1
|
Abalymov A, Pinchasik BE, Akasov RA, Lomova M, Parakhonskiy BV. Strategies for Anisotropic Fibrillar Hydrogels: Design, Cell Alignment, and Applications in Tissue Engineering. Biomacromolecules 2023; 24:4532-4552. [PMID: 37812143 DOI: 10.1021/acs.biomac.3c00503] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
Efficient cellular alignment in biomaterials presents a considerable challenge, demanding the refinement of appropriate material morphologies, while ensuring effective cell-surface interactions. To address this, biomaterials are continuously researched with diverse coatings, hydrogels, and polymeric surfaces. In this context, we investigate the influence of physicochemical parameters on the architecture of fibrillar hydrogels that significantly orient the topography of flexible hydrogel substrates, thereby fostering cellular adhesion and spatial organization. Our Review comprehensively assesses various techniques for aligning polymer fibrils within hydrogels, specifically interventions applied during and after the cross-linking process. These methodologies include mechanical strains, precise temperature modulation, controlled fluidic dynamics, and chemical modulators, as well as the use of magnetic and electric fields. We highlight the intrinsic appeal of these methodologies in fabricating cell-aligning interfaces and discuss their potential implications within the fields of biomaterials and tissue engineering, particularly concerning the pursuit of optimal cellular alignment.
Collapse
Affiliation(s)
- Anatolii Abalymov
- Science Medical Center, Saratov State University, 410012 Saratov, Russia
| | - Bat-El Pinchasik
- School of Mechanical Engineering, Faculty of Engineering, Tel-Aviv University, 69978 Tel-Aviv, Israel
| | - Roman A Akasov
- Sechenov University and Federal Scientific Research Centre "Crystallography and Photonics" of Russian Academy of Sciences, 101000 Moscow, Russia
| | - Maria Lomova
- Science Medical Center, Saratov State University, 410012 Saratov, Russia
| | - Bogdan V Parakhonskiy
- Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium
| |
Collapse
|
2
|
Österberg M, Henn KA, Farooq M, Valle-Delgado JJ. Biobased Nanomaterials─The Role of Interfacial Interactions for Advanced Materials. Chem Rev 2023; 123:2200-2241. [PMID: 36720130 PMCID: PMC9999428 DOI: 10.1021/acs.chemrev.2c00492] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
This review presents recent advances regarding biomass-based nanomaterials, focusing on their surface interactions. Plant biomass-based nanoparticles, like nanocellulose and lignin from industry side streams, hold great potential for the development of lightweight, functional, biodegradable, or recyclable material solutions for a sustainable circular bioeconomy. However, to obtain optimal properties of the nanoparticles and materials made thereof, it is crucial to control the interactions both during particle production and in applications. Herein we focus on the current understanding of these interactions. Solvent interactions during particle formation and production, as well as interactions with water, polymers, cells and other components in applications, are addressed. We concentrate on cellulose and lignin nanomaterials and their combination. We demonstrate how the surface chemistry of the nanomaterials affects these interactions and how excellent performance is only achieved when the interactions are controlled. We furthermore introduce suitable methods for probing interactions with nanomaterials, describe their advantages and challenges, and introduce some less commonly used methods and discuss their possible applications to gain a deeper understanding of the interfacial chemistry of biobased nanomaterials. Finally, some gaps in current understanding and interesting emerging research lines are identified.
Collapse
Affiliation(s)
- Monika Österberg
- Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, Vuorimiehentie 1, 02150Espoo, Finland
| | - K Alexander Henn
- Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, Vuorimiehentie 1, 02150Espoo, Finland
| | - Muhammad Farooq
- Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, Vuorimiehentie 1, 02150Espoo, Finland
| | - Juan José Valle-Delgado
- Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, Vuorimiehentie 1, 02150Espoo, Finland
| |
Collapse
|
3
|
Rohadi TNT, Ridzuan MJM, Majid MSA, Azizan A, Mat F, Sapuan SM. Synthesis and Characterization of Composite Film Based on Cellulose of Napier Grass Incorporated with Chitosan and Gelatine for Packaging Material. J Inorg Organomet Polym Mater 2023. [DOI: 10.1007/s10904-023-02563-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
4
|
Hu L, Xu W, Gustafsson J, Koppolu R, Wang Q, Rosqvist E, Sundberg A, Peltonen J, Willför S, Toivakka M, Xu C. Water-soluble polysaccharides promoting production of redispersible nanocellulose. Carbohydr Polym 2022; 297:119976. [DOI: 10.1016/j.carbpol.2022.119976] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Revised: 08/05/2022] [Accepted: 08/10/2022] [Indexed: 12/24/2022]
|
5
|
Cellulose bionanocomposites for sustainable planet and people: A global snapshot of preparation, properties, and applications. CARBOHYDRATE POLYMER TECHNOLOGIES AND APPLICATIONS 2021. [DOI: 10.1016/j.carpta.2021.100065] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
|
6
|
Mechanical properties of cellulose nanofibril papers and their bionanocomposites: A review. Carbohydr Polym 2021; 273:118507. [PMID: 34560938 DOI: 10.1016/j.carbpol.2021.118507] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 07/14/2021] [Accepted: 07/26/2021] [Indexed: 12/25/2022]
Abstract
Cellulose nanofibril (CNF) paper has various applications due to its unique advantages. Herein, we present the intrinsic mechanical properties of CNF papers, along with the preparation and properties of nanoparticle-reinforced CNF composite papers. The literature on CNF papers reveals a strong correlation between the intrafibrillar network structure and the resulting mechanical properties. This correlation is found to hold for all primary factors affecting mechanical properties, indicating that the performance of CNF materials depends directly on and can be tailored by controlling the intrafibrillar network of the system. The parameters that influence the mechanical properties of CNF papers were critically reviewed. Moreover, the effect on the mechanical properties by adding nanofillers to CNF papers to produce multifunctional composite products was discussed. We concluded this article with future perspectives and possible developments in CNFs and their bionanocomposite papers.
Collapse
|
7
|
Yao M, Liang C, Yao S, Liu Y, Zhao H, Qin C. Kinetics and Thermodynamics of Hemicellulose Adsorption onto Nanofibril Cellulose Surfaces by QCM-D. ACS OMEGA 2021; 6:30618-30626. [PMID: 34805690 PMCID: PMC8600616 DOI: 10.1021/acsomega.1c04391] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Accepted: 10/20/2021] [Indexed: 06/13/2023]
Abstract
The adsorption of hemicellulose derived from bagasse onto nanofibril cellulose has been studied in terms of kinetics and thermodynamics. In situ monitoring of bagasse hemicellulose with different molecular weights onto the nanofibril cellulose surfaces has been investigated using quartz crystal microbalance and dissipation. Then, the adsorption kinetics and thermodynamic properties were analyzed. Also, the sorption behavior and the adsorption layer properties were quantified in aqueous solutions. The maximum adsorption mass was 2.8314 mg/m2 at a concentration of 200 mg/L. Also, compared with that of the low-molecular-weight hemicellulose, the adsorption capacity of the high-molecular-weight hemicellulose was higher, and the adsorption rate changed faster and could reach an equilibrium in a shorter time. The intraparticle diffusion kinetic model represented the experimental data very well. Therefore, the kinetics of hemicellulose on the fiber adsorption was commonly described by a three-stage process: mass to transfer, diffusion, and equilibrium. The Gibbs energy change of the adsorption of hemicellulose was found to range from -20.04 to -49.75 kJ/mol at 25 °C. The entropy change was >0. It was found that the adsorption was spontaneous, and the adsorbed mass increased with the increase in temperature. This strengthened the conclusion that the adsorption process of the bagasse hemicellulose on the NFC was driven by the increase in entropy caused by the release of water molecules due to hydrophobic interaction or solvent reorganization.
Collapse
Affiliation(s)
- Mingzhu Yao
- School
of Light Industry and Food Engineering, Guangxi University, 530004 Nanning, China
| | - Chen Liang
- School
of Light Industry and Food Engineering, Guangxi University, 530004 Nanning, China
- Guangxi
Key Laboratory of Clean Pulp & Papermaking and Pollution Control, Guangxi University, 530004 Nanning, China
| | - Shuangquan Yao
- School
of Light Industry and Food Engineering, Guangxi University, 530004 Nanning, China
- Guangxi
Key Laboratory of Clean Pulp & Papermaking and Pollution Control, Guangxi University, 530004 Nanning, China
| | - Yang Liu
- School
of Light Industry and Food Engineering, Guangxi University, 530004 Nanning, China
- Guangxi
Key Laboratory of Clean Pulp & Papermaking and Pollution Control, Guangxi University, 530004 Nanning, China
- Guangxi
Bossco Environmental Protection Technology Co., Ltd., 530000 Nanning, China
| | - Hui Zhao
- School
of Light Industry and Food Engineering, Guangxi University, 530004 Nanning, China
| | - Chenni Qin
- School
of Light Industry and Food Engineering, Guangxi University, 530004 Nanning, China
| |
Collapse
|
8
|
Khodayari A, Thielemans W, Hirn U, Van Vuure AW, Seveno D. Cellulose-hemicellulose interactions - A nanoscale view. Carbohydr Polym 2021; 270:118364. [PMID: 34364609 DOI: 10.1016/j.carbpol.2021.118364] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 06/14/2021] [Accepted: 06/17/2021] [Indexed: 01/01/2023]
Abstract
In this work, we study interactions of five different hemicellulose models, i.e. Galactoglucomannan, O-Acetyl-Galactoglucomannan, Fuco-Galacto-Xyloglucan, 4-O-Methylglucuronoxylan, and 4-O-Methylglucuronoarabinoxylan, and their respective binding strength to cellulose nanocrystals by molecular dynamics simulations. Glucuronoarabinoxylan showed the highest free energy of binding, whereas Xyloglucan had the lowest interaction energies amongst the five models. We further performed simulated shear tests and concluded that failure mostly happens at the inter-molecular interaction level within the hemicellulose fraction, rather than at the interface with cellulose. The presence of water molecules seems to have a weakening effect on the interactions of hemicellulose and cellulose, taking up the available hydroxyl groups on the surface of the cellulose for hydrogen bonding. We believe that these studies can shed light on better understanding of plant cell walls, as well as providing evidence on variability of the structures of different plant sources for extractions, purification, and operation of biorefineries.
Collapse
Affiliation(s)
- Ali Khodayari
- Department of Materials Engineering, KU Leuven, Leuven, Belgium.
| | - Wim Thielemans
- Sustainable Materials Lab, Department of Chemical Engineering, KU Leuven, campus Kulak Kortrijk, Etienne Sabbelaan 53, 8500 Kortrijk, Belgium
| | - Ulrich Hirn
- Institute of Bioproducts and Paper Technology, TU Graz, Graz, Austria
| | | | - David Seveno
- Department of Materials Engineering, KU Leuven, Leuven, Belgium
| |
Collapse
|
9
|
Yang X, Jungstedt E, Reid MS, Berglund LA. Polymer Films from Cellulose Nanofibrils—Effects from Interfibrillar Interphase on Mechanical Behavior. Macromolecules 2021. [DOI: 10.1021/acs.macromol.1c00305] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Xuan Yang
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, P.R. China
- Institute of Zhejiang University—Quzhou, Quzhou 324000, P.R. China
- Wallenberg Wood Science Center, KTH Royal Institute of Technology, Stockholm SE-10044, Sweden
- Department of Fiber and Polymer Technology, KTH Royal Institute of Technology, Stockholm SE-10044, Sweden
| | - Erik Jungstedt
- Wallenberg Wood Science Center, KTH Royal Institute of Technology, Stockholm SE-10044, Sweden
- Department of Fiber and Polymer Technology, KTH Royal Institute of Technology, Stockholm SE-10044, Sweden
| | - Michael S. Reid
- Department of Fiber and Polymer Technology, KTH Royal Institute of Technology, Stockholm SE-10044, Sweden
| | - Lars A. Berglund
- Wallenberg Wood Science Center, KTH Royal Institute of Technology, Stockholm SE-10044, Sweden
- Department of Fiber and Polymer Technology, KTH Royal Institute of Technology, Stockholm SE-10044, Sweden
| |
Collapse
|
10
|
Kishani S, Benselfelt T, Wågberg L, Wohlert J. Entropy drives the adsorption of xyloglucan to cellulose surfaces - A molecular dynamics study. J Colloid Interface Sci 2021; 588:485-493. [PMID: 33429345 DOI: 10.1016/j.jcis.2020.12.113] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 12/21/2020] [Accepted: 12/28/2020] [Indexed: 11/27/2022]
Abstract
The adsorption of nonionic polymers to cellulose is of large importance both in the plant cell wall during synthesis and for the development of sustainable materials from wood. Here, the thermodynamics of adsorption of the polysaccharide xyloglucan (XG) to both native and chemically modified cellulose with carboxyl groups was investigated using molecular dynamics simulations. The free energy of adsorption was calculated as the potential of mean force between an XG oligomer and model cellulose surfaces in a range of temperatures from 298 K to 360 K. It was found that the adsorption near room temperature is an endothermic process dominated by the entropy of released interfacial water molecules. This was corroborated by quantitative assessment of the absolute entropy per water molecule both at the interface and in the bulk. In the case of native cellulose, the adsorption became exothermic at higher temperatures, while the relatively strong interactions between water and the charged groups of the oxidized cellulose impede such a transition. The results also indicate that the extraction of strongly associated hemicelluloses would be facilitated by low temperature.
Collapse
Affiliation(s)
- Saina Kishani
- Department of Fiber and Polymer Technology, KTH Royal Institute of Technology, SE-10044, Sweden; Wallenberg Wood Science Center, KTH Royal Institute of Technology, SE-10044, Sweden
| | - Tobias Benselfelt
- Department of Fiber and Polymer Technology, KTH Royal Institute of Technology, SE-10044, Sweden; Wallenberg Wood Science Center, KTH Royal Institute of Technology, SE-10044, Sweden
| | - Lars Wågberg
- Department of Fiber and Polymer Technology, KTH Royal Institute of Technology, SE-10044, Sweden; Wallenberg Wood Science Center, KTH Royal Institute of Technology, SE-10044, Sweden
| | - Jakob Wohlert
- Department of Fiber and Polymer Technology, KTH Royal Institute of Technology, SE-10044, Sweden; Wallenberg Wood Science Center, KTH Royal Institute of Technology, SE-10044, Sweden.
| |
Collapse
|
11
|
Sun L, Zhang X, Liu H, Liu K, Du H, Kumar A, Sharma G, Si C. Recent Advances in Hydrophobic Modification of Nanocellulose. CURR ORG CHEM 2021. [DOI: 10.2174/1385272824999201210191041] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
As a kind of renewable nanomaterial, nanocellulose displays excellent performances
and exhibits wide application potentials. In general, nanocellulose has strong hydrophilicity
due to the presence of abundant hydroxyl groups or the hydrophilic functional groups
introduced during the preparation process. Although these hydrophilic groups benefit the
nanocellulose with great application potential that is used in aqueous media (e.g., rheology
modifier, hydrogels), they do hinder the performance of nanocellulose used as reinforcing
agents for hydrophobic polymers and reduce the stability of the self-assembled nanostructure
(e.g., nanopaper, aerogel) in a high-humidity environment. Thus, this review aims to summarize
recent advances in the hydrophobic modification of nanocellulose, mainly in three aspects:
physical adsorption, surface chemical modification (e.g., silylation, alkanoylation, esterification),
and polymer graft copolymerization. In addition, the current limitations and future prospects of hydrophobic
modification of nanocellulose are proposed.
Collapse
Affiliation(s)
- Lin Sun
- Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Xiaoyi Zhang
- Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Huayu Liu
- Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Kun Liu
- Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Haishun Du
- Department of Chemical Engineering, Auburn University, Auburn, AL 36849, United States
| | - Amit Kumar
- School of Chemistry, Shoolini University, Solan 173212, Himachal Pradesh, India
| | - Gaurav Sharma
- School of Chemistry, Shoolini University, Solan 173212, Himachal Pradesh, India
| | - Chuanling Si
- Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science and Technology, Tianjin 300457, China
| |
Collapse
|
12
|
Carpita NC, McCann MC. Redesigning plant cell walls for the biomass-based bioeconomy. J Biol Chem 2020; 295:15144-15157. [PMID: 32868456 PMCID: PMC7606688 DOI: 10.1074/jbc.rev120.014561] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 08/30/2020] [Indexed: 01/28/2023] Open
Abstract
Lignocellulosic biomass-the lignin, cellulose, and hemicellulose that comprise major components of the plant cell well-is a sustainable resource that could be utilized in the United States to displace oil consumption from heavy vehicles, planes, and marine-going vessels and commodity chemicals. Biomass-derived sugars can also be supplied for microbial fermentative processing to fuels and chemicals or chemically deoxygenated to hydrocarbons. However, the economic value of biomass might be amplified by diversifying the range of target products that are synthesized in living plants. Genetic engineering of lignocellulosic biomass has previously focused on changing lignin content or composition to overcome recalcitrance, the intrinsic resistance of cell walls to deconstruction. New capabilities to remove lignin catalytically without denaturing the carbohydrate moiety have enabled the concept of the "lignin-first" biorefinery that includes high-value aromatic products. The structural complexity of plant cell-wall components also provides substrates for polymeric and functionalized target products, such as thermosets, thermoplastics, composites, cellulose nanocrystals, and nanofibers. With recent advances in the design of synthetic pathways, lignocellulosic biomass can be regarded as a substrate at various length scales for liquid hydrocarbon fuels, chemicals, and materials. In this review, we describe the architectures of plant cell walls and recent progress in overcoming recalcitrance and illustrate the potential for natural or engineered biomass to be used in the emerging bioeconomy.
Collapse
Affiliation(s)
- Nicholas C Carpita
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, Indiana, USA; Department of Biological Sciences, Purdue University, West Lafayette, Indiana, USA
| | - Maureen C McCann
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana, USA; Center for Plant Biology, Purdue University, West Lafayette, Indiana, USA.
| |
Collapse
|
13
|
Effect of laminin, polylysine and cell medium components on the attachment of human hepatocellular carcinoma cells to cellulose nanofibrils analyzed by surface plasmon resonance. J Colloid Interface Sci 2020; 584:310-319. [PMID: 33069029 DOI: 10.1016/j.jcis.2020.09.080] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 08/22/2020] [Accepted: 09/20/2020] [Indexed: 12/26/2022]
Abstract
The development of in vitro cell models that mimic cell behavior in organs and tissues is an approach that may have remarkable impact on drug testing and tissue engineering applications in the future. Plant-based, chemically unmodified cellulose nanofibrils (CNF) hydrogel is a natural, abundant, and biocompatible material that has attracted great attention for biomedical applications, in particular for three-dimensional cell cultures. However, the mechanisms of cell-CNF interactions and factors that affect these interactions are not yet fully understood. In this work, multi-parametric surface plasmon resonance (SPR) was used to study how the adsorption of human hepatocellular carcinoma (HepG2) cells on CNF films is affected by the different proteins and components of the cell medium. Both human recombinant laminin-521 (LN-521, a natural protein of the extracellular matrix) and poly-l-lysine (PLL) adsorbed on CNF films and enhanced the attachment of HepG2 cells. Cell medium components (glucose and amino acids) and serum proteins (fetal bovine serum, FBS) also adsorbed on both bare CNF and on protein-coated CNF substrates. However, the adsorption of FBS hindered the attachment of HepG2 cells to LN-521- and PLL-coated CNF substrates, suggesting that serum proteins blocked the formation of laminin-integrin bonds and decreased favorable PLL-cell electrostatic interactions. This work sheds light on the effect of different factors on cell attachment to CNF, paving the way for the utilization and optimization of CNF-based materials for different tissue engineering applications.
Collapse
|
14
|
Understanding hemicellulose-cellulose interactions in cellulose nanofibril-based composites. J Colloid Interface Sci 2019; 555:104-114. [PMID: 31377636 DOI: 10.1016/j.jcis.2019.07.053] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 07/16/2019] [Accepted: 07/20/2019] [Indexed: 11/21/2022]
Abstract
Plant-based polysaccharides (cellulose and hemicellulose) are a very interesting option for the preparation of sustainable composite materials to replace fossil plastics, but the optimum bonding mechanism between the hard and soft components is still not well known. In this work, composite films made of cellulose nanofibrils (CNF) and various modified and unmodified polysaccharides (galactoglucomannan, GGM; hydrolyzed and oxidized guar gum, GGhydHox; and guar gum grafted with polyethylene glycol, GG-g-PEG) were characterized from the nano- to macroscopic level to better understand how the interactions between the composite components at nano/microscale affect macroscopic mechanical properties, like toughness and strength. All the polysaccharides studied adsorbed well on CNF, although with different adsorption rates, as measured by quartz crystal microbalance with dissipation monitoring (QCM-D). Direct surface and friction force experiments using the colloidal probe technique revealed that the adsorbed polysaccharides provided repulsive forces-well described by a polyelectrolyte brush model - and a moderate reduction in friction between cellulose surfaces, which may prevent CNF aggregates during composite formation and, consequently, enhance the strength of dry films. High affinity for cellulose and moderate hydration were found to be important requirements for polysaccharides to improve the mechanical properties of CNF-based composites in wet conditions. The results of this work provide fundamental information on hemicellulose-cellulose interactions and can support the development of polysaccharide-based materials for different packaging and medical applications.
Collapse
|
15
|
Schlemmer W, Zankel A, Niegelhell K, Hobisch M, Süssenbacher M, Zajki-Zechmeister K, Weissl M, Reishofer D, Plank H, Spirk S. Deposition of Cellulose-Based Thin Films on Flexible Substrates. MATERIALS 2018; 11:ma11122433. [PMID: 30513642 PMCID: PMC6316936 DOI: 10.3390/ma11122433] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Revised: 11/22/2018] [Accepted: 11/28/2018] [Indexed: 01/01/2023]
Abstract
This study investigates flexible (polyamide 6.6 PA-6.6, polyethylene terephthalate PET, Cu, Al, and Ni foils) and, for comparison, stiff substrates (silicon wafers and glass) differing in, for example, in surface free energy and surface roughness and their ability to host cellulose-based thin films. Trimethylsilyl cellulose (TMSC), a hydrophobic acid-labile cellulose derivative, was deposited on these substrates and subjected to spin coating. For all the synthetic polymer and metal substrates, rather homogenous films were obtained, where the thickness and the roughness of the films correlated with the substrate roughness and its surface free energy. A particular case was the TMSC layer on the copper foil, which exhibited superhydrophobicity caused by the microstructuring of the copper substrate. After the investigation of TMSC film formation, the conversion to cellulose using acidic vapors of HCl was attempted. While for the polymer foils, as well as for glass and silicon, rather homogenous and smooth cellulose films were obtained, for the metal foils, there is a competing reaction between the formation of metal chlorides and the generation of cellulose. We observed particles corresponding to the metal chlorides, while we could not detect any cellulose thin films after HCl treatment of the metal foils as proven by cross-section imaging using scanning electron microscopy (SEM).
Collapse
Affiliation(s)
- Werner Schlemmer
- Institute for Paper-, Pulp- and Fibre Technology, Graz University of Technology, Inffeldgasse 23, 8010 Graz, Austria.
| | - Armin Zankel
- Institute of Electron Microscopy and Nanoanalysis (FELMI), Steyrergasse 17, 8010 Graz, Austria.
| | - Katrin Niegelhell
- Institute for Paper-, Pulp- and Fibre Technology, Graz University of Technology, Inffeldgasse 23, 8010 Graz, Austria.
| | - Mathias Hobisch
- Institute for Paper-, Pulp- and Fibre Technology, Graz University of Technology, Inffeldgasse 23, 8010 Graz, Austria.
| | - Michael Süssenbacher
- Institute for Paper-, Pulp- and Fibre Technology, Graz University of Technology, Inffeldgasse 23, 8010 Graz, Austria.
| | | | - Michael Weissl
- Institute for Paper-, Pulp- and Fibre Technology, Graz University of Technology, Inffeldgasse 23, 8010 Graz, Austria.
| | - David Reishofer
- Institute for Paper-, Pulp- and Fibre Technology, Graz University of Technology, Inffeldgasse 23, 8010 Graz, Austria.
| | - Harald Plank
- Institute of Electron Microscopy and Nanoanalysis (FELMI), Steyrergasse 17, 8010 Graz, Austria.
| | - Stefan Spirk
- Institute for Paper-, Pulp- and Fibre Technology, Graz University of Technology, Inffeldgasse 23, 8010 Graz, Austria.
| |
Collapse
|
16
|
A fast method to prepare mechanically strong and water resistant lignocellulosic nanopapers. Carbohydr Polym 2018; 203:148-156. [PMID: 30318198 DOI: 10.1016/j.carbpol.2018.09.037] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 08/31/2018] [Accepted: 09/17/2018] [Indexed: 11/20/2022]
Abstract
This study covers a green method to prepare hybrid lignocellulosic nanopapers by combining wood nanofibres (WNFs) and cellulose nanofibres (CNFs). The WNFs and CNFs behave synergistically to compensate for the drawbacks of each other resulting in enhanced hybrid nanopapers. The draining time of hybrid nanopapers was improved by up to 75% over CNF nanopaper, and the mechanical properties, modulus, strength and elongation, were respectively improved up to 35%, 90% and 180% over WNF nanopaper. Additionally, the water resistance of hybrid nanopapers was considerably improved with a water contact angle of 95°; the neat CNF nanopaper had a contact angle of 52°. The morphology of nanopapers, studied by electron microscopy, indicated that lignin acts as a matrix, which binds the nanofibres together and makes them impervious to external environmental factors, such as high humidity. The reported hybrid nanopapers are 100% bio-based, prepared by a simple and environmentally friendly processing route. Reported hybrid nanopapers can be used in novel applications such as gas barrier membranes and printable electronics.
Collapse
|
17
|
Ansari F, Berglund LA. Toward Semistructural Cellulose Nanocomposites: The Need for Scalable Processing and Interface Tailoring. Biomacromolecules 2018; 19:2341-2350. [PMID: 29577729 DOI: 10.1021/acs.biomac.8b00142] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Cellulose nanocomposites can be considered for semistructural load-bearing applications where modulus and strength requirements exceed 10 GPa and 100 MPa, respectively. Such properties are higher than for most neat polymers but typical for molded short glass fiber composites. The research challenge for polymer matrix biocomposites is to develop processing concepts that allow high cellulose nanofibril (CNF) content, nanostructural control in the form of well-dispersed CNF, the use of suitable polymer matrices, as well as molecular scale interface tailoring to address moisture effects. From a practical point of view, the processing concept needs to be scalable so that large-scale industrial processing is feasible. The vast majority of cellulose nanocomposite studies elaborate on materials with low nanocellulose content. An important reason is the challenge to prevent CNF agglomeration at high CNF content. Research activities are therefore needed on concepts with the potential for rapid processing with controlled nanostructure, including well-dispersed fibrils at high CNF content so that favorable properties are obtained. This perspective discusses processing strategies, agglomeration problems, opportunities, and effects from interface tailoring. Specifically, preformed CNF mats can be used to design nanostructured biocomposites with high CNF content. Because very few composite materials combine functional and structural properties, CNF materials are an exception in this sense. The suggested processing concept could include functional components (inorganic clays, carbon nanotubes, magnetic nanoparticles, among others). In functional three-phase systems, CNF networks are combined with functional components (nanoparticles or fibril coatings) together with a ductile polymer matrix. Such materials can have functional properties (optical, magnetic, electric, etc.) in combination with mechanical performance, and the comparably low cost of nanocellulose may facilitate the use of large nanocomposite structures in industrial applications.
Collapse
Affiliation(s)
- Farhan Ansari
- Fiber and Polymer Technology and Wallenberg Wood Science Centre , KTH Royal Institute of Technology , Stockholm SE-10044 , Sweden
| | - Lars A Berglund
- Fiber and Polymer Technology and Wallenberg Wood Science Centre , KTH Royal Institute of Technology , Stockholm SE-10044 , Sweden
| |
Collapse
|
18
|
Fang D, Deng Z, Jung J, Hu Q, Zhao Y. Mushroom polysaccharides-incorporated cellulose nanofiber films with improved mechanical, moisture barrier, and antioxidant properties. J Appl Polym Sci 2017. [DOI: 10.1002/app.46166] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Donglu Fang
- College of Food Science and Technology; Nanjing Agricultural University; Nanjing Jiangsu 210095 China
| | - Zilong Deng
- Department of Food Science & Technology; Oregon State University; Corvallis Oregon 97331-6602
| | - Jooyeoun Jung
- Department of Food Science & Technology; Oregon State University; Corvallis Oregon 97331-6602
| | - Qiuhui Hu
- College of Food Science and Technology; Nanjing Agricultural University; Nanjing Jiangsu 210095 China
| | - Yanyun Zhao
- Department of Food Science & Technology; Oregon State University; Corvallis Oregon 97331-6602
| |
Collapse
|
19
|
Peresin MS, Kammiovirta K, Heikkinen H, Johansson LS, Vartiainen J, Setälä H, Österberg M, Tammelin T. Understanding the mechanisms of oxygen diffusion through surface functionalized nanocellulose films. Carbohydr Polym 2017; 174:309-317. [PMID: 28821072 DOI: 10.1016/j.carbpol.2017.06.066] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2017] [Revised: 06/05/2017] [Accepted: 06/17/2017] [Indexed: 11/15/2022]
Abstract
A concept for direct surface modification on self-standing films of cellulose nanofibrils (CNF) is demonstrated using an aminosilane group in cellulose compatible solvent (dimethyl acetamide, DMA). The chemically modified structure efficiently prevents the oxygen molecules from interacting with the nanocellulose film in the presence of water molecules. Oxygen permeability values lower than 1mLmmm-2day-1atm-1 were achieved at extremely high levels of relative humidity (RH95%). The aminosilane reaction is compared to conventional hydrophobization reaction using hexamethyldisilazane. The differences with respect to interactions between cellulosic nanofibrils, water and oxygen molecules taking place with aminated and silylated CNF films correlated with the degree of surface substitution, surface hydrophilicity and permeability of the formed layer. The self-condensation reactions taking place on the film surface during aminosilane-mediated bonding were decisive for low oxygen permeability. Experimental evidence on the importance of interfacial processes that hinder the water-cellulose interactions while keeping film's low affinity towards oxygen is demonstrated.
Collapse
Affiliation(s)
- Maria Soledad Peresin
- VTT Technical Research Centre of Finland Ltd., P.O. Box, FI-02044 VTT, Espoo, Finland.
| | - Kari Kammiovirta
- VTT Technical Research Centre of Finland Ltd., P.O. Box, FI-02044 VTT, Espoo, Finland
| | - Harri Heikkinen
- VTT Technical Research Centre of Finland Ltd., P.O. Box, FI-02044 VTT, Espoo, Finland
| | - Leena-Sisko Johansson
- Aalto University, School of Chemical Engineering, Department of Bioproducts and Biosystems, P. O. Box 16300, FI- 00076 Aalto, Espoo, Finland
| | - Jari Vartiainen
- VTT Technical Research Centre of Finland Ltd., P.O. Box, FI-02044 VTT, Espoo, Finland
| | - Harri Setälä
- VTT Technical Research Centre of Finland Ltd., P.O. Box, FI-02044 VTT, Espoo, Finland
| | - Monika Österberg
- Aalto University, School of Chemical Engineering, Department of Bioproducts and Biosystems, P. O. Box 16300, FI- 00076 Aalto, Espoo, Finland
| | - Tekla Tammelin
- VTT Technical Research Centre of Finland Ltd., P.O. Box, FI-02044 VTT, Espoo, Finland.
| |
Collapse
|
20
|
Hatton FL, Engström J, Forsling J, Malmström E, Carlmark A. Biomimetic adsorption of zwitterionic–xyloglucan block copolymers to CNF: towards tailored super-absorbing cellulose materials. RSC Adv 2017. [DOI: 10.1039/c6ra28236a] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Block-copolymer of xyloglucan and zwitterionic PSBMA prepared by RAFT as a biomimetic adsorbent for cellulose nanofibrils to create super-adsorbing gels.
Collapse
Affiliation(s)
- F. L. Hatton
- KTH Royal Institute of Technology
- School of Chemical Science and Engineering
- Department of Fibre and Polymer Technology
- SE-100 44 Stockholm
- Sweden
| | - J. Engström
- KTH Royal Institute of Technology
- School of Chemical Science and Engineering
- Department of Fibre and Polymer Technology
- SE-100 44 Stockholm
- Sweden
| | - J. Forsling
- KTH Royal Institute of Technology
- School of Chemical Science and Engineering
- Department of Fibre and Polymer Technology
- SE-100 44 Stockholm
- Sweden
| | - E. Malmström
- KTH Royal Institute of Technology
- School of Chemical Science and Engineering
- Department of Fibre and Polymer Technology
- SE-100 44 Stockholm
- Sweden
| | - A. Carlmark
- KTH Royal Institute of Technology
- School of Chemical Science and Engineering
- Department of Fibre and Polymer Technology
- SE-100 44 Stockholm
- Sweden
| |
Collapse
|
21
|
Valle-Delgado JJ, Johansson LS, Österberg M. Bioinspired lubricating films of cellulose nanofibrils and hyaluronic acid. Colloids Surf B Biointerfaces 2016; 138:86-93. [DOI: 10.1016/j.colsurfb.2015.11.047] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Revised: 11/24/2015] [Accepted: 11/25/2015] [Indexed: 12/28/2022]
|
22
|
Orelma H, Vuoriluoto M, Johansson LS, Campbell JM, Filpponen I, Biesalski M, Rojas OJ. Preparation of photoreactive nanocellulosic materials via benzophenone grafting. RSC Adv 2016. [DOI: 10.1039/c6ra15015b] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A method for preparing photo-crosslinkable cellulose nanofibrils (CNF) was investigated.
Collapse
Affiliation(s)
- Hannes Orelma
- Biobased Colloids and Materials (BiCMat)
- Aalto University
- School of Chemical Technology
- Department of Forest Products Technology
- Espoo
| | - Maija Vuoriluoto
- Biobased Colloids and Materials (BiCMat)
- Aalto University
- School of Chemical Technology
- Department of Forest Products Technology
- Espoo
| | - Leena-Sisko Johansson
- Biobased Colloids and Materials (BiCMat)
- Aalto University
- School of Chemical Technology
- Department of Forest Products Technology
- Espoo
| | - Joseph M. Campbell
- Biobased Colloids and Materials (BiCMat)
- Aalto University
- School of Chemical Technology
- Department of Forest Products Technology
- Espoo
| | - Ilari Filpponen
- Biobased Colloids and Materials (BiCMat)
- Aalto University
- School of Chemical Technology
- Department of Forest Products Technology
- Espoo
| | - Markus Biesalski
- Laboratory of Macromolecular Chemistry and Paper Chemistry
- Department of Chemistry
- Technische Universitat Darmstadt
- 64287 Darmstadt
- Germany
| | - Orlando J. Rojas
- Biobased Colloids and Materials (BiCMat)
- Aalto University
- School of Chemical Technology
- Department of Forest Products Technology
- Espoo
| |
Collapse
|
23
|
Prakobna K, Terenzi C, Zhou Q, Furó I, Berglund LA. Core–shell cellulose nanofibers for biocomposites – Nanostructural effects in hydrated state. Carbohydr Polym 2015; 125:92-102. [DOI: 10.1016/j.carbpol.2015.02.059] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Revised: 02/16/2015] [Accepted: 02/18/2015] [Indexed: 12/01/2022]
|
24
|
Prakobna K, Galland S, Berglund LA. High-Performance and Moisture-Stable Cellulose–Starch Nanocomposites Based on Bioinspired Core–Shell Nanofibers. Biomacromolecules 2015; 16:904-12. [DOI: 10.1021/bm5018194] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Kasinee Prakobna
- Department of Fibre and Polymer Technology and ‡Wallenberg Wood
Science Centre, KTH Royal Institute of Technology, SE-10044 Stockholm, Sweden
| | - Sylvain Galland
- Department of Fibre and Polymer Technology and ‡Wallenberg Wood
Science Centre, KTH Royal Institute of Technology, SE-10044 Stockholm, Sweden
| | - Lars A. Berglund
- Department of Fibre and Polymer Technology and ‡Wallenberg Wood
Science Centre, KTH Royal Institute of Technology, SE-10044 Stockholm, Sweden
| |
Collapse
|