1
|
Al Mehrate J, Shaban S, Henni A. A Review of Sulfate Removal from Water Using Polymeric Membranes. MEMBRANES 2025; 15:17. [PMID: 39852258 PMCID: PMC11766897 DOI: 10.3390/membranes15010017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 12/24/2024] [Accepted: 01/03/2025] [Indexed: 01/26/2025]
Abstract
Access to clean and reliable water has become a critical concern due to the global water crisis. High sulfate levels in drinking water raise health concerns for humans and animals and can cause serious corrosion in industrial systems. Sulfated waters represent a major challenge on the Canadian prairies, leading to many cattle deaths. While reverse osmosis (RO) membranes effectively remove sulfates, they are costly due to high-pressure requirements. Nanofiltration (NF) membranes present a more affordable alternative, outperforming traditional methods like adsorption, desalination, and ion exchange. Developing low-pressure ultrafiltration (UF) and microfiltration (MF) membranes could also reduce costs. This review explores advancements in polymeric materials and membrane technology to enhance sulfate removal, focusing on methods used to reduce fouling and improve permeate flux. Techniques discussed include phase inversion (PI), thin-film composite (TFC), and thin-film nanocomposite (TFN) membranes. The review also highlights recent fabrication methods for pristine and nanomaterial-enhanced membranes, acknowledging both benefits and limitations. Continued innovations in polymer-based membranes are expected to drive further performance and cost-efficiency improvements. This review found that studies in the literature dealt mainly with sulfate concentrations below 2000 mg/L, indicating a need to address higher concentrations in future studies.
Collapse
Affiliation(s)
| | | | - Amr Henni
- Industrial Systems Engineering, Produced Water Treatment Laboratory, Faculty of Engineering and Applied Science, University of Regina, Regina, SK S4S 0A2, Canada; (J.A.M.); (S.S.)
| |
Collapse
|
2
|
Husain T, Shoaib MH, Ahmed FR, Yousuf RI, Siddiqui F, Saleem MT, Farooqi S, Jabeen S. Halloysite nanotubes-cellulose ether based biocomposite matrix, a potential sustained release system for BCS class I drug verapamil hydrochloride: Compression characterization, in-vitro release kinetics, and in-vivo mechanistic physiologically based pharmacokinetic modeling studies. Int J Biol Macromol 2023; 251:126409. [PMID: 37598820 DOI: 10.1016/j.ijbiomac.2023.126409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 08/14/2023] [Accepted: 08/17/2023] [Indexed: 08/22/2023]
Abstract
This study investigated the ability of natural nanotubular clay mineral (Halloysite) and cellulose ether based biocomposite matrix as a controlled release agent for Verapamil HCl (BCS Class-I). Drug-loaded halloysite was prepared and tablet formulations were designed by varying amount of hydroxy propyl methyl cellulose (HPMC K4M). Physical characterization was carried out using SEM, FTIR, and DSC. Tabletability profiles were evaluated using USP1062 guidelines. Drug release kinetics were studied, and physiologically based pharmacokinetic (PBPK) modeling was performed. Compressed tablets possess satisfactory yield pressure of 625 MPa with adequate hardness and disintegration within 30 min. The initial release of the drug was due to surface drug on tablets, while the prolonged release at later time points (around 80 % drug release at 12 h) were due to halloysite loading. The FTIR spectra exhibited electrostatic attraction between the positively charged drug and the negatively charged Si-O-Si functional group of halloysite, while the thermogram showed Verapamil HCl melting point at ~146 °C with enthalpy change of -126.82 J/g. PBPK modeling exhibited PK parameters of optimized matrix formulation (VER-HNT3%) comparable to in vivo data. The study effectively demonstrated the potential of prepared biocomposite matrix as a commercially viable oral release modifying agent for highly soluble drugs.
Collapse
Affiliation(s)
- Tazeen Husain
- Department of Pharmaceutics, Faculty of Pharmacy and Pharmaceutical Sciences, University of Karachi, Karachi 75270, Pakistan.
| | - Muhammad Harris Shoaib
- Department of Pharmaceutics, Faculty of Pharmacy and Pharmaceutical Sciences, University of Karachi, Karachi 75270, Pakistan.
| | - Farrukh Rafiq Ahmed
- Department of Pharmaceutics, Faculty of Pharmacy and Pharmaceutical Sciences, University of Karachi, Karachi 75270, Pakistan.
| | - Rabia Ismail Yousuf
- Department of Pharmaceutics, Faculty of Pharmacy and Pharmaceutical Sciences, University of Karachi, Karachi 75270, Pakistan
| | - Fahad Siddiqui
- Department of Pharmaceutics & Bioavailability and Bioequivalence Research Facility, Faculty of Pharmacy and Pharmaceutical Sciences, University of Karachi, Karachi 75270, Pakistan.
| | - Muhammad Talha Saleem
- Department of Pharmaceutics, Faculty of Pharmacy and Pharmaceutical Sciences, University of Karachi, Karachi 75270, Pakistan
| | - Sadaf Farooqi
- Department of Pharmaceutics, Faculty of Pharmacy and Pharmaceutical Sciences, University of Karachi, Karachi 75270, Pakistan
| | - Sabahat Jabeen
- Department of Pharmaceutics, Faculty of Pharmacy and Pharmaceutical Sciences, University of Karachi, Karachi 75270, Pakistan
| |
Collapse
|
3
|
Atashgar A, Emadzadeh D, Akbari S, Kruczek B. Incorporation of Functionalized Halloysite Nanotubes (HNTs) into Thin-Film Nanocomposite (TFN) Nanofiltration Membranes for Water Softening. MEMBRANES 2023; 13:245. [PMID: 36837748 PMCID: PMC9958727 DOI: 10.3390/membranes13020245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 02/09/2023] [Accepted: 02/16/2023] [Indexed: 06/18/2023]
Abstract
Incorporating nanoparticles (NPs) into the selective layer of thin-film composite (TFC) membranes is a common approach to improve the performance of the resulting thin-film nanocomposite (TFN) membranes. The main challenge in this approach is the leaching out of NPs during membrane operation. Halloysite nanotubes (HNTs) modified with the first generation of poly(amidoamine) (PAMAM) dendrimers (G1) have shown excellent stability in the PA layer of TFN reverse-osmosis (RO) membranes. This study explores, for the first time, using these NPs to improve the properties of TFN nanofiltration (NF) membranes. Membrane performance was evaluated in a cross-flow nanofiltration (NF) system using 3000 ppm aqueous solutions of MgCl2, Na2SO4 and NaCl, respectively, as feed at 10 bar and ambient temperature. All membranes showed high rejection of Na2SO4 (around 97-98%) and low NaCl rejection, with the corresponding water fluxes greater than 100 L m-2 h-1. The rejection of MgCl2 (ranging from 82 to 90%) was less than that for Na2SO4. However, our values are much greater than those reported in the literature for other TFN membranes. The remarkable rejection of MgCl2 is attributed to positively charged HNT-G1 nanoparticles incorporated in the selective polyamide (PA) layer of the TFN membranes.
Collapse
Affiliation(s)
- Amirsajad Atashgar
- Department of Chemical and Biological Engineering, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| | - Daryoush Emadzadeh
- Department of Chemical and Biological Engineering, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| | - Somaye Akbari
- Textile Engineering Department, Amirkabir University of Technology, 424 Hafez Ave., Tehran P.O. Box 15875-4413, Iran
| | - Boguslaw Kruczek
- Department of Chemical and Biological Engineering, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| |
Collapse
|
4
|
Pandey G, Tharmavaram M, Phadke G, Rawtani D, Ranjan M, Sooraj K. Silanized halloysite nanotubes as ‘nano-platform’ for the complexation and removal of Fe (II) and Fe (III) ions from aqueous environment. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121141] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
5
|
Vatanpour V, Jouyandeh M, Mousavi Khadem SS, Paziresh S, Dehqan A, Ganjali MR, Moradi H, Mirsadeghi S, Badiei A, Munir MT, Mohaddespour A, Rabiee N, Habibzadeh S, Mashhadzadeh AH, Nouranian S, Formela K, Saeb MR. Highly antifouling polymer-nanoparticle-nanoparticle/polymer hybrid membranes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 810:152228. [PMID: 34890675 DOI: 10.1016/j.scitotenv.2021.152228] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 11/12/2021] [Accepted: 12/03/2021] [Indexed: 06/13/2023]
Abstract
We introduce highly antifouling Polymer-Nanoparticle-Nanoparticle/Polymer (PNNP) hybrid membranes as multi-functional materials for versatile purification of wastewater. Nitrogen-rich polyethylenimine (PEI)-functionalized halloysite nanotube (HNT-SiO2-PEI) nanoparticles were developed and embedded in polyvinyl chloride (PVC) membranes for protein and dye filtration. Bulk and surface characteristics of the resulting HNT-SiO2-PEI nanocomposites were determined using Fourier-transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM), and thermogravimetric analysis (TGA). Moreover, microstructure and physicochemical properties of HNT-SiO2-PEI/PVC membranes were investigated by scanning electron microscopy (SEM), atomic force microscopy (AFM), and attenuated total reflectance (ATR)-FTIR. Results of these analyses indicated that the overall porosity and mean pore size of nanocomposite membranes were enhanced, but the surface roughness was reduced. Additionally, surface hydrophilicity and flexibility of the original PVC membranes were significantly improved by incorporating HNT-SiO2-PEI nanoparticles. Based on pure water permeability and bovine serum albumin (BSA)/dye rejection tests, the highest nanoparticle-embedded membrane performance was observed at 2 weight percent (wt%) of HNT-SiO2-PEI. The nanocomposite incorporation in the PVC membranes further improved its antifouling performance and flux recovery ratio (96.8%). Notably, dye separation performance increased up to 99.97%. Overall, hydrophobic PVC membranes were successfully modified by incorporating HNT-SiO2-PEI nanomaterial and better-quality wastewater treatment performance was obtained.
Collapse
Affiliation(s)
- Vahid Vatanpour
- Department of Applied Chemistry, Faculty of Chemistry, Kharazmi University, Tehran 15719-14911, Iran.
| | - Maryam Jouyandeh
- Center of Excellence in Electrochemistry, School of Chemistry, University of Tehran, Tehran 14176-14411, Iran
| | | | - Shadi Paziresh
- Department of Applied Chemistry, Faculty of Chemistry, Kharazmi University, Tehran 15719-14911, Iran
| | - Ahmad Dehqan
- Department of Applied Chemistry, Faculty of Chemistry, Kharazmi University, Tehran 15719-14911, Iran
| | - Mohammad Reza Ganjali
- Center of Excellence in Electrochemistry, School of Chemistry, University of Tehran, Tehran 14176-14411, Iran; School of Resources and Environment, University of Electronic Science and Technology of China, Chengdu 611731, China; Biosensor Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran 14117-13137, Iran
| | - Hiresh Moradi
- Research and Development Unit, Ghaffari Chemical Industries Corporation, Tehran, Iran
| | - Somayeh Mirsadeghi
- Endocrinology and Metabolism Center, Endocrinology and Metabolism Clinical Medical Institute, Tehran University of Medical Science, Tehran 14117-13137, Iran
| | - Alireza Badiei
- School of Chemistry, University of Tehran, Tehran 14176-14411, Iran
| | - Muhammad Tajammal Munir
- College of Engineering and Technology, American University of the Middle East, Egaila, Kuwait
| | - Ahmad Mohaddespour
- College of Engineering and Technology, American University of the Middle East, Egaila, Kuwait
| | - Navid Rabiee
- Department of Physics, Sharif University of Technology, Tehran 11155-9161, Iran
| | - Sajjad Habibzadeh
- Department of Chemical Engineering, Amirkabir University of Technology (Tehran Polytechnic), Tehran 15916-34311, Iran
| | - Amin Hamed Mashhadzadeh
- Department of Mechanical and Aerospace Engineering, School of Engineering and Digital Sciences, Nazarbayev University, Nur-Sultan 010000, Kazakhstan
| | - Sasan Nouranian
- Department of Chemical Engineering, University of Mississippi, MS 38677, United States
| | - Krzysztof Formela
- Department of Polymer Technology, Gdańsk University of Technology, G. Narutowicza 11/12, 80-233 Gdańsk, Poland
| | | |
Collapse
|
6
|
Ahmadi SMA, Mohammadi T, Azizi N. Superior Pebax‐1657/amine‐modified halloysite nanotubes mixed‐matrix membranes to improve the
CO
2
/
CH
4
separation efficiency. J Appl Polym Sci 2021. [DOI: 10.1002/app.50749] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Seyed Mohammad Ali Ahmadi
- Center of Excellence for Membrane Science and Technology, School of Chemical, Petroleum and Gas Engineering Iran University of Science and Technology (IUST) Tehran Iran
| | - Toraj Mohammadi
- Center of Excellence for Membrane Science and Technology, School of Chemical, Petroleum and Gas Engineering Iran University of Science and Technology (IUST) Tehran Iran
| | - Navid Azizi
- Center of Excellence for Membrane Science and Technology, School of Chemical, Petroleum and Gas Engineering Iran University of Science and Technology (IUST) Tehran Iran
| |
Collapse
|
7
|
Zhou L, Xiao G, He Y, Wu J, Shi H, Zhong F, Yin X, Li Z, Chen J. Multifunctional filtration membrane with anti-viscous-oils-fouling capacity and selective dyes adsorption ability for complex wastewater remediation. JOURNAL OF HAZARDOUS MATERIALS 2021; 413:125379. [PMID: 33930952 DOI: 10.1016/j.jhazmat.2021.125379] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 01/29/2021] [Accepted: 02/06/2021] [Indexed: 06/12/2023]
Abstract
Multifunctional filtration membranes (MFMs), which can both effectively separate oil and selectively remove dyes from polluted aquatic system with robust anti-viscous-oil-fouling capacity, strong chemical/physical resistance, and long cycled stability, are highly required but still a challenge to be realized. Herein, a simple route has been demonstrated to address this challenge aforementioned by decorating both halloysite nanotubes (HNTs) and zwitterionic poly (sulfobetaine methyl methacrylate) (PSBMA) on the microporous polyvinylidene fluoride (PVDF) membrane surface via modified polydopamine (PDA) coating route. The as-prepared membrane exhibits super-hydrophilic/underwater super-oleophobic performance and high water permeation flux (32529 ± 278 L m-2 h-1 at 0.85 bar) to purify the diverse viscous oil-in-water emulsions from oily wastewater accompanying with good cycled stability (the recovery rate of permeate flux is close to 100% after 5 cycles). Moreover, the as-prepared MFM possesses not only strong chemical resistance under wide range of pH value (from 1 to 12) and high saline (NaCl: 10 wt%) environment, but also physical resistance against ultrasound bath for 30 min. Given the presence of HNTs, PDA, and PSBMA, our MFM shows enough active sites to adsorb the soluble dyes and metallic ions in wastewater. These excellent properties endow our MFM with great potential for the remediation of complex wastewater.
Collapse
Affiliation(s)
- Liang Zhou
- State Key Laboratory of Oil & Gas Reservoir Geology and Exploitation, Southwest Petroleum University, Chengdu, Sichuan 610500, China; College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu, Sichuan 610500, China
| | - Guoqing Xiao
- College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu, Sichuan 610500, China.
| | - Yi He
- State Key Laboratory of Oil & Gas Reservoir Geology and Exploitation, Southwest Petroleum University, Chengdu, Sichuan 610500, China; College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu, Sichuan 610500, China.
| | - Jingcheng Wu
- State Key Laboratory of Oil & Gas Reservoir Geology and Exploitation, Southwest Petroleum University, Chengdu, Sichuan 610500, China; College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu, Sichuan 610500, China
| | - Heng Shi
- State Key Laboratory of Oil & Gas Reservoir Geology and Exploitation, Southwest Petroleum University, Chengdu, Sichuan 610500, China; College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu, Sichuan 610500, China
| | - Fei Zhong
- State Key Laboratory of Oil & Gas Reservoir Geology and Exploitation, Southwest Petroleum University, Chengdu, Sichuan 610500, China; College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu, Sichuan 610500, China
| | - Xiangying Yin
- State Key Laboratory of Oil & Gas Reservoir Geology and Exploitation, Southwest Petroleum University, Chengdu, Sichuan 610500, China; College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu, Sichuan 610500, China
| | - Zhenyu Li
- School of Materials Science and Engineering, Southwest Petroleum University, Chengdu 610500, China; Chengdu Evermaterials Co., Ltd, Chengdu, Sichuan 610500, China
| | - Jingyu Chen
- Chengdu Evermaterials Co., Ltd, Chengdu, Sichuan 610500, China.
| |
Collapse
|
8
|
Hirai S, Phanthong P, Wakabayashi T, Yao S. Fabrication of Porous Polyimide Membrane with Through-Hole via Multiple Solvent Displacement Method. ChemistryOpen 2021; 10:352-359. [PMID: 33605559 PMCID: PMC7953477 DOI: 10.1002/open.202000299] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 01/19/2021] [Indexed: 11/24/2022] Open
Abstract
Porous polyimide (PI) membranes are widely used in separation processes because of their excellent thermal and mechanical properties. However, the applications of porous PI membranes are limited in the nanofiltration range. In this study, porous PI membranes with through-holes have been successfully fabricated by the novel multiple solvent displacement method. This new method requires only a porous polyamic acid (PAA) membrane, which was prepared by immersing PAA film in N-methylpyrrolidoneebk; (NMP) prior to immersing it in a mixed solvent consisting of NMP and a poor solvent, followed by immersion only in poor solvent. The pore size, morphology, porosity, and air permeability demonstrated that the fabricated PI membranes had a uniformly porous structure with through-holes over their surface. This new method enabled control of pore size (3-11 μm) by selecting a suitable poor solvent. This multiple solvent displacement method is highly versatile and promising for the fabrication of porous PI membranes.
Collapse
Affiliation(s)
- Sho Hirai
- Research Institute for the Creation of Functional and Structural MaterialsFukuoka University8-19-1 NanakumaJonan-kuFukuoka814-0180Japan
| | - Patchiya Phanthong
- Research Institute for the Creation of Functional and Structural MaterialsFukuoka University8-19-1 NanakumaJonan-kuFukuoka814-0180Japan
| | - Tsubasa Wakabayashi
- Graduate School of Chemical EngineeringFukuoka University8-19-1 NanakumaJonan-kuFukuoka814-0180Japan
| | - Shigeru Yao
- Research Institute for the Creation of Functional and Structural MaterialsFukuoka University8-19-1 NanakumaJonan-kuFukuoka814-0180Japan
- Graduate School of Chemical EngineeringFukuoka University8-19-1 NanakumaJonan-kuFukuoka814-0180Japan
| |
Collapse
|
9
|
Keskin B, Ağtaş M, Ormancı-Acar T, Türken T, İmer DY, Ünal S, Menceloğlu YZ, Uçar-Demir T, Koyuncu İ. Halloysite nanotube blended nanocomposite ultrafiltration membranes for reactive dye removal. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2021; 83:271-283. [PMID: 33504693 DOI: 10.2166/wst.2020.573] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
In this paper, ultrafiltration (UF) flat sheet membranes were manufactured by introducing two diverse halloysite nanotubes (HNT) size (5 μm and 63 μm) and five different (0, 0.63, 1.88, 3.13, 6.30 wt %) ratios by wet phase inversion. Some characterization methods which are contact angle, zeta potential, viscosity, scanning electron microscopy (SEM) and Young's modulus measurements were used for ultrafiltration membranes. Synthetic dye waters which were Setazol Red and Reactive Orange were used for filtration performance tests. These dye solutions were filtered in three different pH conditions and three different temperature conditions for pH and temperature resistance to understand how flux and removal efficiency change. The best water permeability results were obtained as 190.5 LMH and 192 LMH, for halloysite nanotubes (HNT) sizes of 5 μm and 63 μm respectively. The best water and dye performance of UF membrane contains 1.88% w/w ratio of HNT, which showed increased water flux and dye flux of membranes according to different HNT concentrations including ultrafiltration membranes.
Collapse
Affiliation(s)
- Başak Keskin
- Environmental Engineering Department, Istanbul Technical University, Maslak, 34469, Istanbul, Turkey E-mail: ; National Research Center on Membrane Technologies, Istanbul Technical University, Maslak, 34469, Istanbul, Turkey
| | - Meltem Ağtaş
- Environmental Engineering Department, Istanbul Technical University, Maslak, 34469, Istanbul, Turkey E-mail: ; National Research Center on Membrane Technologies, Istanbul Technical University, Maslak, 34469, Istanbul, Turkey
| | - Türkan Ormancı-Acar
- Faculty of Engineering, Department of Environmental Engineering, Istanbul University-Cerrahpaşa, İstanbul, Turkey
| | - Türker Türken
- National Research Center on Membrane Technologies, Istanbul Technical University, Maslak, 34469, Istanbul, Turkey
| | - Derya Y İmer
- Environmental Engineering Department, Istanbul Technical University, Maslak, 34469, Istanbul, Turkey E-mail:
| | - Serkan Ünal
- Sabanci University Nanotechnology Research and Application Center, 34956, Tuzla, Turkey
| | - Yusuf Z Menceloğlu
- Sabanci University Nanotechnology Research and Application Center, 34956, Tuzla, Turkey
| | | | - İsmail Koyuncu
- Environmental Engineering Department, Istanbul Technical University, Maslak, 34469, Istanbul, Turkey E-mail: ; National Research Center on Membrane Technologies, Istanbul Technical University, Maslak, 34469, Istanbul, Turkey
| |
Collapse
|
10
|
Kamal N, Kochkodan V, Zekri A, Ahzi S. Polysulfone Membranes Embedded with Halloysites Nanotubes: Preparation and Properties. MEMBRANES 2019; 10:membranes10010002. [PMID: 31881742 PMCID: PMC7023047 DOI: 10.3390/membranes10010002] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 12/21/2019] [Accepted: 12/23/2019] [Indexed: 01/31/2023]
Abstract
In the present study, nanocomposite ultrafiltration membranes were prepared by incorporating nanotubes clay halloysite (HNTs) into polysulfone (PSF) and PSF/polyvinylpyrrolidone (PVP) dope solutions followed by membrane casting using phase inversion method. Characterization of HNTs were conducted using scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy-dispersive X-ray spectroscopy (EDS), X-ray diffraction (XRD), and thermogravimetric (TGA) analysis. The pore structure, morphology, hydrophilicity and mechanical properties of the composite membranes were characterized by using SEM, water contact angle (WCA) measurements, and dynamic mechanical analysis. It was shown that the incorporation of HNTs enhanced hydrophilicity and mechanical properties of the prepared PSF membranes. Compared to the pristine PSF membrane, results show that the total porosity and pore size of PSF/HNTs composite membranes increased when HNTs loadings were more than 0.5 wt % and 1.0 wt %, respectively. These findings correlate well with changes in water flux of the prepared membranes. It was observed that HNTs were homogenously dispersed within the PSF membrane matrix at HNTs content of 0.1 to 0.5 wt % and the PSF/HNTs membranes prepared by incorporating 0.2 wt % HNTs loading possess the optimal mechanical properties in terms of elastic modulus and yield stress. In the case of the PSF/PVP matrix, the optimal mechanical properties were obtained with 0.3 wt % of HNTs because PVP enhances the HNTs distribution. Results of bovine serum albumin (BSA) filtration tests indicated that PSF/0.2 wt % HNTs membrane exhibited high BSA rejection and notable anti-fouling properties.
Collapse
Affiliation(s)
- Nagla Kamal
- College of Science and Engineering, Hamad Bin Khalifa University (HBKU), P.O. Box 34110 Doha, Qatar;
- Qatar Environment and Energy Research Institute (QEERI), Hamad Bin Khalifa University (HBKU), P.O. Box 34110 Doha, Qatar;
- Correspondence: (N.K.); (V.K.)
| | - Viktor Kochkodan
- Qatar Environment and Energy Research Institute (QEERI), Hamad Bin Khalifa University (HBKU), P.O. Box 34110 Doha, Qatar;
- Correspondence: (N.K.); (V.K.)
| | - Atef Zekri
- Qatar Environment and Energy Research Institute (QEERI), Hamad Bin Khalifa University (HBKU), P.O. Box 34110 Doha, Qatar;
| | - Said Ahzi
- College of Science and Engineering, Hamad Bin Khalifa University (HBKU), P.O. Box 34110 Doha, Qatar;
- Qatar Environment and Energy Research Institute (QEERI), Hamad Bin Khalifa University (HBKU), P.O. Box 34110 Doha, Qatar;
| |
Collapse
|
11
|
Zhou L, He Y, Shi H, Xiao G, Wang S, Li Z, Chen J. One-pot route to synthesize HNTs@PVDF membrane for rapid and effective separation of emulsion-oil and dyes from waste water. JOURNAL OF HAZARDOUS MATERIALS 2019; 380:120865. [PMID: 31330390 DOI: 10.1016/j.jhazmat.2019.120865] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 07/01/2019] [Accepted: 07/03/2019] [Indexed: 06/10/2023]
Abstract
Water-purification membranes with high water flux, excellent recycling ability, good anti-fouling property, wide range for different oil/water emulsions separation, and strong water-soluble dyes removal ability are highly desirable for water purification but still a challenge to be realized. In this work, we show a simple method to address this challenge, in which halloysite nanotubes (HNTs) have been decorated on the poly (vinylidene fluoride) (PVDF) membrane surface through one-pot method via the aid of KH550 and dopamine. The HNTs@PVDF composite membrane exhibits superhydrophilic and under-water superoleophobic performance. In addition, our membrane can separate wide oil/water emulsions (including surfactant-stabilized and surfactant-free emulsions) from wastewater with high efficiency (>99.65%), outstanding recycle ability with good flux recovery rate (FRR > 95%) and good anti-fouling performance (the underwater oil contact angle (OCA) is 155.8 ± 1.8° with low oil adhesion) and high water flux (7994 ± 150 L m-2 h-1). Interestingly, our membrane also removes different water-soluble dyes (e.g., Congo red, methylene blue, and rhodamine B) from waste water by simply filtering. Those outstanding properties make our membrane hold great potential applications in real-world water purification and environmental protection.
Collapse
Affiliation(s)
- Liang Zhou
- State Key Laboratory of Oil & Gas Reservoir Geology and Exploitation, Southwest Petroleum University, Chengdu, Sichuan, 610500, China; College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu, Sichuan, 610500, China
| | - Yi He
- State Key Laboratory of Oil & Gas Reservoir Geology and Exploitation, Southwest Petroleum University, Chengdu, Sichuan, 610500, China; College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu, Sichuan, 610500, China.
| | - Heng Shi
- State Key Laboratory of Oil & Gas Reservoir Geology and Exploitation, Southwest Petroleum University, Chengdu, Sichuan, 610500, China; College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu, Sichuan, 610500, China
| | - Guoqing Xiao
- College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu, Sichuan, 610500, China
| | - Shunhui Wang
- College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu, Sichuan, 610500, China
| | - Zhenyu Li
- School of Materials Science and Engineering, Southwest Petroleum University, Chengdu, 610500, China
| | - Jingyu Chen
- Institute for Frontier Materials, Deakin University, Geelong, Victoria, Australia.
| |
Collapse
|
12
|
Mozia S, Grylewicz A, Zgrzebnicki M, Darowna D, Czyżewski A. Investigations on the Properties and Performance of Mixed-Matrix Polyethersulfone Membranes Modified with Halloysite Nanotubes. Polymers (Basel) 2019; 11:polym11040671. [PMID: 30979086 PMCID: PMC6523960 DOI: 10.3390/polym11040671] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 04/04/2019] [Accepted: 04/09/2019] [Indexed: 12/03/2022] Open
Abstract
Ultrafiltration (UF) polyethersulfone (PES) membranes were prepared by wet phase inversion method. Commercial halloysite nanotubes (HNTs) in the amount of 0.5–4 wt % vs PES (15 wt %) were introduced into the casting solution containing the polymer and N,N-dimethylformamide as a solvent. The morphology, physicochemical properties and performance of the membranes were characterized by scanning electron microscopy (SEM) and atomic force microscopy (AFM), zeta potential, porosity and contact angle analyses, as well as permeability measurements. Moreover, the antifouling properties of the membranes were evaluated during UF of a model solution of bovine serum albumin (BSA). The research revealed a positive influence of modification with HNTs on hydrophilicity, water permeability and antifouling properties of the PES membranes. The most significant improvement of permeability was obtained in case of the membrane containing 2 wt % of HNTs, whereas the highest fouling resistance was observed for 0.5 wt % HNTs content. It was found that a good dispersion of HNTs can be obtained only at loadings below 2 wt %. Based on the results a relation between severity of membrane fouling and surface roughness was proved. Moreover, an increase of the roughness of the modified membranes was found to be accompanied by an increase of isoelectric point values.
Collapse
Affiliation(s)
| | - Amanda Grylewicz
- Faculty of Chemical Technology and Engineering, Institute of Inorganic Chemical Technology and Environment Engineering, West Pomeranian University of Technology, Pułaskiego 10, 70-322 Szczecin, Poland.
| | | | | | | |
Collapse
|
13
|
Esfahani MR, Aktij SA, Dabaghian Z, Firouzjaei MD, Rahimpour A, Eke J, Escobar IC, Abolhassani M, Greenlee LF, Esfahani AR, Sadmani A, Koutahzadeh N. Nanocomposite membranes for water separation and purification: Fabrication, modification, and applications. Sep Purif Technol 2019. [DOI: 10.1016/j.seppur.2018.12.050] [Citation(s) in RCA: 237] [Impact Index Per Article: 39.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
14
|
Chen X, He Y, Fan Y, Zeng G, Zhang L. Nature-inspired polyphenol chemistry to fabricate halloysite nanotubes decorated PVDF membrane for the removal of wastewater. Sep Purif Technol 2019. [DOI: 10.1016/j.seppur.2018.11.036] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
15
|
Improvement of stability and performance of functionalized halloysite nano tubes-based thin film nanocomposite membranes. J Memb Sci 2018. [DOI: 10.1016/j.memsci.2018.05.070] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
16
|
Halloysite Nanotubes as an Effective and Recyclable Adsorbent for Removal of Low-Concentration Antibiotics Ciprofloxacin. MINERALS 2018. [DOI: 10.3390/min8090387] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In this work, halloysite nanotubes (HNTs) without modification were used as an efficient adsorbent to explore its natural adsorption capability, which showed excellent adsorption ability for low-concentration ciprofloxacin (CIP). The physicochemical properties of HNTs before and after adsorption were investigated by several characterization techniques, including scanning electron microscopy (SEM), transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FT-IR), N2 adsorption–desorption analysis, X-ray diffractometer (XRD), and zeta potential analysis. The influences of temperature, initial CIP concentration, adsorbent dosage, and pH value on CIP adsorption performance were also studied. The kinetics analysis revealed that CIP adsorption on HNTs was a kind of monolayer adsorption process and followed a pseudo-second-order rate equation. The zeta potential result indicated that electrostatic interaction between HNTs and CIP molecules was possibly responsible for the adsorption performance. Moreover, HNTs showed no apparent loss in CIP adsorption capability after five cycles, exhibiting potential applications in wastewater treatment.
Collapse
|
17
|
Subasi Y, Cicek B. Recent advances in hydrophilic modification of PVDF ultrafiltration membranes – a review: part II. ACTA ACUST UNITED AC 2017. [DOI: 10.1016/s0958-2118(17)30233-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
18
|
Dou Y, Tian D, Sun Z, Liu Q, Zhang N, Kim JH, Jiang L, Dou SX. Fish Gill Inspired Crossflow for Efficient and Continuous Collection of Spilled Oil. ACS NANO 2017; 11:2477-2485. [PMID: 28112910 DOI: 10.1021/acsnano.6b07918] [Citation(s) in RCA: 87] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Developing an effective system to clean up large-scale oil spills is of great significance due to their contribution to severe environmental pollution and destruction. Superwetting membranes have been widely studied for oil/water separation. The separation, however, adopts a gravity-driven approach that is inefficient and discontinuous due to quick fouling of the membrane by oil. Herein, inspired by the crossflow filtration behavior in fish gills, we propose a crossflow approach via a hydrophilic, tilted gradient membrane for spilled oil collection. In crossflow collection, as the oil/water flows parallel to the hydrophilic membrane surface, water is gradually filtered through the pores, while oil is repelled, transported, and finally collected for storage. Owing to the selective gating behavior of the water-sealed gradient membrane, the large pores at the bottom with high water flux favor fast water filtration, while the small pores at the top with strong oil repellency allow easy oil transportation. In addition, the gradient membrane exhibits excellent antifouling properties due to the protection of the water layer. Therefore, this bioinspired crossflow approach enables highly efficient and continuous spilled oil collection, which is very promising for the cleanup of large-scale oil spills.
Collapse
Affiliation(s)
- Yuhai Dou
- Institute for Superconducting and Electronic Materials, Australian Institute for Innovative Materials, University of Wollongong , Wollongong, New South Wales 2500, Australia
| | - Dongliang Tian
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology of the Ministry of Education, School of Chemistry and Environment, Beihang University , Beijing 100191, People's Republic of China
| | - Ziqi Sun
- Institute for Superconducting and Electronic Materials, Australian Institute for Innovative Materials, University of Wollongong , Wollongong, New South Wales 2500, Australia
- School of Chemistry, Physics and Mechanical Engineering, Queensland University of Technology , Brisbane, Queensland 4001, Australia
| | - Qiannan Liu
- Institute for Superconducting and Electronic Materials, Australian Institute for Innovative Materials, University of Wollongong , Wollongong, New South Wales 2500, Australia
| | - Na Zhang
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology of the Ministry of Education, School of Chemistry and Environment, Beihang University , Beijing 100191, People's Republic of China
| | - Jung Ho Kim
- Institute for Superconducting and Electronic Materials, Australian Institute for Innovative Materials, University of Wollongong , Wollongong, New South Wales 2500, Australia
| | - Lei Jiang
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology of the Ministry of Education, School of Chemistry and Environment, Beihang University , Beijing 100191, People's Republic of China
- Technical Institute of Physics and Chemistry, Chinese Academy of Sciences , Beijing 100191, People's Republic of China
| | - Shi Xue Dou
- Institute for Superconducting and Electronic Materials, Australian Institute for Innovative Materials, University of Wollongong , Wollongong, New South Wales 2500, Australia
| |
Collapse
|
19
|
Zeng G, He Y, Zhan Y, Zhang L, Pan Y, Zhang C, Yu Z. Novel polyvinylidene fluoride nanofiltration membrane blended with functionalized halloysite nanotubes for dye and heavy metal ions removal. JOURNAL OF HAZARDOUS MATERIALS 2016; 317:60-72. [PMID: 27262273 DOI: 10.1016/j.jhazmat.2016.05.049] [Citation(s) in RCA: 140] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Revised: 05/12/2016] [Accepted: 05/15/2016] [Indexed: 05/21/2023]
Abstract
Membrane separation is an effective method for the removal of hazardous materials from wastewater. Halloysite nanotubes (HNTs) were functionalized with 3-aminopropyltriethoxysilane (APTES), and novel polyvinylidene fluoride (PVDF) nanofiltration membranes were prepared by blending with various concentrations of APTES grafted HNTs (A-HNTs). The morphology structure of the membranes were characterized by scanning electron microscope (SEM) and atomic force microscopy (AFM). The contact angle (CA), pure water flux (PWF) and antifouling capacity of membranes were investigated in detail. In addition, the separation performance of membranes were reflected by the removal of dye and heavy metal ions in simulated wastewater. The results revealed that the hydrophilicity of A-HNTs blended PVDF membrane (A-HNTs@PVDF) was enhanced significantly. Owing to the electrostatic interaction between membrane surface and dye molecules, the dye rejection ratio of 3% A-HNTs@PVDF membrane reached 94.9%. The heavy metal ions rejection ratio and adsorption capacity of membrane were also improved with the addition of A-HNTs. More importantly, A-HNTs@PVDF membrane exhibited excellent rejection stability and reuse performances after several times fouling and washing tests. It can be expected that the present work will provide insight into a new method for membrane modification in the field of wastewater treatment.
Collapse
Affiliation(s)
- Guangyong Zeng
- State Key Laboratory of Oil & Gas Reservoir Geology and Exploitation, Southwest Petroleum University, Chengdu, Sichuan 610500, PR China; College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu, Sichuan 610500, PR China; Oil & Gas Field Applied Chemistry Key Laboratory of Sichuan Province, Southwest Petroleum University, Chengdu, Sichuan 610500, PR China
| | - Yi He
- State Key Laboratory of Oil & Gas Reservoir Geology and Exploitation, Southwest Petroleum University, Chengdu, Sichuan 610500, PR China; College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu, Sichuan 610500, PR China; Oil & Gas Field Applied Chemistry Key Laboratory of Sichuan Province, Southwest Petroleum University, Chengdu, Sichuan 610500, PR China.
| | - Yingqing Zhan
- State Key Laboratory of Oil & Gas Reservoir Geology and Exploitation, Southwest Petroleum University, Chengdu, Sichuan 610500, PR China; College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu, Sichuan 610500, PR China
| | - Lei Zhang
- State Key Laboratory of Oil & Gas Reservoir Geology and Exploitation, Southwest Petroleum University, Chengdu, Sichuan 610500, PR China; College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu, Sichuan 610500, PR China
| | - Yang Pan
- State Key Laboratory of Oil & Gas Reservoir Geology and Exploitation, Southwest Petroleum University, Chengdu, Sichuan 610500, PR China; College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu, Sichuan 610500, PR China
| | - Chunli Zhang
- State Key Laboratory of Oil & Gas Reservoir Geology and Exploitation, Southwest Petroleum University, Chengdu, Sichuan 610500, PR China; College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu, Sichuan 610500, PR China
| | - Zongxue Yu
- State Key Laboratory of Oil & Gas Reservoir Geology and Exploitation, Southwest Petroleum University, Chengdu, Sichuan 610500, PR China; College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu, Sichuan 610500, PR China
| |
Collapse
|
20
|
Moslehyani A, Mobaraki M, Isloor A, Ismail A, Othman M. Photoreactor-ultrafiltration hybrid system for oily bilge water photooxidation and separation from oil tanker. REACT FUNCT POLYM 2016. [DOI: 10.1016/j.reactfunctpolym.2016.02.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
21
|
Habibi S, Nematollahzadeh A. Enhanced water flux through ultrafiltration polysulfone membrane via addition-removal of silica nano-particles: Synthesis and characterization. J Appl Polym Sci 2016. [DOI: 10.1002/app.43556] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Samin Habibi
- Department of Chemical Engineering; University of Mohaghegh Ardabili; Ardabil 179 Iran
| | - Ali Nematollahzadeh
- Department of Chemical Engineering; University of Mohaghegh Ardabili; Ardabil 179 Iran
| |
Collapse
|
22
|
Zeng G, He Y, Zhan Y, Zhang L, Shi H, Yu Z. Preparation of a Novel Poly(vinylidene fluoride) Ultrafiltration Membrane by Incorporation of 3-Aminopropyltriethoxysilane-Grafted Halloysite Nanotubes for Oil/Water Separation. Ind Eng Chem Res 2016. [DOI: 10.1021/acs.iecr.5b04797] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Guangyong Zeng
- College of Chemistry and Chemical Engineering, ‡Oil & Gas Field Applied Chemistry Key Laboratory of Sichuan Province, and §State Key Laboratory of Oil & Gas Reservoir Geology and Exploitation, Southwest Petroleum University, Chengdu, Sichuan 610500, P. R. China
| | - Yi He
- College of Chemistry and Chemical Engineering, ‡Oil & Gas Field Applied Chemistry Key Laboratory of Sichuan Province, and §State Key Laboratory of Oil & Gas Reservoir Geology and Exploitation, Southwest Petroleum University, Chengdu, Sichuan 610500, P. R. China
| | - Yingqing Zhan
- College of Chemistry and Chemical Engineering, ‡Oil & Gas Field Applied Chemistry Key Laboratory of Sichuan Province, and §State Key Laboratory of Oil & Gas Reservoir Geology and Exploitation, Southwest Petroleum University, Chengdu, Sichuan 610500, P. R. China
| | - Lei Zhang
- College of Chemistry and Chemical Engineering, ‡Oil & Gas Field Applied Chemistry Key Laboratory of Sichuan Province, and §State Key Laboratory of Oil & Gas Reservoir Geology and Exploitation, Southwest Petroleum University, Chengdu, Sichuan 610500, P. R. China
| | - Heng Shi
- College of Chemistry and Chemical Engineering, ‡Oil & Gas Field Applied Chemistry Key Laboratory of Sichuan Province, and §State Key Laboratory of Oil & Gas Reservoir Geology and Exploitation, Southwest Petroleum University, Chengdu, Sichuan 610500, P. R. China
| | - Zongxue Yu
- College of Chemistry and Chemical Engineering, ‡Oil & Gas Field Applied Chemistry Key Laboratory of Sichuan Province, and §State Key Laboratory of Oil & Gas Reservoir Geology and Exploitation, Southwest Petroleum University, Chengdu, Sichuan 610500, P. R. China
| |
Collapse
|