1
|
Hajizadeh S, Bülow L, Ye L. Synthesizing a Hybrid Nanocomposite as an Affinity Adsorbent through Surface-Initiated Atom Transfer Radical Polymerization Catalyzed by Myoglobin. ACS OMEGA 2021; 6:10462-10474. [PMID: 34056199 PMCID: PMC8153740 DOI: 10.1021/acsomega.1c00955] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 04/01/2021] [Indexed: 06/12/2023]
Abstract
A hybrid bifunctional core-shell nanostructure was synthesized for the first time via surface-initiated atom transfer radical polymerization (SI-ATRP) using myoglobin as a biocatalyst (ATRPase) in an aqueous solution. N-Isopropyl acrylamide (NIPA) and N-(3-aminopropyl)methacrylamide (APMA) were applied to graft flexible polymer brushes onto initiator-functionalized silica nanoparticles. Two different approaches were implemented to form the core-shell nanocomposite: (a) random copolymerization, Si@p(NIPA-co-APMA) and (b) sequential block copolymerization, Si@pNIPA-b-pAPMA. These nanocomposites can be used as versatile intermediates, thereby leading to different types of materials for targeted applications. In this work, a phenylboronic acid ligand was immobilized on the side chain of the grafted brushes during a series of postmodification reactions to create a boronate affinity adsorbent. The ability to selectively bind glycoproteins (ovalbumin and glycated hemoglobin) via boronic acid was assessed at two different temperatures (20 and 40 °C), where Si@pNIPA-b-APMABA (163 mg OVA/g of particle) displayed an approximately 1.5-fold higher capacity than Si@p(NIPA-co-APMA)BA (107 mg OVA/g of particle). In addition to selective binding to glycoproteins, the nanocomposites exhibited selective binding for myoglobin due to the molecular imprinting effect during the postmodification process, that is, 72 and 111 mg Mb/g for Si@p(NIPA-co-APMA)BA and Si@pNIPA-b-pAPMABA, respectively.
Collapse
|
2
|
Ryu JH, Lee GJ, Shih YRV, Kim TI, Varghese S. Phenylboronic Acid-polymers for Biomedical Applications. Curr Med Chem 2019; 26:6797-6816. [DOI: 10.2174/0929867325666181008144436] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 09/24/2018] [Accepted: 09/26/2018] [Indexed: 02/08/2023]
Abstract
Background:
Phenylboronic acid-polymers (PBA-polymers) have attracted tremendous
attention as potential stimuli-responsive materials with applications in drug-delivery
depots, scaffolds for tissue engineering, HIV barriers, and biomolecule-detecting/sensing platforms.
The unique aspect of PBA-polymers is their interactions with diols, which result in reversible,
covalent bond formation. This very nature of reversible bonding between boronic
acids and diols has been fundamental to their applications in the biomedical area.
Methods:
We have searched peer-reviewed articles including reviews from Scopus, PubMed,
and Google Scholar with a focus on the 1) chemistry of PBA, 2) synthesis of PBA-polymers,
and 3) their biomedical applications.
Results:
We have summarized approximately 179 papers in this review. Most of the applications
described in this review are focused on the unique ability of PBA molecules to interact
with diol molecules and the dynamic nature of the resulting boronate esters. The strong sensitivity
of boronate ester groups towards the surrounding pH also makes these molecules
stimuli-responsive. In addition, we also discuss how the re-arrangement of the dynamic boronate
ester bonds renders PBA-based materials with other unique features such as self-healing
and shear thinning.
Conclusion:
The presence of PBA in the polymer chain can render it with diverse functions/
relativities without changing their intrinsic properties. In this review, we discuss the development
of PBA polymers with diverse functions and their biomedical applications with a
specific focus on the dynamic nature of boronate ester groups.
Collapse
Affiliation(s)
- Ji Hyun Ryu
- Department of Orthopaedic Surgery, Duke University School of Medicine, Durham, North Carolina, NC 27703, United States
| | - Gyeong Jin Lee
- Department of Biosystems & Biomaterials Science and Engineering, College of Agriculture and Life Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Korea
| | - Yu-Ru V. Shih
- Department of Orthopaedic Surgery, Duke University School of Medicine, Durham, North Carolina, NC 27703, United States
| | - Tae-il Kim
- Department of Biosystems & Biomaterials Science and Engineering, College of Agriculture and Life Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Korea
| | - Shyni Varghese
- Department of Orthopaedic Surgery, Duke University School of Medicine, Durham, North Carolina, NC 27703, United States
| |
Collapse
|
3
|
Ivanov AE, Ljunggren L. Thin poly(vinyl alcohol) cryogels: reactive groups, macropores and translucency in microtiter plate assays. Heliyon 2019; 5:e02913. [PMID: 31844765 PMCID: PMC6895650 DOI: 10.1016/j.heliyon.2019.e02913] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 11/01/2019] [Accepted: 11/21/2019] [Indexed: 12/23/2022] Open
Abstract
Thin macroporous poly(vinyl alcohol) (PVA) hydrogels were produced by cross-linking of PVA in a semi-frozen state with glutaraldehyde (GA) on glass slides or in the wells of microtiter plates. The 100-130 μm-thick gels were mechanically transferable, squamous translucent films with a high porosity of 7.2 ± 0.3 mL/g dry PVA i.e. similar to larger cylindrical PVA monoliths of the same composition. Additional treatment of the gels with 1% GA increased the aldehyde group content from 0.7 to 2.4 μmol/mL as estimated using dinitrophenylhydrazine (DNPH) reagent. Translucency of the gels allowed registration of UV-visible spectra of the DNPH-stained films. The catalytic activity of trypsin covalently immobilized on thin gels in the microtiter plates was estimated with chromogenic substrate directly in the wells, and indicated that the amount of protein immobilized was at least 0.34 mg/mL gel. Human immunoglobulin G (IgG) immobilized on thin gels at 0.1-10 mg/mL starting concentrations could be detected in a concentration-dependent manner due to recognition by anti-human rabbit IgG conjugated with peroxidase and photometric registration of the enzymatic activity. The results indicate good permeability of the hydrogel pores for macromolecular biospecific reagents and suggest applications of thin reactive PVA hydrogels in photometric analytical techniques.
Collapse
Affiliation(s)
- Alexander E Ivanov
- VitroSorb AB, Medeon Science Park, Per Albin Hanssons Väg 41, SE-20512, Malmö, Sweden
| | - Lennart Ljunggren
- Malmö University, Faculty of Health and Society, Department of Biomedical Science, SE-20506, Malmö, Sweden
| |
Collapse
|
4
|
Hierarchical macroporous material with dual responsive copolymer brushes and phenylboronic acid ligands for bioseparation of proteins and living cells. Sep Purif Technol 2019. [DOI: 10.1016/j.seppur.2019.05.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
5
|
Oda H, Ishihara K. Determination of association constants between water-soluble phospholipid polymer bearing phenylboronic acid group and polyol compounds for reversible formation of three-dimensional networks. REACT FUNCT POLYM 2019. [DOI: 10.1016/j.reactfunctpolym.2018.12.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
6
|
Sanjuán AM, Reglero Ruiz JA, García FC, García JM. Recent developments in sensing devices based on polymeric systems. REACT FUNCT POLYM 2018. [DOI: 10.1016/j.reactfunctpolym.2018.10.007] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
7
|
|
8
|
Vancoillie G, Hoogenboom R. Responsive Boronic Acid-Decorated (Co)polymers: From Glucose Sensors to Autonomous Drug Delivery. SENSORS 2016; 16:s16101736. [PMID: 27775572 PMCID: PMC5087521 DOI: 10.3390/s16101736] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/04/2016] [Revised: 10/11/2016] [Accepted: 10/13/2016] [Indexed: 01/03/2023]
Abstract
Boronic acid-containing (co)polymers have fascinated researchers for decades, garnering attention for their unique responsiveness toward 1,2- and 1,3-diols, including saccharides and nucleotides. The applications of materials that exert this property are manifold including sensing, but also self-regulated drug delivery systems through responsive membranes or micelles. In this review, some of the main applications of boronic acid containing (co)polymers are discussed focusing on the role of the boronic acid group in the response mechanism. We hope that this summary, which highlights the importance and potential of boronic acid-decorated polymeric materials, will inspire further research within this interesting field of responsive polymers and polymeric materials.
Collapse
Affiliation(s)
- Gertjan Vancoillie
- Supramolecular Chemistry Group, Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281 S4, Ghent 9000, Belgium.
| | - Richard Hoogenboom
- Supramolecular Chemistry Group, Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281 S4, Ghent 9000, Belgium.
| |
Collapse
|
9
|
Vancoillie G, Hoogenboom R. Synthesis and polymerization of boronic acid containing monomers. Polym Chem 2016. [DOI: 10.1039/c6py00775a] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
This mini-review summarizes the most commonly used methods for the synthesis of phenylboronic acid-(co)polymers ranging from simple straightforward polymerization to complex post-polymerization modification.
Collapse
Affiliation(s)
- Gertjan Vancoillie
- Supramolecular Chemistry Group
- Department of Organic and Macromolecular Chemistry
- 9000 Ghent
- Belgium
| | - Richard Hoogenboom
- Supramolecular Chemistry Group
- Department of Organic and Macromolecular Chemistry
- 9000 Ghent
- Belgium
| |
Collapse
|
10
|
Unser S, Campbell I, Jana D, Sagle L. Direct glucose sensing in the physiological range through plasmonic nanoparticle formation. Analyst 2015; 140:590-9. [DOI: 10.1039/c4an01496k] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
An enzyme-free, non-invasive glucose assay is developed involving gold nanoparticle formation and shows glucose sensitivity in the range of 3–50 mM in urine.
Collapse
Affiliation(s)
- Sarah Unser
- Department of Chemistry
- College of Arts and Sciences
- University of Cincinnati
- Cincinnati
- USA
| | - Ian Campbell
- Department of Chemistry
- College of Arts and Sciences
- University of Cincinnati
- Cincinnati
- USA
| | - Debrina Jana
- Department of Chemistry
- College of Arts and Sciences
- University of Cincinnati
- Cincinnati
- USA
| | - Laura Sagle
- Department of Chemistry
- College of Arts and Sciences
- University of Cincinnati
- Cincinnati
- USA
| |
Collapse
|
11
|
Cegłowski M, Gierczyk B, Schroeder G. Poly(methyl vinyl ether-alt-maleic anhydride) functionalized with 3-aminophenylboronic acid: A new boronic acid polymer for sensing diols in neutral water. J Appl Polym Sci 2014. [DOI: 10.1002/app.40778] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Michał Cegłowski
- Department of Supramolecular Chemistry; Faculty of Chemistry; Adam Mickiewicz University in Poznan; Umultowska 89b 61-614 Poznań Poland
| | - Błażej Gierczyk
- Department of Supramolecular Chemistry; Faculty of Chemistry; Adam Mickiewicz University in Poznan; Umultowska 89b 61-614 Poznań Poland
| | - Grzegorz Schroeder
- Department of Supramolecular Chemistry; Faculty of Chemistry; Adam Mickiewicz University in Poznan; Umultowska 89b 61-614 Poznań Poland
| |
Collapse
|
12
|
Zhang X, Zhang Z, Su X, Cai M, Zhuo R, Zhong Z. Phenylboronic acid-functionalized polymeric micelles with a HepG2 cell targetability. Biomaterials 2013; 34:10296-304. [PMID: 24075483 DOI: 10.1016/j.biomaterials.2013.09.042] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2013] [Accepted: 09/11/2013] [Indexed: 11/28/2022]
Abstract
Phenylboronic acid-functionalized amphiphilic block copolymer Pluronic-PMCC-BA was synthesized via ring-opening polymerization of 5-methyl-5-benzyloxycarbonyl-1,3-dioxan-2-one (MBC) with fumaric acid as a catalyst followed by the deprotection of carboxyl groups by catalyzed hydrogenation and the condensation of 3-aminophenylboronic acid with the copolymer side groups. Pluronic-PMCC-BA can form stable micelle solution by self-assembly in water. The phenylboronic acid groups are located at the shell of micelle as proved by (1)H NMR. The diameter of drug-free micelles is approximate 60 nm. Nano-spheres with narrow size distribution could be observed in the TEM image. MTT assay results show that Pluronic-PMCC-BA exhibits slight cytotoxicity when the polymer concentration is higher than 25 μg mL(-1). The toxicities of DOX@Pluronic-PMCC and DOX@Pluronic-PMCC-BA to COS7, HeLa, and HepG2 cell lines are similar with those of free DOX. Interestingly, phenylboronic acid groups located at the surface of Pluronic-PMCC-BA micelles can recognize HepG2 cells and promote the drug uptake of the cells, which are observed by confocal laser scanning microscopy (CLSM). The results imply that Pluronic-PMCC-BA would be a promising material for targeted drug delivery to the cancer cells.
Collapse
Affiliation(s)
- Xiaojin Zhang
- Key Laboratory of Biomedical Polymers of Ministry of Education, Department of Chemistry, Wuhan University, Wuhan 430072, PR China
| | | | | | | | | | | |
Collapse
|
13
|
Plesu N, Kellenberger A, Taranu I, Taranu BO, Popa I. Impedimetric detection of dopamine on poly(3-aminophenylboronic acid) modified skeleton nickel electrodes. REACT FUNCT POLYM 2013. [DOI: 10.1016/j.reactfunctpolym.2013.03.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
14
|
|
15
|
Huang Y, Liu M, Chen J, Gao C, Gong Q. A novel magnetic triple-responsive composite semi-IPN hydrogels for targeted and controlled drug delivery. Eur Polym J 2012. [DOI: 10.1016/j.eurpolymj.2012.06.012] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
16
|
Fossey JS, D'Hooge F, van den Elsen JMH, Pereira Morais MP, Pascu SI, Bull SD, Marken F, Jenkins ATA, Jiang YB, James TD. The development of boronic acids as sensors and separation tools. CHEM REC 2012; 12:464-78. [PMID: 22791631 DOI: 10.1002/tcr.201200006] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2012] [Indexed: 01/28/2023]
Abstract
Synthetic receptors for diols that incorporate boronic acid motifs have been developed as new sensors and separation tools. Utilizing the reversible interactions of diols with boronic acids to form boronic esters under new binding regimes has provided new hydrogel constructs that have found use as dye-displacement sensors and electrophoretic separation tools; similarly, molecular boronic-acid-containing chemosensors were constructed that offer applications in the sensing of diols. This review provides a somewhat-personal perspective of developments in boronic-acid-mediated sensing and separation, placed in the context of the seminal works of others in the area, as well as offering a concise summary of the contributions of the co-authors in the area.
Collapse
Affiliation(s)
- John S Fossey
- The School of Chemistry, The University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK..
| | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Polikarpov N, Appelhans D, Welzel P, Kaufmann A, Dhanapal P, Bellmann C, Voit B. Tailoring uptake and release of ATP by dendritic glycopolymer/PNIPAAm hydrogel hybrids: first approaches towards multicompartment release systems. NEW J CHEM 2012. [DOI: 10.1039/c1nj20455f] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
18
|
Huang Y, Liu M, Wang L, Gao C, Xi S. A novel triple-responsive poly(3-acrylamidephenylboronic acid-co-2-(dimethylamino) ethyl methacrylate)/(β-cyclodextrin-epichlorohydrin)hydrogels: Synthesis and controlled drug delivery. REACT FUNCT POLYM 2011. [DOI: 10.1016/j.reactfunctpolym.2011.03.007] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
19
|
Nishiyabu R, Kubo Y, James TD, Fossey JS. Boronic acid building blocks: tools for sensing and separation. Chem Commun (Camb) 2011; 47:1106-23. [DOI: 10.1039/c0cc02920c] [Citation(s) in RCA: 313] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
20
|
Vilozny B, Schiller A, Wessling RA, Singaram B. Multiwell plates loaded with fluorescent hydrogel sensors for measuring pH and glucose concentration. ACTA ACUST UNITED AC 2011. [DOI: 10.1039/c0jm04257a] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
21
|
Temperature-controlled release of catechol dye in thermosensitive phenylboronate-containing copolymers: A quantitative study. Eur Polym J 2010. [DOI: 10.1016/j.eurpolymj.2010.03.020] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
22
|
Wang L, Liu M, Gao C, Ma L, Cui D. A pH-, thermo-, and glucose-, triple-responsive hydrogels: Synthesis and controlled drug delivery. REACT FUNCT POLYM 2010. [DOI: 10.1016/j.reactfunctpolym.2009.11.007] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
23
|
Ivanov AE, Kumar A, Nilsang S, Aguilar MR, Mikhalovska LI, Savina IN, Nilsson L, Scheblykin IG, Kuzimenkova MV, Galaev IY. Evaluation of boronate-containing polymer brushes and gels as substrates for carbohydrate-mediated adhesion and cultivation of animal cells. Colloids Surf B Biointerfaces 2010; 75:510-9. [DOI: 10.1016/j.colsurfb.2009.09.028] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2009] [Revised: 08/28/2009] [Accepted: 09/22/2009] [Indexed: 10/20/2022]
|
24
|
|