1
|
Lamaoui A, Mani V, Durmus C, Salama KN, Amine A. Molecularly imprinted polymers: A closer look at the template removal and analyte binding. Biosens Bioelectron 2023; 243:115774. [PMID: 39492184 DOI: 10.1016/j.bios.2023.115774] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 10/17/2023] [Accepted: 10/18/2023] [Indexed: 11/05/2024]
Abstract
Molecularly imprinted polymers (MIPs), which first appeared over half a century ago, are now attracting considerable attention as artificial receptors, particularly for sensing. MIPs, especially applied to biomedical analysis in biofluids, contribute significantly to patient diagnosis at the point of care, thereby allowing health monitoring. Despite the importance given to MIPs, removal of templates and binding of analytes have received little attention and are currently the least focused steps in MIP development. This critical review is dedicated to a comprehensive analysis and discussion of cutting-edge concepts and methodologies in the removal and binding steps pertaining to various types of analytes, including ions, molecules, epitopes, proteins, viruses, and bacteria. The central objective of this review is to comprehensively examine and discuss a range of removal methods, including soxhlet extraction, immersion, microwave-assisted technique, ultrasonication, electrochemical approach, and proteolytic digestion, among others. Additionally, we will explore various binding methods, such as soaking, drop-casting, and batch sorption, to provide a comprehensive overview of the subject. Furthermore, the current challenges and perspectives in removal and binding are highlighted. Our review, at the interface of chemistry and sensors, will offer a wide range of opportunities for researchers whose interests include MIPs, (bio)sensors, analytical chemistry, and diagnostics.
Collapse
Affiliation(s)
- Abderrahman Lamaoui
- Laboratoire Génie des Procedés & Environnement, Faculté des Sciences et Techniques, Hassan II University of Casablanca, B.P. 146, Mohammedia, Morocco
| | - Veerappan Mani
- Sensors Lab, Advanced Membranes and Porous Materials Center (AMPMC), Computer, Electrical, and Mathematical Science and Engineering (CEMSE) Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Ceren Durmus
- Sensors Lab, Advanced Membranes and Porous Materials Center (AMPMC), Computer, Electrical, and Mathematical Science and Engineering (CEMSE) Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Khaled Nabil Salama
- Sensors Lab, Advanced Membranes and Porous Materials Center (AMPMC), Computer, Electrical, and Mathematical Science and Engineering (CEMSE) Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Aziz Amine
- Laboratoire Génie des Procedés & Environnement, Faculté des Sciences et Techniques, Hassan II University of Casablanca, B.P. 146, Mohammedia, Morocco.
| |
Collapse
|
2
|
Sobiech M, Giebułtowicz J, Luliński P. Computational and experimental studies of magnetic molecularly imprinted sorbent with high specificity towards aceclofenac. Microchem J 2022. [DOI: 10.1016/j.microc.2022.108272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
3
|
Molecularly-Imprinted SERS: A Potential Method for Bioanalysis. Sci Pharm 2022. [DOI: 10.3390/scipharm90030054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The most challenging step in developing bioanalytical methods is finding the best sample preparation method. The matrix interference effect of biological sample become a reason of that. Molecularly imprinted SERS become a potential analytical method to be developed to answer this challenge. In this article, we review recent progress in MIP SERS application particularly in bioanalysis. Begin with the explanation about molecular imprinting technique and component, SERS principle, the combination of MIP SERS, and follow by various application of MIP SERS for analysis. Finally, the conclusion and future perspective were also discussed.
Collapse
|
4
|
Molecular imprinting with deep eutectic solvents: Synthesis, applications, their significance, and benefits. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.119696] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
5
|
Design of molecularly imprinted polymer materials relying on hydrophobic interactions. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.129008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
6
|
Cox HJ, Cooper I, Kaspar HF, Packer MA, Badyal JPS. Anti-biofouling functional surfaces for marine aquaculture. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.128313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
7
|
Zare EN, Fallah Z, Le VT, Doan VD, Mudhoo A, Joo SW, Vasseghian Y, Tajbakhsh M, Moradi O, Sillanpää M, Varma RS. Remediation of pharmaceuticals from contaminated water by molecularly imprinted polymers: a review. ENVIRONMENTAL CHEMISTRY LETTERS 2022; 20:2629-2664. [PMID: 35431714 PMCID: PMC8999999 DOI: 10.1007/s10311-022-01439-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 03/15/2022] [Indexed: 05/03/2023]
Abstract
The release of pharmaceuticals into the environment induces adverse effects on the metabolism of humans and other living species, calling for advanced remediation methods. Conventional removal methods are often non-selective and cause secondary contamination. These issues may be partly solved by the use of recently-developped adsorbents such as molecularly imprinted polymers. Here we review the synthesis and application of molecularly imprinted polymers for removing pharmaceuticals in water. Molecularly imprinted polymers are synthesized via several multiple-step polymerization methods. Molecularly imprinted polymers are potent adsorbents at the laboratory scale, yet their efficiency is limited by template leakage and polymer quality. Adsorption performance of multi-templated molecularly imprinted polymers depends on the design of wastewater treatment plants, pharmaceutical consumption patterns and the population serviced by these wastewater treatment plants.
Collapse
Affiliation(s)
| | - Zari Fallah
- Faculty of Chemistry, University of Mazandaran, 47416-95447 Babolsar, Iran
| | - Van Thuan Le
- Center for Advanced Chemistry, Institute of Research and Development, Duy Tan University, 03 Quang Trung, Da Nang, 55000 Vietnam
- The Faculty of Natural Sciences, Duy Tan University, 03 Quang Trung, Da Nang, 55000 Vietnam
| | - Van-Dat Doan
- Faculty of Chemical Engineering, Industrial University of Ho Chi Minh City, 12 Nguyen Van Bao, Ho Chi Minh, 70000 Vietnam
| | - Ackmez Mudhoo
- Department of Chemical and Environmental Engineering, Faculty of Engineering, University of Mauritius, Réduit, 80837 Mauritius
| | - Sang-Woo Joo
- Department of Chemistry, Soongsil University, Seoul, 06978 South Korea
| | - Yasser Vasseghian
- Department of Chemistry, Soongsil University, Seoul, 06978 South Korea
| | - Mahmood Tajbakhsh
- Faculty of Chemistry, University of Mazandaran, 47416-95447 Babolsar, Iran
| | - Omid Moradi
- Department of Chemistry, Shahr-e-Qods Branch, Islamic Azad University, Tehran, Iran
| | - Mika Sillanpää
- Department of Chemical Engineering, School of Mining, Metallurgy and Chemical Engineering, University of Johannesburg, P. O. Box 17011, Doornfontein, 2028 South Africa
| | - Rajender S. Varma
- Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute, Palacký University in Olomouc, Šlechtitelů 27, 783 71 Olomouc, Czech Republic
| |
Collapse
|
8
|
A Review on Molecularly Imprinted Polymers Preparation by Computational Simulation-Aided Methods. Polymers (Basel) 2021; 13:polym13162657. [PMID: 34451196 PMCID: PMC8398116 DOI: 10.3390/polym13162657] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 07/26/2021] [Accepted: 07/27/2021] [Indexed: 12/22/2022] Open
Abstract
Molecularly imprinted polymers (MIPs) are obtained by initiating the polymerization of functional monomers surrounding a template molecule in the presence of crosslinkers and porogens. The best adsorption performance can be achieved by optimizing the polymerization conditions, but this process is time consuming and labor-intensive. Theoretical calculation based on calculation simulations and intermolecular forces is an effective method to solve this problem because it is convenient, versatile, environmentally friendly, and inexpensive. In this article, computational simulation modeling methods are introduced, and the theoretical optimization methods of various molecular simulation calculation software for preparing molecularly imprinted polymers are proposed. The progress in research on and application of molecularly imprinted polymers prepared by computational simulations and computational software in the past two decades are reviewed. Computer molecular simulation methods, including molecular mechanics, molecular dynamics and quantum mechanics, are universally applicable for the MIP-based materials. Furthermore, the new role of computational simulation in the future development of molecular imprinting technology is explored.
Collapse
|
9
|
DePaz S, Sengupta A, Chiao YH, Wickramasinghe SR. Novel Poly(ionic liquid) Augmented Membranes for Unconventional Aqueous Phase Applications in Fractionation of Dyes and Sugar. Polymers (Basel) 2021; 13:2366. [PMID: 34301123 PMCID: PMC8309568 DOI: 10.3390/polym13142366] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 07/06/2021] [Accepted: 07/12/2021] [Indexed: 01/06/2023] Open
Abstract
Poly(ionic) liquid (PIL) augmented membranes were fabricated through self-polymerization of 2-vinyl pyridine and 4-vinyl pyridine followed by dopamine triggered polymerization and bridging with inert polyamide support. The resulting membranes acquired a positive surface charge with a high degree of hydrophilicity. Fourier transformed Infra-red (FTIR) and Energy dispersive X-ray (EDX) spectroscopic investigation revealed the successful augmentation of PIL surface layer, whereas surface morphology was investigated through scanning electron microscopy (SEM) imaging. This manuscript demonstrates pi electron-induced separation of dyes with the trend in permeability: Coomassie Brilliant Blue G (CBBHG) > Remazol Brilliant Blue R (RBBR) > Eichrome Black T (EBT) > Congo Red (CR). CBBG exhibited extended conjugation over large aromatic domain. RBBR and EBT were associated withtheelectron-donating -NH2 group and electron-withdrawing -NO2 group, respectively, hence pi electron density on aromatic ring varied. The steric repulsion between two pairs of ortho hydrogens (Hs) in biphenyl moieties of CR resulted in deviation of planarity and hence aromaticity leading to the lowest permeability. The sugar fractionation followed the trend: Galactose > Mannose > Fructose > Glucose > Xylose. More hydroxyl (-OH) groups in sugars and their conformational alignment in the same direction, exhibited more lone pair of electrons leading to more interaction with PIL and hence better permeability. Pentose showed poorer permeation than hexose, whereas aldose showed better permeation than ketose.
Collapse
Affiliation(s)
- Sandrina DePaz
- Ralph E Martin College of Chemical Engineering, University of Arkansas, Fayetteville, AR 72701, USA; (S.D.); (Y.-H.C.); (S.R.W.)
| | - Arijit Sengupta
- Radiochemistry Division, Bhabha Atomic Research Centre, Mumbai 400085, India
- HomiBhabha National Institute, Mumbai 400094, India
| | - Yu-Hsuan Chiao
- Ralph E Martin College of Chemical Engineering, University of Arkansas, Fayetteville, AR 72701, USA; (S.D.); (Y.-H.C.); (S.R.W.)
| | - Sumith Ranil Wickramasinghe
- Ralph E Martin College of Chemical Engineering, University of Arkansas, Fayetteville, AR 72701, USA; (S.D.); (Y.-H.C.); (S.R.W.)
| |
Collapse
|
10
|
Mashile GP, Mpupa A, Nomngongo PN. Magnetic Mesoporous Carbon/β-Cyclodextrin-Chitosan Nanocomposite for Extraction and Preconcentration of Multi-Class Emerging Contaminant Residues in Environmental Samples. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:540. [PMID: 33672631 PMCID: PMC7924173 DOI: 10.3390/nano11020540] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 02/12/2021] [Accepted: 02/17/2021] [Indexed: 12/16/2022]
Abstract
This study reports the development of magnetic solid-phase extraction combined with high-performance liquid chromatography for the determination of ten trace amounts of emerging contaminants (fluoroquinolone antibiotics, parabens, anticonvulsants and β-blockers) in water systems. Magnetic mesoporous carbon/β-cyclodextrin-chitosan (MMPC/Cyc-Chit) was used as an adsorbent in dispersive magnetic solid-phase extraction (DMSPE). The magnetic solid-phase extraction method was optimized using central composite design. Under the optimum conditions, the limits of detection (LODs) ranged from 0.1 to 0.7 ng L-1, 0.5 to 1.1 ng L-1 and 0.2 to 0.8 ng L-1 for anticonvulsants and β-blockers, fluoroquinolone and parabens, respectively. Relatively good dynamic linear ranges were obtained for all the investigated analytes. The repeatability (n = 7) and reproducibility (n = 5) were less than 5%, while the enrichment factors ranged between 90 and 150. The feasibility of the method in real samples was assessed by analysis of river water, tap water and wastewater samples. The recoveries for the investigated analytes in the real samples ranged from 93.5 to 98.8%, with %RSDs under 4%.
Collapse
Affiliation(s)
- Geaneth Pertunia Mashile
- Department of Chemical Sciences, University of Johannesburg, Doornfontein Campus, P.O. Box 17011, Doornfontein 2028, South Africa; (G.P.M.); (A.M.)
- Department of Science and Innovation (DSI)/National Research Foundation (NRF) South African Research Chair (SARChI): Nanotechnology for Water, University of Johannesburg, Doornfontein 2028, South Africa
| | - Anele Mpupa
- Department of Chemical Sciences, University of Johannesburg, Doornfontein Campus, P.O. Box 17011, Doornfontein 2028, South Africa; (G.P.M.); (A.M.)
- Department of Science and Innovation (DSI)/National Research Foundation (NRF) South African Research Chair (SARChI): Nanotechnology for Water, University of Johannesburg, Doornfontein 2028, South Africa
| | - Philiswa Nosizo Nomngongo
- Department of Chemical Sciences, University of Johannesburg, Doornfontein Campus, P.O. Box 17011, Doornfontein 2028, South Africa; (G.P.M.); (A.M.)
- Department of Science and Innovation (DSI)/National Research Foundation (NRF) South African Research Chair (SARChI): Nanotechnology for Water, University of Johannesburg, Doornfontein 2028, South Africa
- Department of Science and Innovation (DSI)/Mintek Nanotechnology Innovation Centre, University of Johannesburg, Doornfontein 2028, South Africa
| |
Collapse
|
11
|
Díaz-Liñán M, García-Valverde M, Lucena R, Cárdenas S, López-Lorente A. Dual-template molecularly imprinted paper for the determination of drugs of abuse in saliva samples by direct infusion mass spectrometry. Microchem J 2021. [DOI: 10.1016/j.microc.2020.105686] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
12
|
Silva DA, Xavier MJ, Dutra JDL, Gimenez IF, Freire RO, da Costa NB. Prediction of correct intermolecular interactions in host-guest systems involving cyclodextrins. J Mol Struct 2020. [DOI: 10.1016/j.molstruc.2019.127517] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
13
|
Chen J, Zhao W, Tan L, Wang J, Li H, Wang J. Separation and detection of trace atrazine from seawater using dummy-template molecularly imprinted solid-phase extraction followed by high-performance liquid chromatography. MARINE POLLUTION BULLETIN 2019; 149:110502. [PMID: 31425841 DOI: 10.1016/j.marpolbul.2019.110502] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 07/19/2019] [Accepted: 08/06/2019] [Indexed: 06/10/2023]
Abstract
A novel sample pretreatment strategy for separation and detection of atrazine from seawater was established with molecular imprinting solid-phase extraction (MISPE). Cyromazine was used as dummy-template based on computational analysis to synthesize dummy-template molecularly imprinted polymers (DMIPs) as sorbent of MISPE for atrazine analysis. The DMIPs were irregular loose porous layered structure characterized by scanning electron microscopy and showed higher binding capacity than non-imprinted polymers through adsorption experiments. An offline MISPE procedure using DMIPs as sorbent coupled with high-performance liquid chromatograph was developed for separation and purification of atrazine from seawater samples. The recoveries of atrazine in the spiked seawater samples ranged from 86.7% to 98.6%, and the relative standard deviation was less than 4.07% (n = 3) under optimal conditions indicating that the proposed method was suitable for the detection of trace residual atrazine in seawater. In addition, no atrazine was detected in three seawater samples from Jiaozhou bay, China.
Collapse
Affiliation(s)
- Jianlei Chen
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao, PR China
| | - Weihong Zhao
- Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, PR China; University of Chinese Academy of Sciences, Beijing, PR China.
| | - Liju Tan
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao, PR China
| | - Junfu Wang
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao, PR China
| | - Huiping Li
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao, PR China
| | - Jiangtao Wang
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao, PR China.
| |
Collapse
|
14
|
Zhao Q, Yang J, Zhang J, Wu D, Tao Y, Kong Y. Single-Template Molecularly Imprinted Chiral Sensor for Simultaneous Recognition of Alanine and Tyrosine Enantiomers. Anal Chem 2019; 91:12546-12552. [PMID: 31476861 DOI: 10.1021/acs.analchem.9b03426] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Chiral recognition of l-amino acids is of significant importance due to the crucial role of l-amino acids in life sciences and pharmaceutics. In this work, a chiral sensor with capability of probing two chiral amino acids by an attractive single-template molecular imprinting strategy is introduced and used in the simultaneous chiral recognition of d/l-alanine (d/l-Ala) and d/l-tyrosine (d/l-Tyr). The assay relies on the hydrolysis of l-alanyl-l-tyrosine dipeptide doped in silica/polypyrrole (SiO2/PPy) under acidic conditions, resulting in l-Ala and l-Tyr coimprinted chiral sensor. This work opens up a new avenue for simultaneous chiral sensing of two or more chiral amino acids by incorporating only one template, circumventing the shortcomings encountered with multitemplate molecularly imprinted technology.
Collapse
Affiliation(s)
- Qianqian Zhao
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology , Changzhou University , Changzhou 213164 , China
| | - Jiapei Yang
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology , Changzhou University , Changzhou 213164 , China
| | - Jie Zhang
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology , Changzhou University , Changzhou 213164 , China
| | - Datong Wu
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology , Changzhou University , Changzhou 213164 , China
| | - Yongxin Tao
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology , Changzhou University , Changzhou 213164 , China
| | - Yong Kong
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology , Changzhou University , Changzhou 213164 , China
| |
Collapse
|
15
|
Wei ZH, Sun X, Mu LN, Huang YP, Liu ZS. Improving affinity of imprinted monolithic polymer prepared in deep eutectic solvent by metallic pivot. J Chromatogr A 2019; 1602:48-55. [DOI: 10.1016/j.chroma.2019.05.034] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 05/07/2019] [Accepted: 05/19/2019] [Indexed: 10/26/2022]
|
16
|
Kamaz M, Sengupta A, DePaz SS, Chiao YH, Ranil Wickramasinghe S. Poly(ionic liquid) augmented membranes for π electron induced separation/fractionation of aromatics. J Memb Sci 2019. [DOI: 10.1016/j.memsci.2019.01.044] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
17
|
Non-enzymatic glucose sensor based on molecularly imprinted polymer: a theoretical, strategy fabrication and application. J Solid State Electrochem 2019. [DOI: 10.1007/s10008-019-04237-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
18
|
Mtolo SP, Mahlambi PN, Madikizela LM. Synthesis and application of a molecularly imprinted polymer in selective solid-phase extraction of efavirenz from water. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2019; 79:356-365. [PMID: 30865607 DOI: 10.2166/wst.2019.054] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Efavirenz is one of the antiretroviral drugs widely used to treat the human immunodeficiency virus. Antiretroviral drugs have been found to be present in surface water and wastewater. Due to complexity of environmental samples, solid-phase extraction (SPE) is used for isolation and pre-concentration of antiretroviral drugs prior to their chromatographic analysis. However, the commercially available SPE sorbents lack selectivity, which tends to prolong the analysis time. Therefore, in this study a molecularly imprinted polymer was synthesized for the specific recognition of efavirenz and then applied as the SPE sorbent for its extraction from wastewater and surface water samples. The imprinted and non-imprinted polymers were synthesized using a bulk polymerization technique where efavirenz was used as the template, 2-vinylpyridine as functional monomer, 1,1'-azobis-(cyclohexanecarbonitrile) as initiator, ethylene glycol dimethacrylate as cross-linker and toluene:acetonitrile (9:1, v/v) as the porogenic solvent mixture. The characterization was performed using Fourier transform infrared spectroscopy, scanning electron microscopy, Brunauer-Emmett-Teller, elemental analysis, and thermogravimetric analysis techniques. Results showed better selectivity of molecularly imprinted polymer to efavirenz than did non-imprinted polymer. The analysis was performed using high performance liquid chromatography equipped with a photo-diode array detector. The analytical method gave a detection limit of 0.41 μg/L and the analyte recovery of 81% in wastewater. The concentrations found in wastewater ranged from 2.79 to 120.7 μg/L, while in surface water they were between 0.975 and 2.88 μg/L. Therefore, the results of this study show a strong need for a detailed screening of efavirenz in major water utilities in the country.
Collapse
Affiliation(s)
- Sinothando P Mtolo
- Department of Chemistry, University of KwaZulu-Natal, Private Bag X01, Scottsville, Pietermaritzburg, 3209, South Africa E-mail:
| | - Precious N Mahlambi
- Department of Chemistry, University of KwaZulu-Natal, Private Bag X01, Scottsville, Pietermaritzburg, 3209, South Africa E-mail:
| | - Lawrence M Madikizela
- Department of Chemistry, Durban University of Technology, P. O. Box 1334, Durban, 4000, South Africa
| |
Collapse
|
19
|
Ostovan A, Ghaedi M, Arabi M, Yang Q, Li J, Chen L. Hydrophilic Multitemplate Molecularly Imprinted Biopolymers Based on a Green Synthesis Strategy for Determination of B-Family Vitamins. ACS APPLIED MATERIALS & INTERFACES 2018; 10:4140-4150. [PMID: 29299926 DOI: 10.1021/acsami.7b17500] [Citation(s) in RCA: 248] [Impact Index Per Article: 35.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
A novel green synthesis strategy was proposed for preparation of multitemplate molecularly imprinted biopolymers (mt-MIBP) in aqueous media with less consumption of organic solvents, which were subsequently used as sorbents of ultrasound-assisted dispersive solid-phase extraction (d-SPE) for simultaneous recognition and efficient separation of B-family vitamins in juice samples, followed by high performance liquid chromatography (HPLC) determination. The obtained mt-MIBP was fully characterized by SEM, FT-IR, TEM, and BET. It offered high binding capacity, good selectivity, and fast dynamics toward all the templates. Involved parameters in the d-SPE efficiency such as mt-MIBP mass, sonication time, and eluting/washing solvents' types and volumes were concurrently investigated by central composite design with rapidity and reliability. Under the optimum conditions, the developed mt-MIBP-d-SPE-HPLC method exhibited wide linear range, low limits of detection and quantification (LOQs) within 1.2-5.5 μg L-1 and 4.0-18.4 μg L-1, respectively, and appropriate repeatability (relative standard deviation values below 4.2%, n = 4). The high selectivity of this method makes it suitable for successful monitoring of vitamins in juice samples with satisfactory recoveries of 75.8-92.7%, 81.1-92.5%, and 84.7-93.8% for vitamins riboflavin (B2), nicotinamide (B3), and pyridoxine (B6), respectively. The present study implied highly promising perspectives of water-compatible eco-friendly mt-MIBP for highly effective multiresidue analysis in complicated matrixes.
Collapse
Affiliation(s)
- Abbas Ostovan
- Department of Chemistry, Kerman Branch, Islamic Azad University , Kerman, Iran
| | - Mehrorang Ghaedi
- Chemistry Department, Yasouj University , Yasouj 75918-74831, Iran
| | - Maryam Arabi
- Chemistry Department, Yasouj University , Yasouj 75918-74831, Iran
| | - Qian Yang
- Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences , Yantai 264003, China
| | - Jinhua Li
- Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences , Yantai 264003, China
| | - Lingxin Chen
- Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences , Yantai 264003, China
| |
Collapse
|
20
|
Khan S, Hussain S, Wong A, Foguel MV, Moreira Gonçalves L, Pividori Gurgo MI, Taboada Sotomayor MDP. Synthesis and characterization of magnetic-molecularly imprinted polymers for the HPLC-UV analysis of ametryn. REACT FUNCT POLYM 2018. [DOI: 10.1016/j.reactfunctpolym.2017.11.002] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
21
|
Sun C, Wang J, Huang J, Yao D, Wang CZ, Zhang L, Hou S, Chen L, Yuan CS. The Multi-Template Molecularly Imprinted Polymer Based on SBA-15 for Selective Separation and Determination of Panax notoginseng Saponins Simultaneously in Biological Samples. Polymers (Basel) 2017; 9:E653. [PMID: 30965954 PMCID: PMC6418985 DOI: 10.3390/polym9120653] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Revised: 11/23/2017] [Accepted: 11/23/2017] [Indexed: 02/06/2023] Open
Abstract
The feasible, reliable and selective multi-template molecularly imprinted polymers (MT-MIPs) based on SBA-15 (SBA-15@MT-MIPs) for the selective separation and determination of the trace level of ginsenoside Rb₁ (Rb₁), ginsenoside Rg₁ (Rg₁) and notoginsenoside R₁ (R₁) simultaneously from biological samples were developed. The polymers were constructed by SBA-15 as support, Rb₁, Rg₁, R₁ as multi-template, acrylamide (AM) as functional monomer and ethylene glycol dimethacrylate (EGDMA) as cross-linker. The new synthetic SBA-15@MT-MIPs were satisfactorily applied to solid-phase extraction (SPE) coupled with high performance liquid chromatography (HPLC) for the separation and determination of trace Rb₁, Rg₁ and R₁ in plasma samples. Under the optimized conditions, the limits of detection (LODs) and quantitation (LOQs) of the proposed method for Rb₁, Rg₁ and R₁ were in the range of 0.63⁻0.75 ng·mL-1 and 2.1⁻2.5 ng·mL-1, respectively. The recoveries of R₁, Rb₁ and Rg₁ were obtained between 93.4% and 104.3% with relative standard deviations (RSDs) in the range of 3.3⁻4.2%. All results show that the obtained SBA-15@MT-MIPs could be a promising prospect for the practical application in the selective separation and enrichment of trace Panax notoginseng saponins (PNS) in the biological samples.
Collapse
Affiliation(s)
- Chenghong Sun
- School of Pharmacy, Nanjing Medical University, Nanjing 211166, China.
| | - Jinhua Wang
- Department of Pharmacy Intravenous Admixture Service, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, China.
| | - Jiaojiao Huang
- School of Pharmacy, Nanjing Medical University, Nanjing 211166, China.
| | - Dandan Yao
- School of Pharmacy, Nanjing Medical University, Nanjing 211166, China.
| | - Chong-Zhi Wang
- Tang Center for Herbal Medicine Research and Department of Anesthesia & Critical Care, University of Chicago, Chicago, IL 60637, USA.
| | - Lei Zhang
- School of Pharmacy, Nanjing Medical University, Nanjing 211166, China.
| | - Shuying Hou
- Department of Pharmacy Intravenous Admixture Service, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, China.
| | - Lina Chen
- School of Pharmacy, Nanjing Medical University, Nanjing 211166, China.
| | - Chun-Su Yuan
- Tang Center for Herbal Medicine Research and Department of Anesthesia & Critical Care, University of Chicago, Chicago, IL 60637, USA.
| |
Collapse
|
22
|
A comprehensive theoretical study of structural optimization, interaction energies calculations and solvent effects between ractopamine and functional monomers in molecular imprinting polymers. Polym Bull (Berl) 2017. [DOI: 10.1007/s00289-017-2140-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
23
|
Madikizela LM, Chimuka L. Occurrence of naproxen, ibuprofen, and diclofenac residues in wastewater and river water of KwaZulu-Natal Province in South Africa. ENVIRONMENTAL MONITORING AND ASSESSMENT 2017; 189:348. [PMID: 28639109 DOI: 10.1007/s10661-017-6069-1] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Accepted: 06/14/2017] [Indexed: 05/23/2023]
Abstract
The present paper reports a detailed study that is based on the monitoring of naproxen, ibuprofen, and diclofenac in Mbokodweni River and wastewater treatment plants (WWTPs) located around the city of Durban in KwaZulu-Natal Province of South Africa. Target compounds were extracted from water samples using a multi-template molecularly imprinted solid-phase extraction prior to separation and quantification on a high-performance liquid chromatography equipped with photo diode array detector. The analytical method yielded the detection limits of 0.15, 1.00, and 0.63 μg/L for naproxen, ibuprofen, and diclofenac, respectively. Solid-phase extraction method was evaluated for its performance using deionized water samples that were spiked with 5 and 50 μg/L of target compounds. Recoveries were greater than 80% for all target compounds with RSD values in the range of 4.1 to 10%. Target compounds were detected in most wastewater and river water samples with ibuprofen being the most frequently detected pharmaceutical. Maximum concentrations detected in river water for naproxen, ibuprofen, and diclofenac were 6.84, 19.2, and 9.69 μg/L, respectively. The concentrations of target compounds found in effluent and river water samples compared well with some studies. The analytical method employed in this work is fast, selective, sensitive, and affordable; therefore, it can be used routinely to evaluate the occurrence of acidic pharmaceuticals in South African water resources.
Collapse
Affiliation(s)
- Lawrence Mzukisi Madikizela
- Department of Chemistry, Durban University of Technology, PO Box 1334, Durban, 4000, South Africa.
- Molecular Sciences Institute, University of Witwatersrand, Private Bag x3, Johannesburg, 2050, South Africa.
| | - Luke Chimuka
- Molecular Sciences Institute, University of Witwatersrand, Private Bag x3, Johannesburg, 2050, South Africa
| |
Collapse
|
24
|
Zunngu SS, Madikizela LM, Chimuka L, Mdluli PS. Synthesis and application of a molecularly imprinted polymer in the solid-phase extraction of ketoprofen from wastewater. CR CHIM 2017. [DOI: 10.1016/j.crci.2016.09.006] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
25
|
Madikizela LM, Tavengwa NT, Chimuka L. Applications of molecularly imprinted polymers for solid-phase extraction of non-steroidal anti-inflammatory drugs and analgesics from environmental waters and biological samples. J Pharm Biomed Anal 2017; 147:624-633. [PMID: 28477973 DOI: 10.1016/j.jpba.2017.04.010] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Revised: 04/07/2017] [Accepted: 04/11/2017] [Indexed: 01/19/2023]
Abstract
The occurrence of pharmaceuticals used as non-steroidal anti-inflammatory drugs (NSAIDs) and analgesics in the aquatic environment is a threat to humans and aquatic species at large. The primary route of these pharmaceuticals to aquatic environment is through human waste such as urine and faeces. The application of molecularly imprinted polymers (MIPs) in the solid-phase extraction (SPE) of such pollutants from environmental and biological samples is important for the pre-concentration of compounds and selectivity of the analytical methods. To date, there are still limited commercial suppliers of MIPs. However, it is easy to synthesize such polymers via non-covalent imprinting approach using easily available and affordable reagents. Therefore, the applications of MIPs in the SPE of NSAIDs and analgesics from environmental and biological samples are reviewed. This is very important because despite the fact that review articles on applications of MIPs for organic compounds have been reported, very little has focussed on NSAIDs and analgesics which are the major studied pharmaceuticals in the environment and biological samples. The review also brings out important aspects of common reagents used including the template molecules during MIP synthesis. Application and future trends are also discussed. Gaps such as little use of environmental friendly reagents such as ionic liquids have been identified. Also, the lack of MIP applications to some compounds such as fenoprofen has been observed which is likely to be developed in the near future.
Collapse
Affiliation(s)
| | - Nikita Tawanda Tavengwa
- Department of Chemistry, School of Mathematical and Natural Sciences, University of Venda, Private Bag X5050, Thohoyandou 0950, South Africa
| | - Luke Chimuka
- Molecular Sciences Institute, University of Witwatersrand, Private Bag X3, Johannesburg 2050, South Africa
| |
Collapse
|
26
|
Madikizela LM, Chimuka L. Determination of ibuprofen, naproxen and diclofenac in aqueous samples using a multi-template molecularly imprinted polymer as selective adsorbent for solid-phase extraction. J Pharm Biomed Anal 2016; 128:210-215. [DOI: 10.1016/j.jpba.2016.05.037] [Citation(s) in RCA: 91] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Revised: 05/16/2016] [Accepted: 05/21/2016] [Indexed: 11/27/2022]
|