1
|
Tayebi-Khorrami V, Rahmanian-Devin P, Fadaei MR, Movaffagh J, Askari VR. Advanced applications of smart electrospun nanofibers in cancer therapy: With insight into material capabilities and electrospinning parameters. Int J Pharm X 2024; 8:100265. [PMID: 39045009 PMCID: PMC11263755 DOI: 10.1016/j.ijpx.2024.100265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 06/07/2024] [Accepted: 06/22/2024] [Indexed: 07/25/2024] Open
Abstract
Cancer remains a major global health challenge, and despite available treatments, its prognosis remains poor. Recently, researchers have turned their attention to intelligent nanofibers for cancer drug delivery. These nanofibers exhibit remarkable capabilities in targeted and controlled drug release. Their inherent characteristics, such as a high surface area-to-volume ratio, make them attractive candidates for drug delivery applications. Smart nanofibers can release drugs in response to specific stimuli, including pH, temperature, magnetic fields, and light. This unique feature not only reduces side effects but also enhances the overall efficiency of drug delivery systems. Electrospinning, a widely used method, allows the precision fabrication of smart nanofibers. Its advantages include high efficiency, user-friendliness, and the ability to control various manufacturing parameters. In this review, we explore the latest developments in producing smart electrospun nanofibers for cancer treatment. Additionally, we discuss the materials used in manufacturing these nanofibers and the critical parameters involved in the electrospinning process.
Collapse
Affiliation(s)
- Vahid Tayebi-Khorrami
- Department of Pharmaceutics, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Pouria Rahmanian-Devin
- Department of Pharmaceutics, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Reza Fadaei
- Department of Pharmaceutics, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Jebraeel Movaffagh
- Department of Pharmaceutics, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Vahid Reza Askari
- Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
2
|
Mitrofanov AY, Murashkina AV, Barabanova AI, Vorozheykina AV, Zubavichus YV, Khokhlov AR, Beletskaya IP. Efficient recyclable Cu-catalysts for click reaction and Chan-Lam coupling based on copolymers of N-vinylimidazole with N-vinylcaprolactam. MOLECULAR CATALYSIS 2023. [DOI: 10.1016/j.mcat.2023.112915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/28/2023]
|
3
|
Synthesis and application of a temperature sensitive poly(N-vinylcaprolactam-co-N,N-diethyl acrylamide) for low-temperature rheology control of water-based drilling fluid. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.128855] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
4
|
Ambreen J, Al-Harbi F, Sakhawat H, Ajmal M, Naeem H, Farooqi ZH, Batool N, Siddiq M. Fabrication of poly (N-vinylcaprolactam-co-acrylic acid)-silver nanoparticles composite microgel with substantial potential of hydrogen peroxide sensing and catalyzing the reduction of water pollutants. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.118931] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
5
|
Liu R, Ding T, Deng P, Yan X, Xiong F, Chen J, Wu Z. Preparation of LCST regulable DES-lignin-g-PNVCL thermo-responsive polymer by ARGET-ATRP. Int J Biol Macromol 2022; 194:358-365. [PMID: 34800520 DOI: 10.1016/j.ijbiomac.2021.11.077] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 11/04/2021] [Accepted: 11/12/2021] [Indexed: 12/24/2022]
Abstract
To expand the field of high-value utilization of lignin. The degraded deep eutectic solvent lignin-grafted poly (N-Vinyl caprolactam) (DES-lignin-g-PNVCL) was synthesized by modified DES-lignin and NVCL via the combination of activators regenerated by electron transfer-atom transfer radical polymerization (ARGET-ATRP). Fourier transform infrared spectroscopy (FT-IR), 1H NMR, X-ray electron spectroscopy (XPS), dynamic light scattering (DLS), differential scanning calorimeter (DSC) were used to characterize the structure and performance of DES-lignin-g-PNVCL. The results indicated that the PNVCL and DES-lignin-g-PNVCL were successfully prepared by ARGET-ATRP. The lowest critical solution temperature (LCST) of PNVCL was 35.75 °C. Due to different strength of hydrogen bond, different energies were required, so the LCST of the polymer can be regulated. When the molar ratio of phenolic hydroxyl group in degraded DES-lignin to 2-bromoisobutyryl bromide (BiBB) was increased from 1:1 to 1:7, the grafting rate of DES-lignin-Br was increased from 32.87% to 60.84%, and the LCST of DES-lignin-g-PNVCL was decreased from 47.98 °C to 27.88 °C. The LCST of DES-lignin-g-PNVCL was increased from 30.98 °C to 44.64 °C when the addition amount of DES-lignin-Br was increased from 20 mg to 200 mg. The LCST of DES-lignin-g-PNVCL was increased from 27.20 °C to 39.86 °C when the ratio of DMF/water was increased from 1:4 to 4:1. The LCST of DES-lignin-g-PNVCL was decreased from 52.10 °C to 31.02 °C when the concentration of DES-lignin-g-PNVCL was increased from 0.5 mg/mL to 2.5 mg/mL. The equation represented the relationship between LCST and influencing factors was obtained, the good predictability provided a tactics for preparing desired LCST thermo-responsible polymer.
Collapse
Affiliation(s)
- Ruixia Liu
- College of Materials Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan 410004, China
| | - Tingting Ding
- College of Materials Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan 410004, China
| | - Pingping Deng
- College of Materials Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan 410004, China
| | - Xiaofan Yan
- College of Materials Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan 410004, China
| | - Fuquan Xiong
- College of Materials Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan 410004, China
| | - Jienan Chen
- College of Materials Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan 410004, China
| | - Zhiping Wu
- College of Materials Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan 410004, China.
| |
Collapse
|
6
|
Song W, Wei J, Li L, Qian Y, Wang Y, Bi Y. Cathepsin B and thermal dual‐stimuli responsive linear‐dendritic block copolymer micelles for anticancer drug delivery. POLYM INT 2021. [DOI: 10.1002/pi.6332] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Wenjie Song
- College of Chemistry and Chemical Engineering Yunnan Normal University Kunming China
| | - Junwu Wei
- College of Chemistry and Chemical Engineering Yunnan Normal University Kunming China
| | - Lindong Li
- College of Chemistry and Chemical Engineering Yunnan Normal University Kunming China
| | - Yangyang Qian
- College of Chemistry and Chemical Engineering Yunnan Normal University Kunming China
| | - Yujia Wang
- College of Chemistry and Chemical Engineering Yunnan Normal University Kunming China
| | - Yunmei Bi
- College of Chemistry and Chemical Engineering Yunnan Normal University Kunming China
| |
Collapse
|
7
|
Marsili L, Dal Bo M, Berti F, Toffoli G. Chitosan-Based Biocompatible Copolymers for Thermoresponsive Drug Delivery Systems: On the Development of a Standardization System. Pharmaceutics 2021; 13:1876. [PMID: 34834291 PMCID: PMC8620438 DOI: 10.3390/pharmaceutics13111876] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 10/27/2021] [Accepted: 11/02/2021] [Indexed: 12/26/2022] Open
Abstract
Chitosan is a natural polysaccharide that is considered to be biocompatible, biodegradable and non-toxic. The polymer has been used in drug delivery applications for its positive charge, which allows for adhesion with and recognition of biological tissues via non-covalent interactions. In recent times, chitosan has been used for the preparation of graft copolymers with thermoresponsive polymers such as poly-N-vinylcaprolactam (PNVCL) and poly-N-isopropylamide (PNIPAM), allowing the combination of the biodegradability of the natural polymer with the ability to respond to changes in temperature. Due to the growing interest in the utilization of thermoresponsive polymers in the biological context, it is necessary to increase the knowledge of the key principles of thermoresponsivity in order to obtain comparable results between different studies or applications. In the present review, we provide an overview of the basic principles of thermoresponsivity, as well as a description of the main polysaccharides and thermoresponsive materials, with a special focus on chitosan and poly-N-Vinyl caprolactam (PNVCL) and their biomedical applications.
Collapse
Affiliation(s)
- Lorenzo Marsili
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Via Licio Giorgieri 1, 34127 Trieste, Italy;
| | - Michele Dal Bo
- Experimental and Clinical Pharmacology Unit, CRO National Cancer Institute IRCCS, Via Franco Gallini 2, 33081 Aviano, Italy; (M.D.B.); (G.T.)
| | - Federico Berti
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Via Licio Giorgieri 1, 34127 Trieste, Italy;
| | - Giuseppe Toffoli
- Experimental and Clinical Pharmacology Unit, CRO National Cancer Institute IRCCS, Via Franco Gallini 2, 33081 Aviano, Italy; (M.D.B.); (G.T.)
| |
Collapse
|
8
|
Marsili L, Dal Bo M, Berti F, Toffoli G. Thermoresponsive Chitosan-Grafted-Poly( N-vinylcaprolactam) Microgels via Ionotropic Gelation for Oncological Applications. Pharmaceutics 2021; 13:1654. [PMID: 34683947 PMCID: PMC8539247 DOI: 10.3390/pharmaceutics13101654] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 09/23/2021] [Accepted: 09/25/2021] [Indexed: 12/19/2022] Open
Abstract
Microgels can be considered soft, porous and deformable particles with an internal gel structure swollen by a solvent and an average size between 100 and 1000 nm. Due to their biocompatibility, colloidal stability, their unique dynamicity and the permeability of their architecture, they are emerging as important candidates for drug delivery systems, sensing and biocatalysis. In clinical applications, the research on responsive microgels is aimed at the development of "smart" delivery systems that undergo a critical change in conformation and size in reaction to a change in environmental conditions (temperature, magnetic fields, pH, concentration gradient). Recent achievements in biodegradable polymer fabrication have resulted in new appealing strategies, including the combination of synthetic and natural-origin polymers with inorganic nanoparticles, as well as the possibility of controlling drug release remotely. In this review, we provide a literature review on the use of dual and multi-responsive chitosan-grafted-poly-(N-vinylcaprolactam) (CP) microgels in drug delivery and oncological applications.
Collapse
Affiliation(s)
- Lorenzo Marsili
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Via Licio Giorgieri 1, 34127 Trieste, Italy;
- Experimental and Clinical Pharmacology Unit, CRO National Cancer Institute IRCCS, Via Franco Gallini 2, 33081 Aviano, Italy; (M.D.B.); (G.T.)
| | - Michele Dal Bo
- Experimental and Clinical Pharmacology Unit, CRO National Cancer Institute IRCCS, Via Franco Gallini 2, 33081 Aviano, Italy; (M.D.B.); (G.T.)
| | - Federico Berti
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Via Licio Giorgieri 1, 34127 Trieste, Italy;
| | - Giuseppe Toffoli
- Experimental and Clinical Pharmacology Unit, CRO National Cancer Institute IRCCS, Via Franco Gallini 2, 33081 Aviano, Italy; (M.D.B.); (G.T.)
| |
Collapse
|
9
|
Marsili L, Dal Bo M, Eisele G, Donati I, Berti F, Toffoli G. Characterization of Thermoresponsive Poly-N-Vinylcaprolactam Polymers for Biological Applications. Polymers (Basel) 2021; 13:2639. [PMID: 34451180 PMCID: PMC8400179 DOI: 10.3390/polym13162639] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 07/28/2021] [Accepted: 08/04/2021] [Indexed: 11/17/2022] Open
Abstract
Poly-N-Vinylcaprolactam (PNVCL) is a thermoresponsive polymer that exhibits lower critical solution temperature (LCST) between 25 and 50 °C. Due to its alleged biocompatibility, this polymer is becoming popular for biomedical and environmental applications. PNVCL with carboxyl terminations has been widely used for the preparation of thermoresponsive copolymers, micro- and nanogels for drug delivery and oncological therapies. However, the fabrication of such specific targeting devices needs standardized and reproducible preparation methods. This requires a deep understanding of how the miscibility behavior of the polymer is affected by its structural properties and the solution environment. In this work, PNVCL-COOH polymers were prepared via free radical polymerization (FRP) in order to exhibit LCST between 33 and 42 °C. The structural properties were investigated with NMR, FT-IR and conductimetric titration and the LCST was calculated via UV-VIS and DLS. The LCST is influenced by the molecular mass, as shown by both DLS and viscosimetric values. Finally, the behavior of the polymer was described as function of its concentration and in presence of different biologically relevant environments, such as aqueous buffers, NaCl solutions and human plasma.
Collapse
Affiliation(s)
- Lorenzo Marsili
- Experimental and Clinical Pharmacology Unit, CRO National Cancer Institute, IRCCS, Via Franco Gallini 2, 33081 Aviano, Italy
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Via Licio Giorgieri 1, 34127 Trieste, Italy
| | - Michele Dal Bo
- Experimental and Clinical Pharmacology Unit, CRO National Cancer Institute, IRCCS, Via Franco Gallini 2, 33081 Aviano, Italy
| | - Giorgio Eisele
- Centro Alta Tecnologia "Istituto di Ricerche Chimiche e Biochimiche G. Ronzoni" Srl, via G. Colombo 81, 20133 Milan, Italy
| | - Ivan Donati
- Department of Life Sciences, University of Trieste, Via Licio Giorgieri 5, 34127 Trieste, Italy
| | - Federico Berti
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Via Licio Giorgieri 1, 34127 Trieste, Italy
| | - Giuseppe Toffoli
- Experimental and Clinical Pharmacology Unit, CRO National Cancer Institute, IRCCS, Via Franco Gallini 2, 33081 Aviano, Italy
| |
Collapse
|
10
|
Barabanova AI, Blagodatskikh IV, Vyshivannaya OV, Muranov AV, Peregudov AS, Khokhlov AR. Synthesis, Thermoresponsive Behavior, and Catalytic Properties of Amphiphilic Diblock Copolymers of N-Vinylcaprolactam and N-Vinylimidazole. POLYMER SCIENCE SERIES A 2021. [DOI: 10.1134/s0965545x21040027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Abstract
Thermoresponsive diblock copolymers (DCs) were prepared by two-stage reversible addition-fragmentation chain transfer/macromolecular design by interchange of xanthate (RAFT/MADIX) polymerization of N-vinylcaprolactam and N-vinylimidazole (VI). The poly(N-vinylcaprolactam) (PVCL) blocks were first synthesized and used as macro-chain transfer agent in VI polymerization. The temperature behavior of PVCL and DCs in aqueous media has been studied by static and dynamic light scattering. It has been shown that the phase separation temperature of both PVCLs and DCs depends on the length of the PVCL chain and the composition of aqueous solvent. The temperature range above the PVCL θ temperature and below the cloud point is characterized by the conformational rearrangements leading to the formation of mesoglobules. The study of catalytic activity of DCs in the hydrolysis reaction of p-nitrophenyl propionate has shown that their activity substantially increases in this transitional temperature region owing to the formation of highly developed hydrophilic–hydrophobic interfaces inside the mesoglobules.
Collapse
|
11
|
Wan L, Liang DQ. Inhibition effects of poly(N-vinylcaprolactam)/poly(ε-caprolactone) amphiphilic block copolymers on methane hydrate formation. J IND ENG CHEM 2021. [DOI: 10.1016/j.jiec.2021.01.022] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
12
|
Dittrich J, Kather M, Holzberger A, Pich A, Gohlke H. Cumulative Submillisecond All-Atom Simulations of the Temperature-Induced Coil-to-Globule Transition of Poly(N-vinylcaprolactam) in Aqueous Solution. Macromolecules 2020. [DOI: 10.1021/acs.macromol.0c01896] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- Jonas Dittrich
- Institute for Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany
- Bioeconomy Science Center (BioSC), Forschungszentrum Jülich, 52425 Jülich, Germany
| | - Michael Kather
- DWI-Leibniz-Institute for Interactive Materials, RWTH Aachen University, 52056 Aachen, Germany
- Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, 52074 Aachen, Germany
| | - Anna Holzberger
- DWI-Leibniz-Institute for Interactive Materials, RWTH Aachen University, 52056 Aachen, Germany
- Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, 52074 Aachen, Germany
| | - Andrij Pich
- Bioeconomy Science Center (BioSC), Forschungszentrum Jülich, 52425 Jülich, Germany
- DWI-Leibniz-Institute for Interactive Materials, RWTH Aachen University, 52056 Aachen, Germany
- Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, 52074 Aachen, Germany
| | - Holger Gohlke
- Institute for Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany
- Bioeconomy Science Center (BioSC), Forschungszentrum Jülich, 52425 Jülich, Germany
- John von Neumann Institute for Computing (NIC), Jülich Supercomputing Centre (JSC), Institute of Biological Information Processing (IBI-7: Structural Biochemistry), Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
| |
Collapse
|
13
|
Qian Y, Wei J, Wang Y, You D, Lin F, Yue W, Bi Y. Thermal and enzymatic dual‐stimuli responsive linear‐dendritic block copolymers based on poly(
N
‐vinylcaprolactam). POLYM ADVAN TECHNOL 2020. [DOI: 10.1002/pat.5006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Yangyang Qian
- College of Chemistry and Chemical Engineering Yunnan Normal University Kunming China
| | - Junwu Wei
- College of Chemistry and Chemical Engineering Yunnan Normal University Kunming China
| | - Yujia Wang
- College of Chemistry and Chemical Engineering Yunnan Normal University Kunming China
| | - Dan You
- College of Chemistry and Chemical Engineering Yunnan Normal University Kunming China
| | - Feng Lin
- College of Chemistry and Chemical Engineering Yunnan Normal University Kunming China
| | - Wenzhe Yue
- College of Chemistry and Chemical Engineering Yunnan Normal University Kunming China
| | - Yunmei Bi
- College of Chemistry and Chemical Engineering Yunnan Normal University Kunming China
| |
Collapse
|
14
|
Poly (N-Vinyl caprolactam), a thermal responsive support with tunable phase transition temperature for catalyst. Sep Purif Technol 2020. [DOI: 10.1016/j.seppur.2020.116888] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
15
|
Mun G, Moldakhan I, Kabdushev S, Yermukhambetova B, Shaikhutdinov R, Yeligbayeva G. To the Methodology of Phase Transition Temperature Determination in Aqueous Solutions of Thermo-Sensitive Polymers. EURASIAN CHEMICO-TECHNOLOGICAL JOURNAL 2020. [DOI: 10.18321/ectj960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
An advanced methodology of phase transition determination in aqueous solutions of thermo-sensitive polymers by using of the phase portraits method has been suggested. The methodology allows highly accurate determining the temperature when exactly a half of molecules loses solubility (from the maximum number that can go to another phase state under given conditions). It is shown that since phase transition passes usually in a wide enough temperature interval this indicator should be used as a quantitative parameter that characterizes phase transition process. Additionally the suggested methodology allows introducing one more quantitative parameter that reflects a sharpness of phase transition. The methodology is verified by an example of phase transitions study in aqueous solutions of thermo-sensitive copolymers based on N-vinylpyrrolidone and vinyl propyl ether.
Collapse
|
16
|
Doberenz F, Zeng K, Willems C, Zhang K, Groth T. Thermoresponsive polymers and their biomedical application in tissue engineering - a review. J Mater Chem B 2020; 8:607-628. [PMID: 31939978 DOI: 10.1039/c9tb02052g] [Citation(s) in RCA: 194] [Impact Index Per Article: 38.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Thermoresponsive polymers hold great potential in the biomedical field, since they enable the fabrication of cell sheets, in situ drug delivery and 3D-printing under physiological conditions. In this review we provide an overview of several thermoresponsive polymers and their application, with focus on poly(N-isopropylacrylamide)-surfaces for cell sheet engineering. Basic knowledge of important processes like protein adsorption on surfaces and cell adhesion is provided. For different thermoresponsive polymers, namely PNIPAm, Pluronics, elastin-like polypeptides (ELP) and poly(N-vinylcaprolactam) (PNVCL), synthesis and basic chemical and physical properties have been described and the mechanism of their thermoresponsive behavior highlighted. Fabrication methods of thermoresponsive surfaces have been discussed, focusing on PNIPAm, and describing several methods in detail. The latter part of this review is dedicated to the application of the thermoresponsive polymers and with regard to cell sheet engineering, the process of temperature-dependent cell sheet detachment is explained. We provide insight into several applications of PNIPAm surfaces in cell sheet engineering. For Pluronics, ELP and PNVCL we show their application in the field of drug delivery and tissue engineering. We conclude, that research of thermoresponsive polymers has made big progress in recent years, especially for PNIPAm since the 1990s. However, manifold research possibilities, e.g. in surface fabrication and 3D-printing and further translational applications are conceivable in near future.
Collapse
Affiliation(s)
- Falko Doberenz
- Department Biomedical Materials, Institute of Pharmacy, Martin Luther University Halle-Wittenberg, Heinrich-Damerow-Strasse 4, 06120 Halle (Saale), Germany.
| | - Kui Zeng
- Wood Technology and Wood Chemistry, University of Goettingen, Büsgenweg 4, D-37077 Göttingen, Germany
| | - Christian Willems
- Department Biomedical Materials, Institute of Pharmacy, Martin Luther University Halle-Wittenberg, Heinrich-Damerow-Strasse 4, 06120 Halle (Saale), Germany.
| | - Kai Zhang
- Wood Technology and Wood Chemistry, University of Goettingen, Büsgenweg 4, D-37077 Göttingen, Germany
| | - Thomas Groth
- Department Biomedical Materials, Institute of Pharmacy, Martin Luther University Halle-Wittenberg, Heinrich-Damerow-Strasse 4, 06120 Halle (Saale), Germany. and Interdisciplinary Center of Material Science, Martin Luther University, Halle-Wittenberg, 06099 Halle (Saale), Germany and Institute for Bionic Technologies and Engineering, I.M. Sechenov First Moscow State Medical University, 1, 19991, Trubetskaya st. 8, Moscow, Russian Federation
| |
Collapse
|
17
|
Synthesis and characterization of dual pH-and thermo-responsive graphene-based nanocarrier for effective anticancer drug delivery. J Drug Deliv Sci Technol 2019. [DOI: 10.1016/j.jddst.2019.101158] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
18
|
Peng J, Tang D, Lv H, Wang N, Yang X, Sun Z, Yu Z. Thermal phase transition of poly(N-vinyl caprolactam)-based copolymers: the distribution of hydrophilic units within polymeric chains. Colloid Polym Sci 2019. [DOI: 10.1007/s00396-019-04537-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
19
|
Macchione MA, Guerrero-Beltrán C, Rosso AP, Euti EM, Martinelli M, Strumia MC, Muñoz-Fernández MÁ. Poly(N-vinylcaprolactam) Nanogels with Antiviral Behavior against HIV-1 Infection. Sci Rep 2019; 9:5732. [PMID: 30952921 PMCID: PMC6450967 DOI: 10.1038/s41598-019-42150-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Accepted: 03/18/2019] [Indexed: 12/22/2022] Open
Abstract
Stimuli-responsive nanogels offer promising perspectives for the development of next generation formulations for biomedical applications. In this work, poly(N-vinylcaprolactam) nanogels were synthesized varying the concentration of monomer and crosslinking agent. Thus, the inhibitory effect of poly(N-vinylcaprolactam) nanogels against HIV-1 infection is presented for the first time. In particular, we have demonstrated that one of the synthesized poly(N-vinylcaprolactam) nanogels with initial concentration of 80 mg of vinylcaprolactam and 4% of crosslinking agent shows antiviral behavior against HIV-1 infection since this nanogel inhibits the viral replication in TZM.bl target cells.
Collapse
Affiliation(s)
- Micaela A Macchione
- Universidad Nacional de Córdoba, Facultad de Ciencias Químicas, Departamento de Química Orgánica. Av. Haya de la Torre esq. Av. Medina Allende, Córdoba, X5000HUA, Argentina
- CONICET, Instituto de Investigación y Desarrollo en Ingeniería de Procesos y Química Aplicada (IPQA). Av. Velez Sárfield 1611, Córdoba, X5000HUA, Argentina
| | - Carlos Guerrero-Beltrán
- Sección Inmunología, Laboratorio Inmuno Biología Molecular, Hospital General Universitario Gregorio Marañón, Madrid, 28007, Spain
- Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Madrid, 28007, Spain
- Spanish HIV HGM Biobank, Madrid, 28007, Spain
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, 28029, Spain
| | - Anabella P Rosso
- Universidad Nacional de Córdoba, Facultad de Ciencias Químicas, Departamento de Química Orgánica. Av. Haya de la Torre esq. Av. Medina Allende, Córdoba, X5000HUA, Argentina
- CONICET, Instituto de Investigación y Desarrollo en Ingeniería de Procesos y Química Aplicada (IPQA). Av. Velez Sárfield 1611, Córdoba, X5000HUA, Argentina
| | - Esteban M Euti
- Universidad Nacional de Córdoba, Facultad de Ciencias Químicas, Departamento de Química Orgánica. Av. Haya de la Torre esq. Av. Medina Allende, Córdoba, X5000HUA, Argentina
- CONICET, Instituto de Investigación y Desarrollo en Ingeniería de Procesos y Química Aplicada (IPQA). Av. Velez Sárfield 1611, Córdoba, X5000HUA, Argentina
| | - Marisa Martinelli
- Universidad Nacional de Córdoba, Facultad de Ciencias Químicas, Departamento de Química Orgánica. Av. Haya de la Torre esq. Av. Medina Allende, Córdoba, X5000HUA, Argentina
- CONICET, Instituto de Investigación y Desarrollo en Ingeniería de Procesos y Química Aplicada (IPQA). Av. Velez Sárfield 1611, Córdoba, X5000HUA, Argentina
| | - Miriam C Strumia
- Universidad Nacional de Córdoba, Facultad de Ciencias Químicas, Departamento de Química Orgánica. Av. Haya de la Torre esq. Av. Medina Allende, Córdoba, X5000HUA, Argentina.
- CONICET, Instituto de Investigación y Desarrollo en Ingeniería de Procesos y Química Aplicada (IPQA). Av. Velez Sárfield 1611, Córdoba, X5000HUA, Argentina.
| | - Maria Ángeles Muñoz-Fernández
- Sección Inmunología, Laboratorio Inmuno Biología Molecular, Hospital General Universitario Gregorio Marañón, Madrid, 28007, Spain.
- Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Madrid, 28007, Spain.
- Spanish HIV HGM Biobank, Madrid, 28007, Spain.
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, 28029, Spain.
| |
Collapse
|
20
|
Siirilä J, Häkkinen S, Tenhu H. The emulsion polymerization induced self-assembly of a thermoresponsive polymer poly(N-vinylcaprolactam). Polym Chem 2019. [DOI: 10.1039/c8py01421c] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
A thermoresponsive polymer, poly(N-vinylcaprolactam) (PNVCL), was synthesized in an emulsion above its thermal transition temperature to produce particles via polymerization induced self-assembly (PISA).
Collapse
|
21
|
Van Nieuwenhove I, Maji S, Dash M, Van Vlierberghe S, Hoogenboom R, Dubruel P. RAFT/MADIX polymerization of N-vinylcaprolactam in water–ethanol solvent mixtures. Polym Chem 2017. [DOI: 10.1039/c6py02224c] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The present paper demonstrates the successful RAFT/MADIX polymerization of N-vinylcaprolactam at ambient temperature in water–ethanol mixtures. An optimum was found for a 1 : 1 ratio of water and ethanol as solvent regarding both polymerization rate and insignificant hydrolysis.
Collapse
Affiliation(s)
- Ine Van Nieuwenhove
- Polymer Chemistry and Biomaterials – Group Ghent University
- BE-9000 Ghent
- Belgium
| | - Samarendra Maji
- Supramolecular Chemistry Group – Ghent University
- BE-9000 Ghent
- Belgium
| | - Mamoni Dash
- Polymer Chemistry and Biomaterials – Group Ghent University
- BE-9000 Ghent
- Belgium
| | | | | | - Peter Dubruel
- Polymer Chemistry and Biomaterials – Group Ghent University
- BE-9000 Ghent
- Belgium
| |
Collapse
|
22
|
Etchenausia L, Rodrigues AM, Harrisson S, Deniau Lejeune E, Save M. RAFT Copolymerization of Vinyl Acetate and N-Vinylcaprolactam: Kinetics, Control, Copolymer Composition, and Thermoresponsive Self-Assembly. Macromolecules 2016. [DOI: 10.1021/acs.macromol.6b01451] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Laura Etchenausia
- IPREM, Equipe de Physique et Chimie des Polymères, CNRS, University of Pau & Pays Adour, UMR 5254, 2 avenue du Président Angot, Pau, F-64053, France
| | - Aurélie Malho Rodrigues
- IPREM, Equipe de Physique et Chimie des Polymères, CNRS, University of Pau & Pays Adour, UMR 5254, 2 avenue du Président Angot, Pau, F-64053, France
| | - Simon Harrisson
- Laboratoire
des IMRCP, Université de Toulouse, CNRS UMR 5623, Université Paul Sabatier, 118 route de Narbonne 31062 Toulouse Cedex 9, France
| | - Elise Deniau Lejeune
- IPREM, Equipe de Physique et Chimie des Polymères, CNRS, University of Pau & Pays Adour, UMR 5254, 2 avenue du Président Angot, Pau, F-64053, France
| | - Maud Save
- IPREM, Equipe de Physique et Chimie des Polymères, CNRS, University of Pau & Pays Adour, UMR 5254, 2 avenue du Président Angot, Pau, F-64053, France
| |
Collapse
|
23
|
Góis JR, Serra AC, Coelho JF. Synthesis and characterization of new temperature-responsive nanocarriers based on POEOMA- b -PNVCL prepared using a combination of ATRP, RAFT and CuAAC. Eur Polym J 2016. [DOI: 10.1016/j.eurpolymj.2016.06.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
24
|
Dréan M, Guégan P, Detrembleur C, Jérôme C, Rieger J, Debuigne A. Controlled Synthesis of Poly(vinylamine)-Based Copolymers by Organometallic-Mediated Radical Polymerization. Macromolecules 2016. [DOI: 10.1021/acs.macromol.6b00992] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Mathilde Dréan
- Center
for Education and Research on Macromolecules (CERM), Department of
Chemistry, University of Liege (ULg), Sart-Tilman, Allée de la
Chimie 3, Bat. B6a, B-4000 Liège, Belgium
- UPMC
Univ Paris 06, CNRS, Institut Parisien de Chimie Moléculaire
(IPCM), UMR 8232, Team Chimie des Polymères (LCP), Sorbonne Universités, 4 Place Jussieu, F-75005 Paris, France
| | - Philippe Guégan
- UPMC
Univ Paris 06, CNRS, Institut Parisien de Chimie Moléculaire
(IPCM), UMR 8232, Team Chimie des Polymères (LCP), Sorbonne Universités, 4 Place Jussieu, F-75005 Paris, France
| | - Christophe Detrembleur
- Center
for Education and Research on Macromolecules (CERM), Department of
Chemistry, University of Liege (ULg), Sart-Tilman, Allée de la
Chimie 3, Bat. B6a, B-4000 Liège, Belgium
| | - Christine Jérôme
- Center
for Education and Research on Macromolecules (CERM), Department of
Chemistry, University of Liege (ULg), Sart-Tilman, Allée de la
Chimie 3, Bat. B6a, B-4000 Liège, Belgium
| | - Jutta Rieger
- UPMC
Univ Paris 06, CNRS, Institut Parisien de Chimie Moléculaire
(IPCM), UMR 8232, Team Chimie des Polymères (LCP), Sorbonne Universités, 4 Place Jussieu, F-75005 Paris, France
| | - Antoine Debuigne
- Center
for Education and Research on Macromolecules (CERM), Department of
Chemistry, University of Liege (ULg), Sart-Tilman, Allée de la
Chimie 3, Bat. B6a, B-4000 Liège, Belgium
| |
Collapse
|
25
|
Enzenberg A, Laschewsky A, Boeffel C, Wischerhoff E. Influence of the Near Molecular Vicinity on the Temperature Regulated Fluorescence Response of Poly(N-vinylcaprolactam). Polymers (Basel) 2016; 8:E109. [PMID: 30979200 PMCID: PMC6431908 DOI: 10.3390/polym8040109] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Revised: 02/04/2016] [Accepted: 03/17/2016] [Indexed: 12/25/2022] Open
Abstract
A series of new fluorescent dye bearing monomers, including glycomonomers, based on maleamide and maleic esteramide was synthesized. The dye monomers were incorporated by radical copolymerization into thermo-responsive poly(N‑vinyl-caprolactam) that displays a lower critical solution temperature (LCST) in aqueous solution. The effects of the local molecular environment on the polymers' luminescence, in particular on the fluorescence intensity and the extent of solvatochromism, were investigated below as well as above the phase transition. By attaching substituents of varying size and polarity in the close vicinity of the fluorophore, and by varying the spacer groups connecting the dyes to the polymer backbone, we explored the underlying structure⁻property relationships, in order to establish rules for successful sensor designs, e.g., for molecular thermometers. Most importantly, spacer groups of sufficient length separating the fluorophore from the polymer backbone proved to be crucial for obtaining pronounced temperature regulated fluorescence responses.
Collapse
Affiliation(s)
- Anne Enzenberg
- Institute of Chemistry, University of Potsdam, Karl-Liebknecht-Str. 24-25, Potsdam-Golm D-14476, Germany.
| | - André Laschewsky
- Institute of Chemistry, University of Potsdam, Karl-Liebknecht-Str. 24-25, Potsdam-Golm D-14476, Germany.
- Fraunhofer Institute of Applied Polymer Research IAP, Geiselberg-Str. 69, Potsdam-Golm D-14476, Germany.
| | - Christine Boeffel
- Fraunhofer Institute of Applied Polymer Research IAP, Geiselberg-Str. 69, Potsdam-Golm D-14476, Germany.
| | - Erik Wischerhoff
- Fraunhofer Institute of Applied Polymer Research IAP, Geiselberg-Str. 69, Potsdam-Golm D-14476, Germany.
| |
Collapse
|
26
|
Cortez-Lemus NA, Licea-Claverie A. Poly(N-vinylcaprolactam), a comprehensive review on a thermoresponsive polymer becoming popular. Prog Polym Sci 2016. [DOI: 10.1016/j.progpolymsci.2015.08.001] [Citation(s) in RCA: 229] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
27
|
Góis JR, Costa JRC, Popov AV, Serra AC, Coelho JFJ. Synthesis of well-defined alkyne terminated poly( N-vinyl caprolactam) with stringent control over the LCST by RAFT. RSC Adv 2016; 6:16996-17007. [PMID: 27019706 PMCID: PMC4803047 DOI: 10.1039/c6ra01014h] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The reversible addition-fragmentation chain transfer (RAFT) of N-vinyl caprolactam (NVCL) using two new xanthates with alkyne functionalities is reported. The kinetic data obtained for polymerization of this non-activated monomer using a protected alkyne-terminated RAFT agent (PAT-X1) revealed a linear increase of the polymer molecular weight with the monomer conversion as well as low dispersity (Đ) during the entire course of the polymerization. The system reported here allowed us to enhance the final conversion, diminish Đ and reduce the polymerization temperature compared to the typical values reported in the scarce literature available for the RAFT polymerization of NVCL. The resulting PNVCL was fully characterized using 1H nuclear magnetic resonance (1H NMR), matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF-MS), Fourier-transform infrared spectroscopy (FTIR) and gel permeation chromatography (GPC) techniques. The temperature-responsive features of PNVCL in aqueous solutions were fully investigated under different conditions using turbidimetry. The presented strategy allows the synthesis of well-defined PNVCL with sharp and reversible phase transition temperatures around 37 °C. By manipulating the polymer molecular weight, or the solution properties, it is possible to tune the PNVCL phase transition. As a proof-of concept, the alkyne functionalized PNVCL was used to afford new linear block copolymers, by reacting with an azide-terminated poly(ethylene glycol) (N3-PEG) through the copper catalyzed azide-alkyne [3+2] dipolar cycloaddition (CuAAC) reaction. The results presented establish a robust system to afford the synthesis of PNCVL with fine tuned characteristics that will enable more efficient exploration of the remarkable potential of this polymer in biomedical applications.
Collapse
Affiliation(s)
- Joana R Góis
- CEMUC, Department of Chemical Engineering, University of Coimbra, Polo II, Rua Sílvio Lima, 3030-790 Coimbra, Portugal. ; Tel:+351 239 798 744;
| | - João R C Costa
- CEMUC, Department of Chemical Engineering, University of Coimbra, Polo II, Rua Sílvio Lima, 3030-790 Coimbra, Portugal. ; Tel:+351 239 798 744;
| | - Anatoliy V Popov
- Department of Radiology, University of Pennsylvania, Philadelphia, PA 19104, United States
| | - Arménio C Serra
- CEMUC, Department of Chemical Engineering, University of Coimbra, Polo II, Rua Sílvio Lima, 3030-790 Coimbra, Portugal. ; Tel:+351 239 798 744;
| | - Jorge F J Coelho
- CEMUC, Department of Chemical Engineering, University of Coimbra, Polo II, Rua Sílvio Lima, 3030-790 Coimbra, Portugal. ; Tel:+351 239 798 744;
| |
Collapse
|
28
|
Tang G, Hu M, Ma Y, You D, Bi Y. Synthesis and solution properties of novel thermo- and pH-responsive poly(N-vinylcaprolactam)-based linear–dendritic block copolymers. RSC Adv 2016. [DOI: 10.1039/c6ra04327e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
This study describes the synthesis and solution properties of the novel linear–dendritic block copolymers (LDBCs) based on thermoresponsive poly(N-vinylcaprolactam) (PNVCL) chains and pH-responsive poly(benzyl ether) dendrons.
Collapse
Affiliation(s)
- Gang Tang
- College of Chemistry and Chemical Engineering
- Yunnan Normal University
- Kunming 650500
- China
| | - Minqi Hu
- College of Chemistry and Chemical Engineering
- Yunnan Normal University
- Kunming 650500
- China
| | - Yongcui Ma
- College of Chemistry and Chemical Engineering
- Yunnan Normal University
- Kunming 650500
- China
| | - Dan You
- College of Chemistry and Chemical Engineering
- Yunnan Normal University
- Kunming 650500
- China
| | - Yunmei Bi
- College of Chemistry and Chemical Engineering
- Yunnan Normal University
- Kunming 650500
- China
| |
Collapse
|
29
|
Patra S, Roy E, Choudhary R, Tiwari A, Madhuri R, Sharma PK. RETRACTED: Graphene quantum dots decorated CdS doped graphene oxide sheets in dual action mode: As initiator and platform for designing of nimesulide imprinted polymer. Biosens Bioelectron 2015; 89:627-635. [PMID: 26718547 DOI: 10.1016/j.bios.2015.12.053] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Revised: 12/16/2015] [Accepted: 12/17/2015] [Indexed: 11/18/2022]
Abstract
This article has been retracted: please see Elsevier Policy on Article Withdrawal (https://www.elsevier.com/about/our-business/policies/article-withdrawal).
This article has been retracted at the request of Editor following concerns raised by a reader.
The article uses several electron micrographs which have been used in other publications as well denoting different samples.
Fig. 2A was reused from Fig. 3A, Chemical Engineering Journal, Volume 299, 1 September 2016, Pages 244-254, 10.1016/j.cej.2016.04.051. According to the authors this was due to a mistake at the compilation of the manuscript (mixing images from the GO and Cds:GO samples).
Fig. 2C was reused (a lower zoom level) from Fig. 1F, Biosensors and Bioelectronics, Volume 89, Part 1, 15 March 2017, Pages 620-626, 10.1016/j.bios.2015.12.085.
The inset in Fig. 1F was reused from Fig. 2D, Environ. Sci. Technol., 2015, 49 (10), pp 6117–6126, 10.1021/acs.est.5b00182.
These problems with the data presented cast doubt on all the data, and accordingly also the conclusions based on that data, in this publication.
As such this article represents a severe abuse of the scientific publishing system. The scientific community takes a very strong view on this matter and apologies are offered to readers of the journal that this was not detected during the submission process.
Collapse
Affiliation(s)
- Santanu Patra
- Department of Applied Chemistry, Indian School of Mines, Dhanbad, Jharkhand 826004, India
| | - Ekta Roy
- Department of Applied Chemistry, Indian School of Mines, Dhanbad, Jharkhand 826004, India
| | - Raksha Choudhary
- Department of Applied Chemistry, Indian School of Mines, Dhanbad, Jharkhand 826004, India
| | - Ashutosh Tiwari
- Smart Materials and Biodevices, Biosensors and Bioelectronics Centre, IFM-Linköpings Universitet, 581 83 Linköping, Sweden
| | - Rashmi Madhuri
- Department of Applied Chemistry, Indian School of Mines, Dhanbad, Jharkhand 826004, India.
| | - Prashant K Sharma
- Functional Nanomaterials Research Laboratory, Department of Applied Physics, Indian School of Mines, Dhanbad, Jharkhand 826004, India
| |
Collapse
|
30
|
Wu Q, Yi J, Wang S, Liu D, Song X, Zhang G. Synthesis and self-assembly of new amphiphilic thermosensitive poly(N-vinylcaprolactam)/poly(d,l-lactide) block copolymers via the combination of ring-opening polymerization and click chemistry. Polym Bull (Berl) 2015. [DOI: 10.1007/s00289-015-1348-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
31
|
Synthesis and characterization of four- and six-arm star-shaped poly(ε-caprolactone)-b-poly(N-vinylcaprolactam): Micellar and core degradation studies. REACT FUNCT POLYM 2015. [DOI: 10.1016/j.reactfunctpolym.2015.01.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
32
|
Yu Z, Gu H, Tang D, Lv H, Ren Y, Gu S. Fabrication of PVCL-co-PMMA nanofibers with tunable volume phase transition temperatures and maintainable shape for anti-cancer drug release. RSC Adv 2015. [DOI: 10.1039/c5ra10808j] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Thermo responsive PVCL-co-PMMA nanofibers for controlled release of anticancer drugs were fabricated. The thermo response temperatures of the nanofibers could be easily tuned, and the fibrous shapes could be maintained after heating–cooling cycles.
Collapse
Affiliation(s)
- Zaiqian Yu
- Department of Chemistry
- Harbin Institute of Technology
- Harbin 150001
- China
| | - Hongjuan Gu
- Northeast Branch
- China State Institute of Pharmaceutical Industry
- Changchun 130012
- China
- Sinopharm A-think Pharmaceutical Co. Ltd
| | - Dongyan Tang
- Department of Chemistry
- Harbin Institute of Technology
- Harbin 150001
- China
| | - Haitao Lv
- Department of Chemistry
- Harbin Institute of Technology
- Harbin 150001
- China
| | - Yonghui Ren
- Zhejiang Davi Pharmaceutical Co., Ltd
- Huzhou
- China
| | - Shuo Gu
- Department of Electrical and Computer Engineering
- The George Washington University
- Washington
- USA
| |
Collapse
|
33
|
Thomassin JM, Mathieu K, Kermagoret A, Fustin CA, Jérôme C, Debuigne A. Double thermo-responsive hydrogels from poly(vinylcaprolactam) containing diblock and triblock copolymers. Polym Chem 2015. [DOI: 10.1039/c4py01606h] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The thermally-induced gelation and gel properties of concentrated aqueous solutions of double thermoresponsive poly(N-vinylamide)-based di- and triblock copolymers are studied by rheology.
Collapse
Affiliation(s)
- Jean-Michel Thomassin
- Center for Education and Research on Macromolecules (CERM)
- Chemistry Department
- University of Liege (ULg)
- B-4000 Liège
- Belgium
| | - Kevin Mathieu
- Center for Education and Research on Macromolecules (CERM)
- Chemistry Department
- University of Liege (ULg)
- B-4000 Liège
- Belgium
| | - Anthony Kermagoret
- Center for Education and Research on Macromolecules (CERM)
- Chemistry Department
- University of Liege (ULg)
- B-4000 Liège
- Belgium
| | - Charles-André Fustin
- Institute of Condensed Matter and Nanosciences (IMCN)
- Bio- and Soft Matter division (BSMA)
- Université catholique de Louvain
- 1348 Louvain-la-Neuve
- Belgium
| | - Christine Jérôme
- Center for Education and Research on Macromolecules (CERM)
- Chemistry Department
- University of Liege (ULg)
- B-4000 Liège
- Belgium
| | - Antoine Debuigne
- Center for Education and Research on Macromolecules (CERM)
- Chemistry Department
- University of Liege (ULg)
- B-4000 Liège
- Belgium
| |
Collapse
|
34
|
Maji S, Zhang Z, Voorhaar L, Pieters S, Stubbe B, Van Vlierberghe S, Dubruel P, De Geest BG, Hoogenboom R. Thermoresponsive polymer coated gold nanoparticles: from MADIX/RAFT copolymerization of N-vinylpyrrolidone and N-vinylcaprolactam to salt and temperature induced nanoparticle aggregation. RSC Adv 2015. [DOI: 10.1039/c5ra06559c] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
In the present contribution, we report the synthesis of thermoresponsive homo and statistical copolymers of N-vinylcaprolactam and N-vinylpyrrolidone and the corresponding responsive gold nanoparticles.
Collapse
Affiliation(s)
- Samarendra Maji
- Supramolecular Chemistry Group
- Department of Organic and Macromolecular Chemistry
- Ghent University
- 9000 Ghent
- Belgium
| | - Zhiyue Zhang
- Faculty of Pharmaceutical Sciences
- Department of Pharmaceutics
- Ghent University
- 9000 Ghent
- Belgium
| | - Lenny Voorhaar
- Supramolecular Chemistry Group
- Department of Organic and Macromolecular Chemistry
- Ghent University
- 9000 Ghent
- Belgium
| | - Sophie Pieters
- Polymer Chemistry and Biomaterials Group
- Department of Organic and Macromolecular Chemistry
- Ghent University
- 9000 Ghent
- Belgium
| | - Birgit Stubbe
- Polymer Chemistry and Biomaterials Group
- Department of Organic and Macromolecular Chemistry
- Ghent University
- 9000 Ghent
- Belgium
| | - Sandra Van Vlierberghe
- Polymer Chemistry and Biomaterials Group
- Department of Organic and Macromolecular Chemistry
- Ghent University
- 9000 Ghent
- Belgium
| | - Peter Dubruel
- Polymer Chemistry and Biomaterials Group
- Department of Organic and Macromolecular Chemistry
- Ghent University
- 9000 Ghent
- Belgium
| | - Bruno G. De Geest
- Faculty of Pharmaceutical Sciences
- Department of Pharmaceutics
- Ghent University
- 9000 Ghent
- Belgium
| | - Richard Hoogenboom
- Supramolecular Chemistry Group
- Department of Organic and Macromolecular Chemistry
- Ghent University
- 9000 Ghent
- Belgium
| |
Collapse
|
35
|
Bathfield M, Warnant J, Gérardin C, Lacroix-Desmazes P. Asymmetric neutral, cationic and anionic PEO-based double-hydrophilic block copolymers (DHBCs): synthesis and reversible micellization triggered by temperature or pH. Polym Chem 2015. [DOI: 10.1039/c4py01502a] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The syntheses of three DHBCs (thermosensitive or ionizable) are described. To act as structure directing agents in mesoporous silica synthesis, their ability to undergo micellization under appropriate conditions was checked.
Collapse
Affiliation(s)
- Maël Bathfield
- Ingénierie et Architectures Macromoléculaires (ICG-IAM)
- Institut Charles Gerhardt - UMR 5253 CNRS/UM2/ENSCM/UM1
- Ecole Nationale Supérieure de Chimie de Montpellier
- 34296 Montpellier Cedex 5
- France
| | - Jérôme Warnant
- Ingénierie et Architectures Macromoléculaires (ICG-IAM)
- Institut Charles Gerhardt - UMR 5253 CNRS/UM2/ENSCM/UM1
- Ecole Nationale Supérieure de Chimie de Montpellier
- 34296 Montpellier Cedex 5
- France
| | - Corine Gérardin
- Matériaux Avancés pour la Catalyse et la Santé (ICG-MACS)
- Institut Charles Gerhardt - UMR 5253 CNRS/UM2/ENSCM/UM1
- Ecole Nationale Supérieure de Chimie de Montpellier
- 34296 Montpellier Cedex 5
- France
| | - Patrick Lacroix-Desmazes
- Ingénierie et Architectures Macromoléculaires (ICG-IAM)
- Institut Charles Gerhardt - UMR 5253 CNRS/UM2/ENSCM/UM1
- Ecole Nationale Supérieure de Chimie de Montpellier
- 34296 Montpellier Cedex 5
- France
| |
Collapse
|
36
|
Liu J, Debuigne A, Detrembleur C, Jérôme C. Poly(N-vinylcaprolactam): a thermoresponsive macromolecule with promising future in biomedical field. Adv Healthc Mater 2014; 3:1941-68. [PMID: 25354338 DOI: 10.1002/adhm.201400371] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Revised: 09/17/2014] [Indexed: 11/06/2022]
Abstract
Poly(N-vinylcaprolactam) (PNVCL) is a thermoresponsive and biocompatible polymer that raises an increasing interest in the biomedical area, especially in drug delivery systems (DDS) that include micelles, hydrogels, and hybrid particles. The thermoresponsiveness of PNVCL, used alone or in combination with other stimuli- responsive polymers or particles (pH, magnetic field, or chemicals), is often key in the loading and/or release process in these DDS. The renewed focus on this polymer, which is known for decades, is to a large extent due to recent progress in synthetic strategies. Especially, the advent of efficient controlled radical polymerization (CRP) methods for NVCL monomer gives now access to unprecedented well-defined NVCL-based copolymers with unique properties. This Review article addresses up-to-date synthetic aspects, biological features, and biomedical applications of the latest NVCL-containing systems.
Collapse
Affiliation(s)
- Ji Liu
- Center for Education and Research on Macromolecules (CERM); University of Liege (ULg); Sart-Tilman B6A B-4000 Liege Belgium
| | - Antoine Debuigne
- Center for Education and Research on Macromolecules (CERM); University of Liege (ULg); Sart-Tilman B6A B-4000 Liege Belgium
| | - Christophe Detrembleur
- Center for Education and Research on Macromolecules (CERM); University of Liege (ULg); Sart-Tilman B6A B-4000 Liege Belgium
| | - Christine Jérôme
- Center for Education and Research on Macromolecules (CERM); University of Liege (ULg); Sart-Tilman B6A B-4000 Liege Belgium
| |
Collapse
|
37
|
Wu Q, Zhou D, Kang R, Tang X, Yang Q, Song X, Zhang G. Synthesis and Self-Assembly of Thermoresponsive Amphiphilic Biodegradable Polypeptide/Poly(ethyl ethylene phosphate) Block Copolymers. Chem Asian J 2014; 9:2850-8. [DOI: 10.1002/asia.201402524] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2014] [Indexed: 12/13/2022]
|
38
|
Well-defined poly(DL-lactide)-b-poly(N-vinylcaprolactam) copolymers: synthesis, solution properties and in vitro degradation. JOURNAL OF POLYMER RESEARCH 2014. [DOI: 10.1007/s10965-014-0549-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
39
|
Liang X, Kozlovskaya V, Cox CP, Wang Y, Saeed M, Kharlampieva E. Synthesis and self-assembly of thermosensitive double-hydrophilic poly(N-vinylcaprolactam)-b-poly(N-vinyl-2-pyrrolidone) diblock copolymers. ACTA ACUST UNITED AC 2014. [DOI: 10.1002/pola.27291] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Xing Liang
- Department of Chemistry; University of Alabama at Birmingham; Birmingham Alabama 35294
| | - Veronika Kozlovskaya
- Department of Chemistry; University of Alabama at Birmingham; Birmingham Alabama 35294
| | - Christopher P. Cox
- Department of Chemistry; University of Alabama at Birmingham; Birmingham Alabama 35294
| | - Yun Wang
- Department of Chemistry; University of Alabama at Birmingham; Birmingham Alabama 35294
| | - Mohammad Saeed
- Drug Discovery Division; Department of Biochemistry and Molecular Biology; Southern Research Institute; Birmingham Alabama 35294
| | - Eugenia Kharlampieva
- Department of Chemistry; University of Alabama at Birmingham; Birmingham Alabama 35294
- Center for Nanoscale Materials and Biointegration; University of Alabama at Birmingham; Birmingham Alabama 35294
| |
Collapse
|
40
|
Kermagoret A, Mathieu K, Thomassin JM, Fustin CA, Duchêne R, Jérôme C, Detrembleur C, Debuigne A. Double thermoresponsive di- and triblock copolymers based on N-vinylcaprolactam and N-vinylpyrrolidone: synthesis and comparative study of solution behaviour. Polym Chem 2014. [DOI: 10.1039/c4py00852a] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Controlled radical polymerization produces poly(N-vinylamide)s with thermally induced multistep assembly.
Collapse
Affiliation(s)
- Anthony Kermagoret
- Center for Education and Research on Macromolecules (CERM)
- Chemistry Department
- University of Liege (ULg)
- B-4000 Liège, Belgium
| | - Kevin Mathieu
- Center for Education and Research on Macromolecules (CERM)
- Chemistry Department
- University of Liege (ULg)
- B-4000 Liège, Belgium
| | - Jean-Michel Thomassin
- Center for Education and Research on Macromolecules (CERM)
- Chemistry Department
- University of Liege (ULg)
- B-4000 Liège, Belgium
| | - Charles-André Fustin
- Institute of Condensed Matter and Nanosciences (IMCN)
- Bio- and Soft Matter Division (BSMA)
- Université Catholique de Louvain
- 1348 Louvain-la-Neuve, Belgium
| | - Roland Duchêne
- Institute of Condensed Matter and Nanosciences (IMCN)
- Bio- and Soft Matter Division (BSMA)
- Université Catholique de Louvain
- 1348 Louvain-la-Neuve, Belgium
| | - Christine Jérôme
- Center for Education and Research on Macromolecules (CERM)
- Chemistry Department
- University of Liege (ULg)
- B-4000 Liège, Belgium
| | - Christophe Detrembleur
- Center for Education and Research on Macromolecules (CERM)
- Chemistry Department
- University of Liege (ULg)
- B-4000 Liège, Belgium
| | - Antoine Debuigne
- Center for Education and Research on Macromolecules (CERM)
- Chemistry Department
- University of Liege (ULg)
- B-4000 Liège, Belgium
| |
Collapse
|
41
|
Liu J, Detrembleur C, De Pauw-Gillet MC, Mornet S, Duguet E, Jérôme C. Gold nanorods coated with a thermo-responsive poly(ethylene glycol)-b-poly(N-vinylcaprolactam) corona as drug delivery systems for remotely near infrared-triggered release. Polym Chem 2014. [DOI: 10.1039/c3py01057k] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
42
|
|
43
|
Synthesis and self-assembly of new amphiphilic thermosensitive poly(N-vinylcaprolactam)/poly(ε-caprolactone) block copolymers via the combination of ring-opening polymerization and click chemistry. JOURNAL OF POLYMER RESEARCH 2013. [DOI: 10.1007/s10965-013-0262-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
44
|
Wu Q, Wang L, Fu X, Song X, Yang Q, Zhang G. Synthesis and self-assembly of a new amphiphilic thermosensitive poly(N-vinylcaprolactam)/poly(ε-caprolactone) block copolymer. Polym Bull (Berl) 2013. [DOI: 10.1007/s00289-013-1041-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
45
|
Bi Y, Yan C, Shao L, Wang Y, Ma Y, Tang G. Well-defined thermoresponsive dendritic polyamide/poly(N
-vinylcaprolactam) block copolymers. ACTA ACUST UNITED AC 2013. [DOI: 10.1002/pola.26716] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Yunmei Bi
- Department of Medicinal Chemistry; College of Chemistry and Chemical Engineering, Yunnan Normal University; Kunming 650092 People's Republic of China
| | - Caixian Yan
- Department of Medicinal Chemistry; College of Chemistry and Chemical Engineering, Yunnan Normal University; Kunming 650092 People's Republic of China
| | - Lidong Shao
- Department of Medicinal Chemistry; College of Chemistry and Chemical Engineering, Yunnan Normal University; Kunming 650092 People's Republic of China
| | - Yufei Wang
- Department of Medicinal Chemistry; College of Chemistry and Chemical Engineering, Yunnan Normal University; Kunming 650092 People's Republic of China
| | - Yongcui Ma
- Department of Medicinal Chemistry; College of Chemistry and Chemical Engineering, Yunnan Normal University; Kunming 650092 People's Republic of China
| | - Gang Tang
- Department of Medicinal Chemistry; College of Chemistry and Chemical Engineering, Yunnan Normal University; Kunming 650092 People's Republic of China
| |
Collapse
|
46
|
Ponce-Vargas SM, Cortez-Lemus NA, Licea-Claveríe A. Preparation of Poly(N-Vinylcaprolactam) (NVCL) and Statistical Copolymers of NVCL with Variable Cloud Point Temperature by Using A Trithiocarbonate RAFT Agent. ACTA ACUST UNITED AC 2013. [DOI: 10.1002/masy.201200045] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|