1
|
Nakauchi H, Maeda M, Kanayama N. DNA Terminal-Specific Dispersion Behavior of Polystyrene Latex Microparticles Densely Covered with Oligo-DNA Strands Under High-Salt Conditions. ANAL SCI 2021; 37:461-468. [PMID: 33281138 DOI: 10.2116/analsci.20scp04] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
We prepared microspheres densely covered with oligo-DNA strands by immobilizing amino-terminated oligo-DNA strands on the surface of carboxylate polystyrene latex (PS) particles via the amide bond formation. The obtained microspheres (ssDNA-PS) stably dispersed in neutral pH buffer containing high concentrations of NaCl. For the ssDNA-PS ≥1 μm diameter, only 3 - 5% of surface-immobilized oligo-DNA could form a duplex with the complementary strands. Nevertheless, the resulting ssDNA-PS showed a distinct duplex terminal dependency in their dispersion behavior under neutral pH and high NaCl conditions; the microspheres with fully-matched duplexes on the surface spontaneously aggregated in a non-crosslinking manner. By contrast, the microspheres with terminal-mismatched duplexes remained dispersed under the identical conditions. These results suggest that the micrometer-scale particles covered with oligo-DNA strands also have high susceptibility to a duplex terminal sequence in their dispersion property, similar to previously reported DNA-functionalized nanoparticles. This property could potentially be used in various applications including analytical purposes.
Collapse
Affiliation(s)
- Hiroya Nakauchi
- Department of Biomedical Engineering, Graduate School of Medicine, Science and Technology, Shinshu University
| | - Mizuo Maeda
- Department of Biomedical Engineering, Graduate School of Medicine, Science and Technology, Shinshu University.,Bioengineering Laboratory, RIKEN Cluster for Pioneering Research
| | - Naoki Kanayama
- Department of Biomedical Engineering, Graduate School of Medicine, Science and Technology, Shinshu University.,Bioengineering Laboratory, RIKEN Cluster for Pioneering Research.,Institute of Biomedical Science, Interdisciplinary Cluster for Cutting Edge Research, Shinshu University
| |
Collapse
|
2
|
Shi B, Lü J, Liu Y, Xiao Y, Lü C. Organic–inorganic nanohybrids based on an AIE luminogen-functional polymer and CdTe/ZnS QDs: morphologies, optical properties, and applications. Polym Chem 2021. [DOI: 10.1039/d1py00308a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Dual-emissive organic–inorganic nanohybrid self-assemblies were constructed by binding red-emitting CdTe/ZnS QDs to blue-emitting AIE-active polymeric micelles in water as a fluorescent probe for PA with interesting assembly behaviour.
Collapse
Affiliation(s)
- Bingfeng Shi
- Institute of Chemistry
- Northeast Normal University
- Changchun 130024
- P. R. China
| | - Jianhua Lü
- Narcotics Control School
- Yunnan Police College
- Kunming 650223
- P. R. China
| | - Ying Liu
- Institute of Chemistry
- Northeast Normal University
- Changchun 130024
- P. R. China
| | - Yang Xiao
- Institute of Chemistry
- Northeast Normal University
- Changchun 130024
- P. R. China
| | - Changli Lü
- Institute of Chemistry
- Northeast Normal University
- Changchun 130024
- P. R. China
| |
Collapse
|
3
|
Pinteala M, Abadie MJM, Rusu RD. Smart Supra- and Macro-Molecular Tools for Biomedical Applications. MATERIALS 2020; 13:ma13153343. [PMID: 32727155 PMCID: PMC7435709 DOI: 10.3390/ma13153343] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 07/22/2020] [Accepted: 07/24/2020] [Indexed: 12/28/2022]
Abstract
Stimuli-responsive, “smart” polymeric materials used in the biomedical field function in a bio-mimicking manner by providing a non-linear response to triggers coming from a physiological microenvironment or other external source. They are built based on various chemical, physical, and biological tools that enable pH and/or temperature-stimulated changes in structural or physicochemical attributes, like shape, volume, solubility, supramolecular arrangement, and others. This review touches on some particular developments on the topic of stimuli-sensitive molecular tools for biomedical applications. Design and mechanistic details are provided concerning the smart synthetic instruments that are employed to prepare supra- and macro-molecular architectures with specific responses to external stimuli. Five major themes are approached: (i) temperature- and pH-responsive systems for controlled drug delivery; (ii) glycodynameric hydrogels for drug delivery; (iii) polymeric non-viral vectors for gene delivery; (iv) metallic nanoconjugates for biomedical applications; and, (v) smart organic tools for biomedical imaging.
Collapse
Affiliation(s)
- Mariana Pinteala
- “Petru Poni” Institute of Macromolecular Chemistry, Romanian Academy, Grigore Ghica Voda Alley, 41A, 700487 Iasi, Romania; (M.P.); (M.J.M.A.)
| | - Marc J. M. Abadie
- “Petru Poni” Institute of Macromolecular Chemistry, Romanian Academy, Grigore Ghica Voda Alley, 41A, 700487 Iasi, Romania; (M.P.); (M.J.M.A.)
- Institute Charles Gerhardt Montpellier, Bat 15, CC 1052, University of Montpellier, 34095 Montpellier, France
| | - Radu D. Rusu
- “Petru Poni” Institute of Macromolecular Chemistry, Romanian Academy, Grigore Ghica Voda Alley, 41A, 700487 Iasi, Romania; (M.P.); (M.J.M.A.)
- Correspondence: ; Tel.: +40-232-217454
| |
Collapse
|
4
|
Saha S, Banskota S, Roberts S, Kirmani N, Chilkoti A. Engineering the Architecture of Elastin-Like Polypeptides: From Unimers to Hierarchical Self-Assembly. ADVANCED THERAPEUTICS 2020; 3:1900164. [PMID: 34307837 PMCID: PMC8297442 DOI: 10.1002/adtp.201900164] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Indexed: 12/12/2022]
Abstract
Well-defined tunable nanostructures formed through the hierarchical self-assembly of peptide building blocks have drawn significant attention due to their potential applications in biomedical science. Artificial protein polymers derived from elastin-like polypeptides (ELPs), which are based on the repeating sequence of tropoelastin (the water-soluble precursor to elastin), provide a promising platform for creating nanostructures due to their biocompatibility, ease of synthesis, and customizable architecture. By designing the sequence and composition of ELPs at the gene level, their physicochemical properties can be controlled to a degree that is unmatched by synthetic polymers. A variety of ELP-based nanostructures are designed, inspired by the self-assembly of elastin and other proteins in biological systems. The choice of building blocks determines not only the physical properties of the nanostructures, but also their self-assembly into architectures ranging from spherical micelles to elongated nanofibers. This review focuses on the molecular determinants of ELP and ELP-hybrid self-assembly and formation of spherical, rod-like, worm-like, fibrillar, and vesicle architectures. A brief discussion of the potential biomedical applications of these supramolecular assemblies is also included.
Collapse
Affiliation(s)
- Soumen Saha
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
| | - Samagya Banskota
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
| | - Stefan Roberts
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
| | - Nadia Kirmani
- Department of Biology, Trinity College of Arts and Sciences, Duke University, Durham, NC 27708, USA
| | - Ashutosh Chilkoti
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
| |
Collapse
|
5
|
Haladjova E, Ugrinova I, Rangelov S. One-pot synthesis of oligonucleotide-grafted polymeric nanoparticles. SOFT MATTER 2020; 16:191-199. [PMID: 31774098 DOI: 10.1039/c9sm01796h] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
A feasible one-pot approach for constructing oligonucleotide-grafted polymeric nanoparticles is reported. The approach involves formation of mesoglobules from a thermoresponsive polymer, coating of the mesoglobules with a cross-linked polymeric shell, and grafting the latter with oligonucleotide strands. Dynamic and static light scattering are used to parameterize the novel constructs. They are relatively large structures with hydrodynamic radii and molar masses reaching 200 nm and 150.0 × 106 g mol-1, respectively. The oligonucleotide-grafted polymeric nanoparticles are of spherical morphology and moderately negative (-12.4 to -19.1 mV) ζ potential as revealed by AFM, TEM, and electrophoretic light scattering. In accordance with their large size, they are found to carry thousands of oligonucleotide strands per particle. The novel constructs are thermoresponsive. They undergo reversible collapse upon heating and swelling upon cooling, which is associated with changes in the grafting density and, hence, the conformation of the oligonucleotide strands from unextended at room temperature to a more extended one at elevated temperatures. The versatility of the approach is demonstrated by varying the type of the cross-linked shell and content of the oligonucleotide strands and, hence, the grafting density. Appropriate diversification and modifications are suggested as well.
Collapse
Affiliation(s)
- Emi Haladjova
- Institute of Polymers, Bulgarian Academy of Sciences, "Akad. G. Bonchev" St., Bl. 103-A, 1113 Sofia, Bulgaria.
| | - Iva Ugrinova
- Institute of Molecular Biology, Bulgarian Academy of Sciences, "Akad. G. Bonchev" St., Bl. 21, 1113 Sofia, Bulgaria
| | - Stanislav Rangelov
- Institute of Polymers, Bulgarian Academy of Sciences, "Akad. G. Bonchev" St., Bl. 103-A, 1113 Sofia, Bulgaria.
| |
Collapse
|
6
|
Miura Y. Controlled polymerization for the development of bioconjugate polymers and materials. J Mater Chem B 2020; 8:2010-2019. [DOI: 10.1039/c9tb02418b] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Conjugates of various biopolymers with synthetic polymers were preparedvialiving radical polymerization. The conjugates have precise structures and potential for novel biofunctional materials.
Collapse
Affiliation(s)
- Yoshiko Miura
- Department of Chemical Engineering
- Graduate School of Engineering
- Kyushu University
- Fukuoka 819-0395
- Japan
| |
Collapse
|
7
|
Tang Z, Takarada T, Maeda M. Non-Cross-Linking Aggregation of DNA-Carrying Polymer Micelles Triggered by Duplex Formation. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:14899-14910. [PMID: 30086233 DOI: 10.1021/acs.langmuir.8b01840] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Colloidal behaviors of particles functionalized with biomolecules are generally complicated. This study describes that colloidal behaviors of double-stranded (ds) DNA-carrying polymer micelles are well controlled by altering the molar ratio of single-stranded (ss) DNA moiety in the dsDNA shell. ssDNA-carrying micelles composed of a poly( N-isopropylacrylamide) (PNIPAAm) core surrounded by a dense shell of ssDNAs were prepared through self-assembly of PNIPAAm grafted with ssDNA by incubating its solution above the lower critical solution temperature. Spontaneous, non-cross-linking aggregation of the micelles was triggered by DNA duplex formation on the surface. Comparison of the critical coagulation concentration of NaCl among a series of the DNA-carrying micelles revealed the relationship between the helical structure of the surface-bound DNA and the colloidal stability of the micelles. The electrophoretic mobility analysis of the micelles indicated that the duplex formation reduced the structural flexibility of the surface-bound DNA, thereby decreasing the interparticle entropic repulsion. It is also suggested that the augmented rigidity of the surface-bound DNA increases the number of terminal base pairs facing the solvent, which could lead to multiple blunt-end stacking interaction among the micelles. Therefore, small DNA molecules could be considered unique surface-modifiers capable of controlling interactions between the surfaces of materials.
Collapse
Affiliation(s)
- Zhonglan Tang
- National Engineering Research Center for Biomaterials , Sichuan University , 29 Wangjiang Road , Chengdu 610064 , China
| | - Tohru Takarada
- Bioengineering Laboratory , RIKEN Cluster for Pioneering Research , 2-1 Hirosawa , Wako, Saitama 351-0198 , Japan
| | - Mizuo Maeda
- Bioengineering Laboratory , RIKEN Cluster for Pioneering Research , 2-1 Hirosawa , Wako, Saitama 351-0198 , Japan
| |
Collapse
|
8
|
Xie Z, Deng X, Liu B, Huang S, Ma P, Hou Z, Cheng Z, Lin J, Luan S. Construction of Hierarchical Polymer Brushes on Upconversion Nanoparticles via NIR-Light-Initiated RAFT Polymerization. ACS APPLIED MATERIALS & INTERFACES 2017; 9:30414-30425. [PMID: 28830139 DOI: 10.1021/acsami.7b09124] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Photoinduced reversible addition-fragmentation chain transfer (RAFT) polymerization generally adopts high-energy ultraviolet (UV) or blue light. In combination with photoredox catalyst, the excitation light wavelength was extended to the visible and even near-infrared (NIR) region for photoinduced electron transfer RAFT polymerization. In this report, we introduce for the first time a surface NIR-light-initiated RAFT polymerization on upconversion nanoparticles (UCNPs) without adding any photocatalyst and construct a functional inorganic core/polymer shell nanohybrid for application in cancer theranostics. The multilayer core-shell UCNPs (NaYF4:Yb/Tm@NaYbF4:Gd@NaNdF4:Yb@NaYF4), with surface anchorings of chain transfer agents, can serve as efficient NIR-to-UV light transducers for initiating the RAFT polymerization. A hierarchical double block copolymer brush, consisting of poly(acrylic acid) (PAA) and poly(oligo(ethylene oxide)methacrylate-co-2-(2-methoxy-ethoxy)ethyl methacrylate) (PEG for short), was grafted from the surface in sequence. The targeting arginine-glycine-aspartic (RGD) peptide was modified at the end of the copolymer through the trithiolcarbonate end group. After loading of doxorubicin, the UCNPs@PAA-b-PEG-RGD exhibited an enhanced U87MG cancer cell uptake efficiency and cytotoxicity. Besides, the unique upconversion luminescence of the nanohybrids was used for the autofluoresence-free cell imaging and labeling. Therefore, our strategy verified that UCNPs could efficiently activate RAFT polymerization by NIR photoirradiation and construct the complex nanohybrids, exhibiting prospective biomedical applications due to the low phototoxicity and deep penetration of NIR light.
Collapse
Affiliation(s)
- Zhongxi Xie
- University of Science and Technology of China ,No. 96, JinZhai Road, Baohe District, Hefei, Anhui 230026, P. R. China
| | | | | | | | | | | | | | | | | |
Collapse
|
9
|
|
10
|
Yousefpour Marzbali M, Yari Khosroushahi A. Polymeric micelles as mighty nanocarriers for cancer gene therapy: a review. Cancer Chemother Pharmacol 2017; 79:637-649. [DOI: 10.1007/s00280-017-3273-1] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2016] [Accepted: 03/02/2017] [Indexed: 12/11/2022]
|
11
|
Constantin M, Bucătariu S, Stoica I, Fundueanu G. Smart nanoparticles based on pullulan-g-poly(N-isopropylacrylamide) for controlled delivery of indomethacin. Int J Biol Macromol 2017; 94:698-708. [DOI: 10.1016/j.ijbiomac.2016.10.064] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Revised: 10/12/2016] [Accepted: 10/18/2016] [Indexed: 10/20/2022]
|
12
|
Luo T, Kiick KL. Noncovalent Modulation of the Inverse Temperature Transition and Self-Assembly of Elastin-b-Collagen-like Peptide Bioconjugates. J Am Chem Soc 2015; 137:15362-5. [PMID: 26633746 PMCID: PMC4930074 DOI: 10.1021/jacs.5b09941] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Stimuli-responsive nanostructures produced with peptide domains from the extracellular matrix offer great opportunities for imaging and drug delivery. Although the individual utility of elastin-like (poly)peptides and collagen-like peptides in such applications has been demonstrated, the synergistic advantages of combining these motifs in short peptide conjugates have surprisingly not been reported. Here, we introduce the conjugation of a thermoresponsive elastin-like peptide (ELP) with a triple-helix-forming collagen-like peptide (CLP) to yield ELP-CLP conjugates that show a remarkable reduction in the inverse transition temperature of the ELP domain upon formation of the CLP triple helix. The lower transition temperature of the conjugate enables the facile formation of well-defined vesicles at physiological temperature and the unexpected resolubilization of the vesicles at elevated temperatures upon unfolding of the CLP domain. Given the demonstrated ability of CLPs to modify collagens, our results not only provide a simple and versatile avenue for controlling the inverse transition behavior of ELPs, but also suggest future opportunities for these thermoresponsive nanostructures in biologically relevant environments.
Collapse
Affiliation(s)
- Tianzhi Luo
- Department of Materials Science and Engineering, University of Delaware, Newark, Delaware 19716, United States
| | - Kristi L. Kiick
- Department of Materials Science and Engineering, University of Delaware, Newark, Delaware 19716, United States
- Department of Biomedical Engineering, University of Delaware, Newark, Delaware 19716, United States
- Delaware Biotechnology Institute, Newark, Delaware 19711, United States
| |
Collapse
|
13
|
Wang G, Akiyama Y, Takarada T, Maeda M. Rapid Non-Crosslinking Aggregation of DNA-Functionalized Gold Nanorods and Nanotriangles for Colorimetric Single-Nucleotide Discrimination. Chemistry 2015; 22:258-63. [PMID: 26767586 DOI: 10.1002/chem.201503834] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Indexed: 01/07/2023]
Abstract
Gold nanoparticles modified with DNA duplexes are rapidly and spontaneously aggregated at high ionic strength. In contrast, this aggregation is greatly suppressed when the DNA duplex has a single-base mismatch or a single-nucleotide overhang located at the outermost surface of the particle. These colloidal features emerge irrespective of the size and composition of the particle core; however, the effects of the shape remain unexplored. Using gold nanorods and nanotriangles (nanoplatelets), we show herein that both remarkable rapidity in colloidal aggregation and extreme susceptibility to DNA structural perturbations are preserved, regardless of the shape and aspect ratio of the core. It is also demonstrated that the DNA-modified gold nanorods and nanotriangles are applicable to naked-eye detection of a single-base difference in a gene model. The current study corroborates the generality of the unique colloidal properties of DNA-functionalized nanoparticles, and thus enhances the feasibility of their practical use.
Collapse
Affiliation(s)
- Guoqing Wang
- Bioengineering Laboratory, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan), Fax: (+81) 4-8462-4658
| | - Yoshitsugu Akiyama
- Bioengineering Laboratory, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan), Fax: (+81) 4-8462-4658.,Current address: Faculty of Industrial Science and Technology, Tokyo University of Science, 102-1 Tomino, Oshamambe-cho, Yamakoshi-gun, Hokkaido 049-3514 (Japan)
| | - Tohru Takarada
- Bioengineering Laboratory, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan), Fax: (+81) 4-8462-4658.
| | - Mizuo Maeda
- Bioengineering Laboratory, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan), Fax: (+81) 4-8462-4658
| |
Collapse
|
14
|
Boyer C, Corrigan NA, Jung K, Nguyen D, Nguyen TK, Adnan NNM, Oliver S, Shanmugam S, Yeow J. Copper-Mediated Living Radical Polymerization (Atom Transfer Radical Polymerization and Copper(0) Mediated Polymerization): From Fundamentals to Bioapplications. Chem Rev 2015; 116:1803-949. [DOI: 10.1021/acs.chemrev.5b00396] [Citation(s) in RCA: 356] [Impact Index Per Article: 35.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Cyrille Boyer
- Australian Centre for Nanomedicine, and ‡Centre for Advanced
Macromolecular
Design (CAMD), School of Chemical Engineering, University of New South Wales, Sydney 2052, Australia
| | - Nathaniel Alan Corrigan
- Australian Centre for Nanomedicine, and ‡Centre for Advanced
Macromolecular
Design (CAMD), School of Chemical Engineering, University of New South Wales, Sydney 2052, Australia
| | - Kenward Jung
- Australian Centre for Nanomedicine, and ‡Centre for Advanced
Macromolecular
Design (CAMD), School of Chemical Engineering, University of New South Wales, Sydney 2052, Australia
| | - Diep Nguyen
- Australian Centre for Nanomedicine, and ‡Centre for Advanced
Macromolecular
Design (CAMD), School of Chemical Engineering, University of New South Wales, Sydney 2052, Australia
| | - Thuy-Khanh Nguyen
- Australian Centre for Nanomedicine, and ‡Centre for Advanced
Macromolecular
Design (CAMD), School of Chemical Engineering, University of New South Wales, Sydney 2052, Australia
| | - Nik Nik M. Adnan
- Australian Centre for Nanomedicine, and ‡Centre for Advanced
Macromolecular
Design (CAMD), School of Chemical Engineering, University of New South Wales, Sydney 2052, Australia
| | - Susan Oliver
- Australian Centre for Nanomedicine, and ‡Centre for Advanced
Macromolecular
Design (CAMD), School of Chemical Engineering, University of New South Wales, Sydney 2052, Australia
| | - Sivaprakash Shanmugam
- Australian Centre for Nanomedicine, and ‡Centre for Advanced
Macromolecular
Design (CAMD), School of Chemical Engineering, University of New South Wales, Sydney 2052, Australia
| | - Jonathan Yeow
- Australian Centre for Nanomedicine, and ‡Centre for Advanced
Macromolecular
Design (CAMD), School of Chemical Engineering, University of New South Wales, Sydney 2052, Australia
| |
Collapse
|
15
|
Zhang C, Hao L, Calabrese CM, Zhou Y, Choi CHJ, Xing H, Mirkin CA. Biodegradable DNA-Brush Block Copolymer Spherical Nucleic Acids Enable Transfection Agent-Free Intracellular Gene Regulation. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2015; 11:5360-8. [PMID: 26297167 PMCID: PMC4710492 DOI: 10.1002/smll.201501573] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Revised: 07/09/2015] [Indexed: 05/25/2023]
Abstract
By grafting multiple DNA strands onto one terminus of a polyester chain, a DNA-brush block copolymer that can assemble into micelle structure is constructed. These micelle spherical nucleic acids have a density of nucleic acids that is substantively higher than linear DNA block copolymer structures, which makes them effective cellular transfection and intracellular gene regulation agents.
Collapse
Affiliation(s)
- Chuan Zhang
- Department of Chemistry, International Institute for Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208-3113, USA
| | - Liangliang Hao
- Department of Chemistry, International Institute for Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208-3113, USA
| | - Colin M. Calabrese
- Department of Chemistry, International Institute for Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208-3113, USA
| | - Yu Zhou
- Department of Materials Science and Engineering, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208-3113, USA
| | - Chung Hang J. Choi
- Department of Chemistry, International Institute for Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208-3113, USA
| | - Hang Xing
- Department of Chemistry, International Institute for Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208-3113, USA
| | | |
Collapse
|
16
|
Development of an aptamer-functionalized molecular recognition gating membrane targeting a specific protein on the basis of the aggregation phenomena of DNA–PNIPAM. POLYMER 2015. [DOI: 10.1016/j.polymer.2015.02.027] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
17
|
Zhang SS, Cui K, Huang J, Zhao QL, Cao SK, Ma Z. Synthesis of diverse α,ω-telechelic polystyrenes with di- and tri-functionality via tandem or one-pot strategies combining aminolysis of RAFT-polystyrene and a thiol–ene “click” reaction. RSC Adv 2015. [DOI: 10.1039/c5ra06956d] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Diverse new α,ω-telechelic polystyrenes with di-/tri-functionality were synthesized via tandem/one-pot strategies combining aminolysis of RAFT-polystyrene and a thiol–ene “click” reaction.
Collapse
Affiliation(s)
- Shuang-Shuang Zhang
- School of Materials and Engineering
- Zhengzhou University
- Zhengzhou
- P. R. China
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules
| | - Kun Cui
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules
- Shanghai Institute of Organic Chemistry
- Chinese Academy of Sciences
- Shanghai
- P. R. China
| | - Jin Huang
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules
- Shanghai Institute of Organic Chemistry
- Chinese Academy of Sciences
- Shanghai
- P. R. China
| | - Qiao-Ling Zhao
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules
- Shanghai Institute of Organic Chemistry
- Chinese Academy of Sciences
- Shanghai
- P. R. China
| | - Shao-Kui Cao
- School of Materials and Engineering
- Zhengzhou University
- Zhengzhou
- P. R. China
| | - Zhi Ma
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules
- Shanghai Institute of Organic Chemistry
- Chinese Academy of Sciences
- Shanghai
- P. R. China
| |
Collapse
|
18
|
Luo T, He L, Theato P, Kiick KL. Thermoresponsive self-assembly of nanostructures from a collagen-like peptide-containing diblock copolymer. Macromol Biosci 2014; 15:111-23. [PMID: 25393381 DOI: 10.1002/mabi.201400358] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Revised: 09/08/2014] [Indexed: 12/18/2022]
Abstract
Temperature-triggered formation of nanostructures with distinct biological activity offers opportunities in selective modification of matrices and in drug delivery. Toward these ends, diblock polymers comprising poly(diethylene glycol methyl ether methacrylate) (PDEGMEMA) conjugated to a triple helix-forming collagen-like peptide were produced. Triggered by the collapse of the thermoresponsive domain above its LCST, the conjugate undergoes a reversible transition in aqueous solution to form well-defined nanovesicles with diameters of approximately 100 nm, with a transition temperature of 37 °C. The incorporation of CLP domains in these nanostructures may offer opportunities for the selective targeting of collagen-containing matrices.
Collapse
Affiliation(s)
- Tianzhi Luo
- Department of Materials Science and Engineering, University of Delaware, Newark, DE, 19716, USA
| | | | | | | |
Collapse
|
19
|
Akiyama Y, Shikagawa H, Kanayama N, Takarada T, Maeda M. DNA dangling-end-induced colloidal stabilization of gold nanoparticles for colorimetric single-nucleotide polymorphism genotyping. Chemistry 2014; 20:17420-5. [PMID: 25349129 DOI: 10.1002/chem.201404801] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2014] [Indexed: 12/19/2022]
Abstract
A single-nucleotide polymorphism (SNP) detection method was developed by combining single-base primer extension and salt-induced aggregation of gold nanoparticles densely functionalized with double-stranded DNA (dsDNA-AuNP). The dsDNA-AuNPs undergo rapid aggregation in a medium of high ionic strength, whereas particles having a single-base protrusion at the outermost surface disperse stably, allowing detection of a single-base difference in length by color changes. When SNP typing primers are used as analytes to hybridize to the single-stranded DNA on the AuNP surface, the resulting dsDNA-AuNP works as a visual indicator of single-base extension. A set of four extension reaction mixtures is prepared using each of ddNTPs and subsequently subjected to the aggregation assay. Three mixtures involving ddNTP that is not complementary to the SNP site in the target produce the aggregates that exhibit a purple color. In contrast, one mixture with the complementary ddNTP generates the single-base protrusion and appears red. This method could potentially be used in clinical diagnostics for personalized medicine.
Collapse
Affiliation(s)
- Yoshitsugu Akiyama
- Bioengineering Laboratory, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan), Fax: (+81) 4-8462-4658
| | | | | | | | | |
Collapse
|
20
|
Peterson AM, Heemstra JM. Controlling self‐assembly of
DNA
‐polymer conjugates for applications in imaging and drug delivery. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2014; 7:282-97. [DOI: 10.1002/wnan.1309] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2014] [Revised: 08/18/2014] [Accepted: 09/16/2014] [Indexed: 01/01/2023]
Affiliation(s)
- Amberlyn M. Peterson
- Department of Chemistry and the Center for Cell and Genome ScienceUniversity of UtahSalt Lake CityUTUSA
| | - Jennifer M. Heemstra
- Department of Chemistry and the Center for Cell and Genome ScienceUniversity of UtahSalt Lake CityUTUSA
| |
Collapse
|
21
|
Neffe AT, Wischke C, Racheva M, Lendlein A. Progress in biopolymer-based biomaterials and their application in controlled drug delivery. Expert Rev Med Devices 2014; 10:813-33. [DOI: 10.1586/17434440.2013.839209] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
22
|
Sugawara Y, Tamaki T, Yamaguchi T. DNA molecular recognition of intercalators affects aggregation of a thermoresponsive polymer. Polym Chem 2014. [DOI: 10.1039/c4py00600c] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Binding of intercalators to dsDNA switches the aggregation phenomena of the DNA-thermoresponsive polymer. The molecular recognition of a DNA–intercalator can induce dramatic aggregation.
Collapse
Affiliation(s)
- Yuuki Sugawara
- Chemical Resources Laboratory
- Tokyo Institute of Technology
- Yokohama, Japan
| | - Takanori Tamaki
- Chemical Resources Laboratory
- Tokyo Institute of Technology
- Yokohama, Japan
| | - Takeo Yamaguchi
- Chemical Resources Laboratory
- Tokyo Institute of Technology
- Yokohama, Japan
| |
Collapse
|
23
|
Sugawara Y, Tamaki T, Ohashi H, Yamaguchi T. Switchable Aggregation Phenomena of DNA-conjugated Poly(N-isopropylacrylamide) Driven by Transformation between ssDNA and dsDNA with Control of DNA Charges and Flexibility. CHEM LETT 2013. [DOI: 10.1246/cl.130794] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Yuuki Sugawara
- Chemical Resources Laboratory, Tokyo Institute of Technology
| | - Takanori Tamaki
- Chemical Resources Laboratory, Tokyo Institute of Technology
| | - Hidenori Ohashi
- Chemical Resources Laboratory, Tokyo Institute of Technology
| | - Takeo Yamaguchi
- Chemical Resources Laboratory, Tokyo Institute of Technology
| |
Collapse
|
24
|
Isoda K, Kanayama N, Fujita M, Takarada T, Maeda M. DNA Terminal Mismatch-Induced Stabilization of Polymer Micelles from RAFT-Generated Poly(N-isopropylacrylamide)-DNA Block Copolymers. Chem Asian J 2013; 8:3079-84. [DOI: 10.1002/asia.201300704] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2013] [Revised: 06/24/2013] [Indexed: 12/21/2022]
|
25
|
|
26
|
Stenzel MH. Bioconjugation Using Thiols: Old Chemistry Rediscovered to Connect Polymers with Nature's Building Blocks. ACS Macro Lett 2013; 2:14-18. [PMID: 35581832 DOI: 10.1021/mz3005814] [Citation(s) in RCA: 133] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Various pathways to bioconjugates based on thiol chemistry are discussed. Thiol-halogeno, thiol-parafluoro, thiol-ene, thiol-yne, thiol-vinylsulfone and thiol-vinyl sulfone, thiol-maleimide, thiol-bisulfone, and thiol-pyridyl disulfide are well-established synthetic routes discovered in recent years as tools to marry polymers with biomolecules such as carbohydrates, proteins, peptide, DNA, antibodies, or other building blocks from nature.
Collapse
Affiliation(s)
- Martina H. Stenzel
- Centre for Advanced
Macromolecular Design (CAMD), School
of Chemical Engineering, University of New South Wales, Sydney NSW 2052, Australia
| |
Collapse
|
27
|
Thermosensitive poly(N-isopropyl acrylamide-co-N,N-dimethyl acryl amide)-block-poly(d,l-lactide) amphiphilic block copolymer micelles for prednisone drug release. J BIOACT COMPAT POL 2013. [DOI: 10.1177/0883911512471270] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Novel amphiphilic block copolymers consisting of hydrophobic poly(D,L-lactide) segments and hydrophilic poly( N-isopropylacrylamide- co- N, N-dimethylacrylamide) blocks were designed and synthesized through a simple free radical copolymerization route based on a bifunctional initiator, followed by the ring-opening polymerization of D,L-lactide. The copolymers self-assembled into thermosensitive spherical-nanosized core–shell micelles in aqueous solution in the presence or the absence of the model drug prednisone. The chemical and physical characterizations of drug-loaded and unloaded micelles revealed a lower critical solution temperature of 40°C–47°C, and a critical micelle concentration less than 7.20 mg L−1, a transmission electron microscope mean particle size from 50 to 75 nm, and a narrow dynamic light scattering diameter below 180 nm. The prepared blank and drug-loaded micellar nanoparticles were thermodynamically stabile and employed in targeted drug delivery by responding to the higher temperature of the local microenvironment. Based on prednisone release kinetic studies, structural changes of the self-assembled micelles as well as temperature- or environment-induced diffusion controlled drug release and improved bioavailability. The copolymer micelles exhibited good biocompatibility as established by the MTT cytotoxicity assay. Therefore, an effective target therapy against lesion tissues is feasible using these polymeric micelles.
Collapse
|
28
|
Pan P, Fujita M, Ooi WY, Sudesh K, Takarada T, Goto A, Maeda M. Thermoresponsive micellization and micellar stability of poly(N-isopropylacrylamide)-b-DNA diblock and miktoarm star polymers. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2012; 28:14347-14356. [PMID: 23013374 DOI: 10.1021/la303128y] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Linear and miktoarm star-shaped diblock copolymers consisting of single-stranded DNA and poly(N-isopropylacrylamide) (PNIPAAm) with various compositions were synthesized via atom transfer radical polymerization and click chemistry. The temperature-responsive phase transition behavior, micellization, was systematically examined using UV-vis spectrometry, high-sensitivity differential scanning calorimetry, dynamic light scattering, and small-angle X-ray scattering. The lower critical solution temperature (LCST) increased, and its enthalpy decreased with decreasing PNIPAAm content. The copolymers self-assembled into well-defined nanoparticles having a core composed of PNIPAAm and a coronal layer of DNA above LCST. The particle size and micellar aggregation number of copolymer chains depended on the macromolecular composition and chain architecture. On the other hand, regardless of their factors, the surface area occupied by one DNA strand was found to be almost unchanged. The hybridization of DNA on the nanoparticles with fully complementary one induced the aggregation of the particles in a non-cross-linking configuration. The nanoparticle composed of miktoarm star copolymer showed a quicker DNA-hybridization response in this non-cross-linking aggregation compared with the case of a linear analogue.
Collapse
Affiliation(s)
- Pengju Pan
- Bioengineering Laboratory, RIKEN, Hirosawa 2-1, Wako, Saitama 351-0198, Japan
| | | | | | | | | | | | | |
Collapse
|
29
|
Schnitzler T, Herrmann A. DNA block copolymers: functional materials for nanoscience and biomedicine. Acc Chem Res 2012; 45:1419-30. [PMID: 22726237 DOI: 10.1021/ar200211a] [Citation(s) in RCA: 113] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
We live in a world full of synthetic materials, and the development of new technologies builds on the design and synthesis of new chemical structures, such as polymers. Synthetic macromolecules have changed the world and currently play a major role in all aspects of daily life. Due to their tailorable properties, these materials have fueled the invention of new techniques and goods, from the yogurt cup to the car seat belts. To fulfill the requirements of modern life, polymers and their composites have become increasingly complex. One strategy for altering polymer properties is to combine different polymer segments within one polymer, known as block copolymers. The microphase separation of the individual polymer components and the resulting formation of well defined nanosized domains provide a broad range of new materials with various properties. Block copolymers facilitated the development of innovative concepts in the fields of drug delivery, nanomedicine, organic electronics, and nanoscience. Block copolymers consist exclusively of organic polymers, but researchers are increasingly interested in materials that combine synthetic materials and biomacromolecules. Although many researchers have explored the combination of proteins with organic polymers, far fewer investigations have explored nucleic acid/polymer hybrids, known as DNA block copolymers (DBCs). DNA as a polymer block provides several advantages over other biopolymers. The availability of automated synthesis offers DNA segments with nucleotide precision, which facilitates the fabrication of hybrid materials with monodisperse biopolymer blocks. The directed functionalization of modified single-stranded DNA by Watson-Crick base-pairing is another key feature of DNA block copolymers. Furthermore, the appropriate selection of DNA sequence and organic polymer gives control over the material properties and their self-assembly into supramolecular structures. The introduction of a hydrophobic polymer into DBCs in aqueous solution leads to amphiphilic micellar structures with a hydrophobic polymer core and a DNA corona. In this Account, we discuss selected examples of recent developments in the synthesis, structure manipulation and applications of DBCs. We present achievements in synthesis of DBCs and their amplification based on molecular biology techniques. We also focus on concepts involving supramolecular assemblies and the change of morphological properties by mild stimuli. Finally, we discuss future applications of DBCs. DBC micelles have served as drug-delivery vehicles, as scaffolds for chemical reactions, and as templates for the self-assembly of virus capsids. In nanoelectronics, DNA polymer hybrids can facilitate size selection and directed deposition of single-walled carbon nanotubes in field effect transistor (FET) devices.
Collapse
Affiliation(s)
- Tobias Schnitzler
- Zernike Institute for Advanced Materials, University of Groningen, Groningen, The Netherlands
| | - Andreas Herrmann
- Zernike Institute for Advanced Materials, University of Groningen, Groningen, The Netherlands
| |
Collapse
|
30
|
Demirci S, Caykara T. Controlled grafting of cationic poly[(ar-vinylbenzyl)trimethylammonium chloride] on hydrogen-terminated silicon substrate by surface-initiated RAFT polymerization. REACT FUNCT POLYM 2012. [DOI: 10.1016/j.reactfunctpolym.2012.06.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
31
|
Yu H, Chen Q, Zhang Z, Zhu J, Cheng Z, Zhou N, Zhang W, Zhu X. 60Co γ-irradiation-initiated RAFT polymerization of VAc at room temperature. REACT FUNCT POLYM 2012. [DOI: 10.1016/j.reactfunctpolym.2011.12.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
32
|
Gregory A, Stenzel MH. Complex polymer architectures via RAFT polymerization: From fundamental process to extending the scope using click chemistry and nature's building blocks. Prog Polym Sci 2012. [DOI: 10.1016/j.progpolymsci.2011.08.004] [Citation(s) in RCA: 377] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
33
|
Moad G, Rizzardo E, Thang SH. Living Radical Polymerization by the RAFT Process – A Third Update. Aust J Chem 2012. [DOI: 10.1071/ch12295] [Citation(s) in RCA: 825] [Impact Index Per Article: 63.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
This paper provides a third update to the review of reversible deactivation radical polymerization (RDRP) achieved with thiocarbonylthio compounds (ZC(=S)SR) by a mechanism of reversible addition-fragmentation chain transfer (RAFT) that was published in June 2005 (Aust. J. Chem. 2005, 58, 379). The first update was published in November 2006 (Aust. J. Chem. 2006, 59, 669) and the second in December 2009 (Aust. J. Chem. 2009, 62, 1402). This review cites over 700 publications that appeared during the period mid 2009 to early 2012 covering various aspects of RAFT polymerization which include reagent synthesis and properties, kinetics and mechanism of polymerization, novel polymer syntheses, and a diverse range of applications. This period has witnessed further significant developments, particularly in the areas of novel RAFT agents, techniques for end-group transformation, the production of micro/nanoparticles and modified surfaces, and biopolymer conjugates both for therapeutic and diagnostic applications.
Collapse
|
34
|
Influence of indomethacin-loading on the micellization and drug release of thermosensitive dextran-graft-poly(N-isopropylacrylamide). REACT FUNCT POLYM 2011. [DOI: 10.1016/j.reactfunctpolym.2011.05.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|