1
|
Dadashzadeh A, Moghassemi S, Shavandi A, Amorim CA. A review on biomaterials for ovarian tissue engineering. Acta Biomater 2021; 135:48-63. [PMID: 34454083 DOI: 10.1016/j.actbio.2021.08.026] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 07/26/2021] [Accepted: 08/18/2021] [Indexed: 12/19/2022]
Abstract
Considerable challenges in engineering the female reproductive tissue are the follicle's unique architecture, the need to recapitulate the extracellular matrix, and tissue vascularization. Over the years, various strategies have been developed for preserving fertility in women diagnosed with cancer, such as embryo, oocyte, or ovarian tissue cryopreservation. While autotransplantation of cryopreserved ovarian tissue is a viable choice to restore fertility in prepubertal girls and women who need to begin chemo- or radiotherapy soon after the cancer diagnosis, it is not suitable for all patients due to the risk of having malignant cells present in the ovarian fragments in some types of cancer. Advances in tissue engineering such as 3D printing and ovary-on-a-chip technologies have the potential to be a translational strategy for precisely recapitulating normal tissue in terms of physical structure, vascularization, and molecular and cellular spatial distribution. This review first introduces the ovarian tissue structure, describes suitable properties of biomaterials for ovarian tissue engineering, and highlights recent advances in tissue engineering for developing an artificial ovary. STATEMENT OF SIGNIFICANCE: The increase of survival rates in young cancer patients has been accompanied by a rise in infertility/sterility in cancer survivors caused by the gonadotoxic effect of some chemotherapy regimens or radiotherapy. Such side-effect has a negative impact on these patients' quality of life as one of their main concerns is generating biologically related children. To aid female cancer patients, several research groups have been resorting to tissue engineering strategies to develop an artificial ovary. In this review, we discuss the numerous biomaterials cited in the literature that have been tested to encapsulate and in vitro culture or transplant isolated preantral follicles from human and different animal models. We also summarize the recent advances in tissue engineering that can potentially be optimal strategies for developing an artificial ovary.
Collapse
|
2
|
Andreozzi P, Simó C, Moretti P, Porcel JM, Lüdtke TU, Ramirez MDLA, Tamberi L, Marradi M, Amenitsch H, Llop J, Ortore MG, Moya SE. Novel Core-Shell Polyamine Phosphate Nanoparticles Self-Assembled from PEGylated Poly(allylamine hydrochloride) with Low Toxicity and Increased In Vivo Circulation Time. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2102211. [PMID: 34278713 DOI: 10.1002/smll.202102211] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 05/11/2021] [Indexed: 06/13/2023]
Abstract
An approach for reducing toxicity and enhancing therapeutic potential of supramolecular polyamine phosphate nanoparticles (PANs) through PEGylation of polyamines before their assembly into nanoparticles is presented here. It is shown that the number of polyethylene glycol (PEG) chains for polyamine largely influence physico-chemical properties of PANs and their biological endpoints. Poly(allylamine hydrochloride) (PAH) are functionalized through carbodiimide chemistry with three ratios of PEG molecules per PAH chain: 0.1, 1, and 10. PEGylated PAH is then assembled into PANs by exposing the polymer to phosphate buffer solution. PANs decrease size and surface charge with increasing PEG ratios as evidenced by dynamic light scattering and zeta potential measurements, with the ten PEG/PAH ratio PANs having practically zero charge. Small angle X-ray scattering (SAXS) proves that PEG chains form a shell around a polyamine core, which is responsible for the screening of positive charges. MTT experiments show that the screening of amine groups decreases nanoparticle toxicity, with the lowest toxicity for the 10 PEG/PAH ratio. Fluorescence correlation spectroscopy (FCS) proves less interaction with proteins for PEGylated PANs. Positron emission tomography (PET) imaging of 18 F labelled PANs shows longer circulation time in healthy mice for PEGylated PANs than non-PEGylated ones.
Collapse
Affiliation(s)
- Patrizia Andreozzi
- Soft Matter Nanotechnology Group, CIC biomaGUNE, Basque Research and Technology Alliance (BRTA), Paseo Miramón 182, San Sebastián, Guipúzcoa, 20014, Spain
- Consorzio Sistemi a Grande Interfase, Department of Chemistry 'Ugo Schiff', University of Florence, Via della Lastruccia 3, Sesto Fiorentino, Florence, 50019, Italy
| | - Cristina Simó
- Soft Matter Nanotechnology Group, CIC biomaGUNE, Basque Research and Technology Alliance (BRTA), Paseo Miramón 182, San Sebastián, Guipúzcoa, 20014, Spain
- Radiochemistry and Nuclear Imaging Group, CIC biomaGUNE, Basque Research and Tech-nology Alliance (BRTA), Paseo Miramón 182, San Sebastián, Guipúzcoa, 20014, Spain
| | - Paolo Moretti
- Dipartimento di Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, Via brecce bianche, Ancona, I-60131, Italy
| | - Joaquin Martinez Porcel
- Soft Matter Nanotechnology Group, CIC biomaGUNE, Basque Research and Technology Alliance (BRTA), Paseo Miramón 182, San Sebastián, Guipúzcoa, 20014, Spain
| | - Tanja Ursula Lüdtke
- Soft Matter Nanotechnology Group, CIC biomaGUNE, Basque Research and Technology Alliance (BRTA), Paseo Miramón 182, San Sebastián, Guipúzcoa, 20014, Spain
| | - Maria de Los Angeles Ramirez
- Soft Matter Nanotechnology Group, CIC biomaGUNE, Basque Research and Technology Alliance (BRTA), Paseo Miramón 182, San Sebastián, Guipúzcoa, 20014, Spain
- Instituto de Nanosistemas, UNSAM, CONICET, Avenida 25 de Mayo 1021, San Martín, Buenos Aires, 1650, Argentina
| | - Lorenza Tamberi
- Soft Matter Nanotechnology Group, CIC biomaGUNE, Basque Research and Technology Alliance (BRTA), Paseo Miramón 182, San Sebastián, Guipúzcoa, 20014, Spain
| | - Marco Marradi
- Department of Chemistry 'Ugo Schiff', University of Florence, Via della Lastruccia 3/13, Sesto Fiorentino, Florence, 50019, Italy
| | - Heinz Amenitsch
- Institute of Inorganic Chemistry, Graz University of Technology, Stremayergasse 9/V, Graz, 8010, Austria
| | - Jordi Llop
- Radiochemistry and Nuclear Imaging Group, CIC biomaGUNE, Basque Research and Tech-nology Alliance (BRTA), Paseo Miramón 182, San Sebastián, Guipúzcoa, 20014, Spain
- Centro de Investigación Biomédica en Red - Enfermedades Respiratorias (CIBERES), Av. Monforte de Lemos, 3-5, Madrid, 28029, Spain
| | - Maria Grazia Ortore
- Dipartimento di Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, Via brecce bianche, Ancona, I-60131, Italy
| | - Sergio Enrique Moya
- Soft Matter Nanotechnology Group, CIC biomaGUNE, Basque Research and Technology Alliance (BRTA), Paseo Miramón 182, San Sebastián, Guipúzcoa, 20014, Spain
| |
Collapse
|
3
|
Advances in amphiphilic polylactide/vinyl polymer based nano-assemblies for drug delivery. Adv Colloid Interface Sci 2021; 294:102483. [PMID: 34274723 DOI: 10.1016/j.cis.2021.102483] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 06/28/2021] [Accepted: 07/02/2021] [Indexed: 01/14/2023]
Abstract
Micelles from self-assembled amphiphilic copolymers are highly attractive in drug delivery, due to their small size and hydrophilic stealth corona allowing prolonged lifetimes in the bloodstream and thus improved drug bioavailability. Polylactide (PLA)-based amphiphilic copolymer micelles are key candidates in this field, owing to the well-established biodegradability and biocompatibility of PLA. While PLA-b-poly(ethylene glycol) (PEG) block copolymer micelles can be seen as the "gold standard" in drug delivery research so far, the progresses in controlled radical polymerizations (Atom Transfer Radical Polymerization, Reversible Addition-Fragmentation Transfer and Nitroxide Mediated Polymerization) have offered new opportunities in the design of advanced amphiphilic copolymers for drug delivery due to their flexibility in many regards: (i) they can be easily combined with ring-opening polymerization (ROP) of lactide, with a diversity in types of architectures (e.g., block, graft, star), (ii) they allow (co)polymerization of a wide range of vinyl monomers, possibly circumventing PEG limitations, (iii) functionalization (with biomolecules or stimuli-cleavable moieties) is versatile due to end-group fidelity and copolymerization ability with reactive/functional comonomers. In this review, we report on the advances in the past decade of such amphiphilic PLA/vinyl polymer based nano-carriers, regarding key properties such as stealth character, cell targeting and stimuli-responsiveness.
Collapse
|
6
|
Wang J, Sun C, Hu J, Huang Y, Lu Y, Zhang Y. Ring opening copolymerization of ε-caprolactone and diselenic macrolide carbonate for well-defined poly(ester-co-carbonate): kinetic evaluation and ROS/GSH responsiveness. Polym Chem 2020. [DOI: 10.1039/c9py01788g] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Theoretical calculations agreed well with the experimental results. The competitive mechanism was proposed to clarify the composition and structure of the copolymers.
Collapse
Affiliation(s)
- Jiahao Wang
- Shanghai Key Laboratory of Advanced Polymeric Materials
- Key Laboratory for Ultrafine Materials of Ministry of Education
- School of Materials Science and Engineering
- East China University of Science and Technology
- Shanghai
| | - Chuanhao Sun
- Shanghai Key Laboratory of Advanced Polymeric Materials
- Key Laboratory for Ultrafine Materials of Ministry of Education
- School of Materials Science and Engineering
- East China University of Science and Technology
- Shanghai
| | - Jieni Hu
- Shanghai Key Laboratory of Advanced Polymeric Materials
- Key Laboratory for Ultrafine Materials of Ministry of Education
- School of Materials Science and Engineering
- East China University of Science and Technology
- Shanghai
| | - Yanling Huang
- School of Chemistry and Molecular Engineering
- East China University of Science and Technology
- Shanghai
- P. R. China
| | - Yunxiang Lu
- School of Chemistry and Molecular Engineering
- East China University of Science and Technology
- Shanghai
- P. R. China
| | - Yan Zhang
- Shanghai Key Laboratory of Advanced Polymeric Materials
- Key Laboratory for Ultrafine Materials of Ministry of Education
- School of Materials Science and Engineering
- East China University of Science and Technology
- Shanghai
| |
Collapse
|
7
|
Ordanini S, Celentano W, Bernardi A, Cellesi F. Mannosylated brush copolymers based on poly(ethylene glycol) and poly(ε-caprolactone) as multivalent lectin-binding nanomaterials. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2019; 10:2192-2206. [PMID: 31807405 PMCID: PMC6880840 DOI: 10.3762/bjnano.10.212] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 10/23/2019] [Indexed: 06/10/2023]
Abstract
A class of linear and four-arm mannosylated brush copolymers based on poly(ethylene glycol) and poly(ε-caprolactone) is presented here. The synthesis through ring-opening and atom transfer radical polymerizations provided high control over molecular weight and functionality. A post-polymerization azide-alkyne cycloaddition allowed for the formation of glycopolymers with different mannose valencies (1, 2, 4, and 8). In aqueous media, these macromolecules formed nanoparticles that were able to bind lectins, as investigated by concanavalin A binding assay. The results indicate that carbohydrate-lectin interactions can be tuned by the macromolecular architecture and functionality, hence the importance of these macromolecular properties in the design of targeted anti-pathogenic nanomaterials.
Collapse
Affiliation(s)
- Stefania Ordanini
- Department of Chemistry, Materials and Chemical Engineering “G. Natta”, Politecnico di Milano, via Mancinelli 7, Milano 20131, Italy
| | - Wanda Celentano
- Department of Chemistry, Materials and Chemical Engineering “G. Natta”, Politecnico di Milano, via Mancinelli 7, Milano 20131, Italy
- Humanitas Research Hospital, Via Manzoni 56, Rozzano, Milano 20089, Italy
| | - Anna Bernardi
- Department of Chemistry, Università degli Studi di Milano, via Golgi 19, Milano 20133, Italy
| | - Francesco Cellesi
- Department of Chemistry, Materials and Chemical Engineering “G. Natta”, Politecnico di Milano, via Mancinelli 7, Milano 20131, Italy
| |
Collapse
|