microscopy (TEM) analysis. Low temperature magnetic hysteresis loops showed interesting behavior. We have observed large coercivity 15.8 kOe at T = 5 K, whereas maximum saturation magnetization (125 emu/g) is attained at T = 100 K for CoFe2O4/Fe3O4 core/shell nanoparticles. Saturation magnetization decreases due to structural distortions at the surface of shell below 100 K. Zero field cooled (ZFC) and Field cooled (FC) plots show that synthesized nanoparticles are ferromagnetic till room temperature and it has been noticed that core/shell sample possess high blocking temperature than Cobalt Ferrite. Results indicate that presence of iron oxide shell significantly increases magnetic parameters as compared to the simple cobalt ferrite.
Collapse
|
46
|
Mirabedini M, Kassaee MZ, Poorsadeghi S. Novel Magnetic Chitosan Hydrogel Film, Cross-Linked with Glyoxal as an Efficient Adsorbent for Removal of Toxic Cr(VI) from Water. ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING 2016. [DOI: 10.1007/s13369-016-2062-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
47
|
|
48
|
Bohara RA, Thorat ND, Pawar SH. Role of functionalization: strategies to explore potential nano-bio applications of magnetic nanoparticles. RSC Adv 2016. [DOI: 10.1039/c6ra02129h] [Citation(s) in RCA: 152] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Strategies to bridge the gap between magnetic nanoparticles for their nano bio applications.
Collapse
Affiliation(s)
| | | | - Shivaji H. Pawar
- Centre for Interdisciplinary Research
- D. Y. Patil University
- Kolhapur
- India
| |
Collapse
|
49
|
Chen P, Song H, Zhou L, Chen J, Liu J, Yao S. Magnetic solid-phase extraction based on ferroferric oxide nanoparticles doubly coated with chitosan and β-cyclodextrin in layer-by-layer mode for the separation of ibuprofen. RSC Adv 2016. [DOI: 10.1039/c6ra08000f] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Chitosan and β-cyclodextrin doubly coated with Fe3O4 nanoparticles was prepared and applied as magnetic solid-phase extraction adsorbent to separate ibuprofen.
Collapse
Affiliation(s)
- Pengfei Chen
- School of Chemical Engineering
- Sichuan University
- Chengdu 610065
- China
| | - Hang Song
- School of Chemical Engineering
- Sichuan University
- Chengdu 610065
- China
| | - Lu Zhou
- School of Chemical Engineering
- Sichuan University
- Chengdu 610065
- China
| | - Jun Chen
- School of Chemical Engineering
- Sichuan University
- Chengdu 610065
- China
| | - Jiyang Liu
- School of Chemical Engineering
- Sichuan University
- Chengdu 610065
- China
| | - Shun Yao
- School of Chemical Engineering
- Sichuan University
- Chengdu 610065
- China
| |
Collapse
|
50
|
Zhang B, Jiang D, Guo X, He Y, Ong CN, Xu Y, Pal A. Removal of Microcystis aeruginosa using nano-Fe3O4 particles as a coagulant aid. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2015; 22:18731-18740. [PMID: 26194241 DOI: 10.1007/s11356-015-5053-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2015] [Accepted: 07/07/2015] [Indexed: 06/04/2023]
Abstract
Blue-green algae bloom is of great concern globally since they adversely affect the water ecosystem and also drinking water treatment processes. This work investigated the removal of Microcystis aeruginosa (M. aeruginosa) by combining the conventional coagulant polyaluminum chloride (PACl) with nano-Fe3O4 particles as a coagulant aid. The results showed that the addition of nano-Fe3O4 significantly improved the removal efficiency of M. aeruginosa by reducing the amount of PACl dosage and simultaneously hastening the sedimentation. At the M. aeruginosa density of an order of magnitude of 10(7), 10(6), and 10(5) pcs/mL, respectively, the corresponding PACl dose of 200, 20, and 2 mg/L and the mass ratio of PACl to nano-Fe3O4 of 4:1, the removal efficiency of M. aeruginosa could be increased by 33.0, 44.7, and 173.1%, respectively. Compared to PACl, PACl combined with the nano-Fe3O4 as a coagulant aid had higher removal efficiency at a wider pH range. SEM images showed that nano-Fe3O4 first combined with PACl to form clusters and further generated the flocs with algae. Results from the laser particle analyzer further suggested that the floc size increased with the addition of nano-Fe3O4. It was noted that the addition of nano-Fe3O4 led to aluminum species change after PACl hydrolyzed in the algae solution, from Ala to Alb and Alc subsequently. As a coagulant aid, the nano-Fe3O4, in conjunction with PACl, apparently provided nucleation sites for larger flocs to integrate with M. aeruginosa. In addition, increased floc density improved the removal of M. aeruginosa.
Collapse
Affiliation(s)
- Bo Zhang
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, No. 800 Dongchuan Road, Minhang District, Shanghai, 200240, China
| | - Dan Jiang
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, No. 800 Dongchuan Road, Minhang District, Shanghai, 200240, China
| | - Xiaochen Guo
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, No. 800 Dongchuan Road, Minhang District, Shanghai, 200240, China
| | - Yiliang He
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, No. 800 Dongchuan Road, Minhang District, Shanghai, 200240, China.
| | - Choon Nam Ong
- NUS Environmental Research Institute, National University of Singapore, Singapore, Singapore
| | - Yongpeng Xu
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, China.
| | - Amrita Pal
- NUS Environmental Research Institute, National University of Singapore, Singapore, Singapore
| |
Collapse
|