1
|
Seidi F, Liu Y, Huang Y, Xiao H, Crespy D. Chemistry of lignin and condensed tannins as aromatic biopolymers. Chem Soc Rev 2025; 54:3140-3232. [PMID: 39976198 DOI: 10.1039/d4cs00440j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Aromatic biopolymers are the second largest group of biopolymers after polysaccharides. Depolymerization of aromatic biopolymers, as cheap and renewable substitutes for fossil-based resources, has been used in the preparation of biofuels, and a range of aromatic and aliphatic small molecules. Additionally, these polymers exhibit a robust UV-shielding function due to the high content of aromatic groups. Meanwhile, the abundance of phenolic groups in their structures gives these compounds outstanding antioxidant capabilities, making them well-suited for a diverse array of anti-UV and medical applications. Nevertheless, these biopolymers possess inherent drawbacks in their pristine states, such as rigid structure, low solubility, and lack of desired functionalities, which hinder their complete exploitation across diverse sectors. Thus, the modification and functionalization of aromatic biopolymers are essential to provide them with specific functionalities and features needed for particular applications. Aromatic biopolymers include lignins, tannins, melanins, and humic acids. The objective of this review is to offer a thorough reference for assessing the chemistry and functionalization of lignins and condensed tannins. Lignins represent the largest and most prominent category of aromatic biopolymers, typically distinguishable as either softwood-derived or hardwood-derived lignins. Besides, condensed tannins are the most investigated group of the tannin family. The electron-rich aromatic rings, aliphatic hydroxyl groups, and phenolic groups are the main functional groups in the structure of lignins and condensed tannins. Methoxy groups are also abundant in lignins. Each group displays varying chemical reactivity within these biopolymers. Therefore, the selective and specific functionalization of lignins and condensed tannins can be achieved by understanding the chemistry behavior of these functional groups. Targeted applications include biomedicine, monomers and surface active agents for sustainable plastics.
Collapse
Affiliation(s)
- Farzad Seidi
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources and International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China.
- Department of Materials Science and Engineering, School of Molecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Rayong 21210, Thailand.
| | - Yuqian Liu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources and International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China.
| | - Yang Huang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources and International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China.
| | - Huining Xiao
- Department of Chemical Engineering, University of New Brunswick, Fredericton, New Brunswick, E3B 5A3, Canada
| | - Daniel Crespy
- Department of Materials Science and Engineering, School of Molecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Rayong 21210, Thailand.
| |
Collapse
|
2
|
Wu X, Smet E, Brandi F, Raikwar D, Zhang Z, Maes BUW, Sels BF. Advancements and Perspectives toward Lignin Valorization via O-Demethylation. Angew Chem Int Ed Engl 2024; 63:e202317257. [PMID: 38128012 DOI: 10.1002/anie.202317257] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/20/2023] [Accepted: 12/21/2023] [Indexed: 12/23/2023]
Abstract
Lignin represents the largest aromatic carbon resource in plants, holding significant promise as a renewable feedstock for bioaromatics and other cyclic hydrocarbons in the context of the circular bioeconomy. However, the methoxy groups of aryl methyl ethers, abundantly found in technical lignins and lignin-derived chemicals, limit their pertinent chemical reactivity and broader applicability. Unlocking the phenolic hydroxyl functionality through O-demethylation (ODM) has emerged as a valuable approach to mitigate this need and enables further applications. In this review, we provide a comprehensive summary of the progress in the valorization of technical lignin and lignin-derived chemicals via ODM, both catalytic and non-catalytic reactions. Furthermore, a detailed analysis of the properties and potential applications of the O-demethylated products is presented, accompanied by a systematic overview of available ODM reactions. This review primarily focuses on enhancing the phenolic hydroxyl content in lignin-derived species through ODM, showcasing its potential in the catalytic funneling of lignin and value-added applications. A comprehensive synopsis and future outlook are included in the concluding section of this review.
Collapse
Affiliation(s)
- Xian Wu
- Center for Sustainable Catalysis and Engineering, KU Leuven, Celestijnenlaan 200F, 3001, Leuven, Belgium
| | - Ewoud Smet
- Organic Synthesis Division, Department of Chemistry, University of Antwerp, Groenenborgerlaan 171, 2020, Antwerp, Belgium
| | - Francesco Brandi
- Center for Sustainable Catalysis and Engineering, KU Leuven, Celestijnenlaan 200F, 3001, Leuven, Belgium
| | - Deepak Raikwar
- Center for Sustainable Catalysis and Engineering, KU Leuven, Celestijnenlaan 200F, 3001, Leuven, Belgium
| | - Zhenlei Zhang
- Center for Sustainable Catalysis and Engineering, KU Leuven, Celestijnenlaan 200F, 3001, Leuven, Belgium
| | - Bert U W Maes
- Organic Synthesis Division, Department of Chemistry, University of Antwerp, Groenenborgerlaan 171, 2020, Antwerp, Belgium
| | - Bert F Sels
- Center for Sustainable Catalysis and Engineering, KU Leuven, Celestijnenlaan 200F, 3001, Leuven, Belgium
| |
Collapse
|
3
|
Du B, Li W, Zhu H, Xu J, Wang Q, Shou X, Wang X, Zhou J. A functional lignin for heavy metal ions adsorption and wound care dressing. Int J Biol Macromol 2023; 239:124268. [PMID: 37003375 DOI: 10.1016/j.ijbiomac.2023.124268] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 03/15/2023] [Accepted: 03/27/2023] [Indexed: 04/03/2023]
Abstract
Recently, the application of lignin activation by demethylation to improve reactivity and enrich multiple functions has intensively attracted attention. However, it is still challenge up to now due to the low reactivity and complexity of lignin structure. Here, an effective demethylation way was explored by microwave-assisted method for substantially enhancing the hydroxyl (-OH) content and retaining the structure of lignin. Then, the optimum demethylated lignin was used to removal heavy metal ions and promote wound healing, respectively. In detail, for microwave-assisted demethylated poplar lignin (M-DPOL), the contents of phenolic (Ar-OH) and total hydroxyl (Tot-OH) groups reached the maximum for 60 min at 90 °C in DMF with 7.38 and 9.13 mmol/g, respectively. After demethylation, with this M-DPOL as lignin-based adsorbent, the maximum adsorption capacity (Qmax) for Pb2+ ions reached 104.16 mg/g. Based on the isotherm, kinetic and thermodynamic models analyses, the chemisorption occurred in monolayer on the surface of M-DPOL, and all adsorption processes were endothermic and spontaneous. Meanwhile, M-DPOL as a wound dressing had excellent antioxidant property, outstanding bactericidal activity and remarkable biocompatibility, suggesting that it did not interfere with cell proliferation. Besides, the wounded rats treated with M-DPOL significantly promoted its formation of re-epithelialization and wound healing of full-thickness skin defects. Overall, microwave-assisted method of demethylated lignin can offer great advantages for heavy metal ions removal and wound care dressing, which facilitates high value application of lignin.
Collapse
Affiliation(s)
- Boyu Du
- Liaoning Key Laboratory of Lignocellulose Chemistry and Biomaterials, Dalian Polytechnic University, Dalian, Liaoning 116034, China
| | - Wanjing Li
- Department of Cardiology, Shaanxi Province People's Hospital and The Third Affiliated Hospital Medical College of Xi'an Jiaotong University, Xi'an, Shaanxi Province 710018, China
| | - Hongwei Zhu
- Liaoning Key Laboratory of Lignocellulose Chemistry and Biomaterials, Dalian Polytechnic University, Dalian, Liaoning 116034, China
| | - Jingyu Xu
- Liaoning Key Laboratory of Lignocellulose Chemistry and Biomaterials, Dalian Polytechnic University, Dalian, Liaoning 116034, China
| | - Qingyu Wang
- Institute for Catalysis (ICAT) and Graduate School of Chemical Sciences and Engineering, Hokkaido University, N21W10, Kita-ku, Sapporo 001-0021, Japan
| | - Xiling Shou
- Department of Cardiology, Shaanxi Province People's Hospital and The Third Affiliated Hospital Medical College of Xi'an Jiaotong University, Xi'an, Shaanxi Province 710018, China.
| | - Xing Wang
- Liaoning Key Laboratory of Lignocellulose Chemistry and Biomaterials, Dalian Polytechnic University, Dalian, Liaoning 116034, China.
| | - Jinghui Zhou
- Liaoning Key Laboratory of Lignocellulose Chemistry and Biomaterials, Dalian Polytechnic University, Dalian, Liaoning 116034, China.
| |
Collapse
|
4
|
Preparation of activated lignin with high hydroxyl content using lewis acid as demethylation reagent. Int J Biol Macromol 2022; 222:2571-2580. [DOI: 10.1016/j.ijbiomac.2022.10.040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 09/22/2022] [Accepted: 10/06/2022] [Indexed: 11/05/2022]
|
5
|
Jeantelot G, Følkner SP, Manegold JIS, Ingebrigtsen MG, Jensen VR, Le Roux E. Selective Hydrodeoxygenation of Lignin-Derived Phenols to Aromatics Catalyzed by Nb 2O 5-Supported Iridium. ACS OMEGA 2022; 7:31561-31566. [PMID: 36092594 PMCID: PMC9453801 DOI: 10.1021/acsomega.2c04314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 08/12/2022] [Indexed: 06/15/2023]
Abstract
The dominating catalytic approach to aromatic hydrocarbons from renewables, deoxygenation of phenol-rich depolymerized lignin bio-oils, is hard to achieve: hydrodeoxygenation (HDO) of phenols typically leads to the loss of aromaticity and to non-negligible fractions of cyclohexanones and cyclohexanols. Here, we report a catalyst, niobia-supported iridium nanoparticles (Ir@Nb2O5), which combines full conversion in the HDO of lignin-derived phenols with appreciable and tunable selectivity for aromatics (25-95%) under mild conditions (200-300 °C, 2.5-10 bar of H2). A simple approach to the removal of Brønsted-acidic sites via Hünig's base prevents coking and allows reaction conditions (T > 225 °C, 2.5 bar of H2), promoting high yields of aromatic hydrocarbons.
Collapse
|
6
|
Di B, Li Z, Lei Y, Wang X, Zhu Y, Qi W, Tian Y. Phenol‐enriched hydroxy depolymerized lignin by microwave alkali catalysis to prepare high‐adhesive biomass composites. POLYM ENG SCI 2021. [DOI: 10.1002/pen.25664] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Bing Di
- College of Chemistry Jilin University Changchun China
| | - Zheng Li
- College of Chemistry Jilin University Changchun China
| | - Yin Lei
- College of Chemistry Jilin University Changchun China
| | - Xiaofeng Wang
- College of Chemistry Jilin University Changchun China
| | - Yanchao Zhu
- College of Chemistry Jilin University Changchun China
| | - Wei Qi
- College of Chemistry Jilin University Changchun China
| | - Yumei Tian
- College of Chemistry Jilin University Changchun China
| |
Collapse
|
7
|
Demethylation of Alkali Lignin with Halogen Acids and Its Application to Phenolic Resins. Polymers (Basel) 2019; 11:polym11111771. [PMID: 31661762 PMCID: PMC6918146 DOI: 10.3390/polym11111771] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 10/19/2019] [Accepted: 10/25/2019] [Indexed: 11/30/2022] Open
Abstract
Lignin, a byproduct from the chemical processing of lignocellulosic biomass, is a polyphenolic compound that has potential as a partial phenol substitute in phenolic adhesive formulations. In this study, HBr and HI were used as reagents to demethylate an alkali lignin (AL) to increase its hydroxyl content and thereby enhance its reactivity for the preparation of phenolic resins. Analyses by FT-IR, 1H-NMR and 2D-NMR(HSQC) demonstrated both a decrease in methoxyl groups and an increase in hydroxyl groups for each demethylated lignin (DL). In addition, the molar amounts of phenolic hydroxyls, determined by 1H-NMR, increased to 0.67 mmol/g for the HI-DL, and 0.64 mmol/g for the HBr-DL, from 0.52 mmol/g for the AL. These results showed that HI, a stronger nucleophilic reagent than HBr, provided a higher degree of AL demethylation. Lignin-containing resins, prepared by copolymerization, met the bonding strength standard for exterior plywood with DL used to replace as much as 50 wt.% of phenol. The increased hydroxyl contents resulting from the lignin demethylations also imparted faster cure times for the lignin-containing resins and lower formaldehyde emissions. Altogether, the stronger nucleophilicity of HI, compared to HBr, impacted the degree of lignin demethylation, and carried through to measurable differences the thermal properties and performance of the lignin-containing PF resins.
Collapse
|
8
|
Zhang Y, Pang H, Wei D, Li J, Li S, Lin X, Wang F, Liao B. Preparation and characterization of chemical grouting derived from lignin epoxy resin. Eur Polym J 2019. [DOI: 10.1016/j.eurpolymj.2019.05.003] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
9
|
Antimicrobial Activity of Lignin-Derived Polyurethane Coatings Prepared from Unmodified and Demethylated Lignins. COATINGS 2019. [DOI: 10.3390/coatings9080494] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Due to global ecological and economic challenges that have been correlated to the transition from fossil-based to renewable resources, fundamental studies are being performed worldwide to replace fossil fuel raw materials in plastic production. One aspect of current research is the development of lignin-derived polyols to substitute expensive fossil-based polyol components for polyurethane and polyester production. This article describes the synthesis of bioactive lignin-based polyurethane coatings using unmodified and demethylated Kraft lignins. Demethylation was performed to enhance the reaction selectivity toward polyurethane formation. The antimicrobial activity was tested according to a slightly modified standard test (JIS Z 2801:2010). Besides effects caused by the lignins themselves, triphenylmethane derivatives (brilliant green and crystal violet) were used as additional antimicrobial substances. Results showed increased antimicrobial capacity against Staphylococcus aureus. Furthermore, the coating color could be varied from dark brown to green and blue, respectively.
Collapse
|
10
|
Sugarcane Bagasse Hydrolysis Enhancement by Microwave-Assisted Sulfolane Pretreatment. ENERGIES 2019. [DOI: 10.3390/en12091703] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Sugarcane bagasse is the major by-product of the sugarcane industry and, due to its abundant availability, it has been extensively studied for lignocellulosic bioconversion in the production of bioethanol and other value-added commercial products. In the study presented herein, a combined pretreatment using sulfolane, TiO2 and alkali microwave irradiation (MW-A) was assessed for the dissolution of lignin prior to enzymatic saccharification of holocellulose. Total reducing sugars (TRS) and saccharinic acid yields were investigated. The increase in NaOH concentration up to 5% and in temperature from 120 °C to 140 °C were found to have a positive influence on both yields. While increasing the reaction time from 5 to 60 min only led to an increase in TRS yield <2%, a reaction time of 30 min almost doubled the saccharinic acids production. TRS yields and saccharinic acid production were approximately 5% and 33% higher when the sulfolane-TiO2 reaction medium was used, as compared to MW-A in water, reaching up to 64.8% and 15.24 g/L of saccharinic acids, respectively. The proposed MW-A pretreatment may hold promise for industrial applications, given the good TRS yields obtained, and the associated enzyme and time/energy savings. The use of sulfolane-TiO2 reaction medium is encouraged if saccharinic acids are to be recovered too.
Collapse
|
11
|
A Review of Microwave Assisted Liquefaction of Ligninin Hydrogen Donor Solvents: Effect of Solvents and Catalysts. ENERGIES 2018. [DOI: 10.3390/en11112877] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Lignin, a renewable source of aromatic chemicals in nature, has attracted increasing attention due to its structure and application prospect. Catalytic solvolysis has developed as a promising method for the production of value-added products from lignin. The liquefaction process is closely associated with heating methods, catalysts and solvents. Microwave assisted lignin liquefaction in hydrogen donor solvent with the presence of catalysts has been confirmed to be effective to promote the production of liquid fuels or fine chemicals. A great number of researchers should be greatly appreciated on account of their contributions on the progress of microwave technology in lignin liquefaction. In this study, microwave assisted liquefaction of lignin in a hydrogen donor solvent is extensively overviewed, concerning the effect of different solvents and catalysts. This review concludes that microwave assisted liquefaction is a promising technology for the valorization of lignin, which could reduce the reaction time, decrease the reaction temperature, and finally fulfill the utilization of lignin in a relatively mild condition. In the future, heterogeneous catalysts with high catalytic activity and stability need to be prepared to achieve the need for large-scale production of high-quality fuels and value-added chemicals from lignin.
Collapse
|
12
|
Thierry M, Majira A, Pégot B, Cezard L, Bourdreux F, Clément G, Perreau F, Boutet-Mercey S, Diter P, Vo-Thanh G, Lapierre C, Ducrot PH, Magnier E, Baumberger S, Cottyn B. Imidazolium-Based Ionic Liquids as Efficient Reagents for the C-O Bond Cleavage of Lignin. CHEMSUSCHEM 2018; 11:439-448. [PMID: 29048734 DOI: 10.1002/cssc.201701668] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Revised: 10/04/2017] [Indexed: 06/07/2023]
Abstract
The demethylation of lignin in ionic liquids (ILs) was investigated by using pure lignin model monomers and dimers together with dioxane-isolated lignins from poplar, miscanthus, and maize. Different methylimidazolium ILs were compared and the samples were treated with two different heating processes: microwave irradiation and conventional heating in a sealed tube. The conversion yield and influence of the treatment on the lignin structure were assessed by 31 P NMR spectroscopy, size-exclusion chromatography, and thioacidolysis. The acidic methylimidazolium IL [HMIM]Br was shown to be an effective combination of solvent and reagent for the demethylation and depolymerization of lignin. The relatively mild reaction conditions, the clean work-up, and the ability to reuse the IL makes the described procedure an attractive and new green method for the conversion of lignin to produce phenol-rich lignin oligomers.
Collapse
Affiliation(s)
- Marina Thierry
- Institut Jean-Pierre Bourgin, INRA, Agro Paris Tech, CNRS, Université Paris Saclay, 78000, Versailles, France
| | - Amel Majira
- Institut Jean-Pierre Bourgin, INRA, Agro Paris Tech, CNRS, Université Paris Saclay, 78000, Versailles, France
| | - Bruce Pégot
- Université de Versailles St-Quentin, ILV, UMR CNRS 8180, 45 avenue des Etats-Unis, 78035, Versailles, France
| | - Laurent Cezard
- Institut Jean-Pierre Bourgin, INRA, Agro Paris Tech, CNRS, Université Paris Saclay, 78000, Versailles, France
| | - Flavien Bourdreux
- Université de Versailles St-Quentin, ILV, UMR CNRS 8180, 45 avenue des Etats-Unis, 78035, Versailles, France
| | - Gilles Clément
- Institut Jean-Pierre Bourgin, INRA, Agro Paris Tech, CNRS, Université Paris Saclay, 78000, Versailles, France
| | - François Perreau
- Institut Jean-Pierre Bourgin, INRA, Agro Paris Tech, CNRS, Université Paris Saclay, 78000, Versailles, France
| | - Stéphanie Boutet-Mercey
- Institut Jean-Pierre Bourgin, INRA, Agro Paris Tech, CNRS, Université Paris Saclay, 78000, Versailles, France
| | - Patrick Diter
- Université de Versailles St-Quentin, ILV, UMR CNRS 8180, 45 avenue des Etats-Unis, 78035, Versailles, France
| | - Giang Vo-Thanh
- ICMMO, UMR CNRS 8182, Université Paris-Sud 11, 91405, Orsay, France
| | - Catherine Lapierre
- Institut Jean-Pierre Bourgin, INRA, Agro Paris Tech, CNRS, Université Paris Saclay, 78000, Versailles, France
| | - Paul-Henri Ducrot
- Institut Jean-Pierre Bourgin, INRA, Agro Paris Tech, CNRS, Université Paris Saclay, 78000, Versailles, France
| | - Emmanuel Magnier
- Université de Versailles St-Quentin, ILV, UMR CNRS 8180, 45 avenue des Etats-Unis, 78035, Versailles, France
| | - Stéphanie Baumberger
- Institut Jean-Pierre Bourgin, INRA, Agro Paris Tech, CNRS, Université Paris Saclay, 78000, Versailles, France
| | - Betty Cottyn
- Institut Jean-Pierre Bourgin, INRA, Agro Paris Tech, CNRS, Université Paris Saclay, 78000, Versailles, France
| |
Collapse
|