1
|
Tahmasebi Sefiddashti F, Homayoonfal M. Nanostructure-manipulated filtration performance in nanocomposite membranes: A comprehensive investigation for water and wastewater treatment. Heliyon 2024; 10:e36874. [PMID: 39319140 PMCID: PMC11419920 DOI: 10.1016/j.heliyon.2024.e36874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 08/20/2024] [Accepted: 08/23/2024] [Indexed: 09/26/2024] Open
Abstract
The main objective of this article is to examine one of the most important challenges facing researchers in the field of nanocomposite membranes: what is the most suitable arrangement (unmodified, functionalized, coated, or composite) and the most suitable loading site for the nanostructure? In the review articles published on nanocomposite membranes in recent years, the focus has been either on a specific application area (such as nanofiltration or desalination), or on a specific type of polymeric materials (such as polyamide), or on a specific feature of the membrane (such as antibacterial, antimicrobial, or antifouling). However, none of them have targeted the aforementioned objectives on the efficacy of improving filtration performance (IFP). Through IFP calculation, the results will be repeatable and generalizable in this field. The novelty of the current research lies in examining and assessing the impact of the loading site and the type of nanostructure modification on enhancing IFP. Based on the performed review results, for the researchers who tend to use nanocomposite membranes for treatment of organic, textile, brine and pharmaceutical wastewaters as well as membrane bioreactors, thePES NH 2 - PDA - Fe 3 O 4 M ,PAN Fe 3 O 4 / ZrO 2 M ,PVDF CMC - ZnO M ,AA AA - CuS PSf M andPVDF OCMCS / Fe 3 O 4 M with IFP equal to 132.27, 15, 423.6, 16.025 and 5, were proposed, respectively.
Collapse
Affiliation(s)
- Fateme Tahmasebi Sefiddashti
- Department of Chemical Engineering, College of Engineering, University of Isfahan, P.O. Box 81746-73441, Isfahan, Iran
| | - Maryam Homayoonfal
- Department of Chemical Engineering, College of Engineering, University of Isfahan, P.O. Box 81746-73441, Isfahan, Iran
| |
Collapse
|
2
|
Xia C, Joo SW, Hojjati-Najafabadi A, Xie H, Wu Y, Mashifana T, Vasseghian Y. Latest advances in layered covalent organic frameworks for water and wastewater treatment. CHEMOSPHERE 2023; 329:138580. [PMID: 37019401 DOI: 10.1016/j.chemosphere.2023.138580] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/19/2023] [Accepted: 03/31/2023] [Indexed: 05/03/2023]
Abstract
This review provides an overview of recent progress in the development of layered covalent organic frameworks (LCOFs) for the adsorption and degradation of pollutants in water and wastewater treatment. LCOFs have unique properties such as high surface area, porosity, and tunability, which make them attractive adsorbents and catalysts for water and wastewater treatment. The review covers the different synthesis methods for LCOFs, including self-assembly, co-crystallization, template-directed synthesis, covalent organic polymerization (COP), and solvothermal synthesis. It also covers the structural and chemical characteristics of LCOFs, their adsorption and degradation capacity for different pollutants, and their comparison with other adsorbents and catalysts. Additionally, it discussed the mechanism of adsorption and degradation by LCOFs, the potential applications of LCOFs in water and wastewater treatment, case studies and pilot-scale experiments, challenges, and limitations of using LCOFs, and future research directions. The current state of research on LCOFs for water and wastewater treatment is promising, however, more research is needed to improve their performance and practicality. The review highlights that LCOFs have the potential to significantly improve the efficiency and effectiveness of current water and wastewater treatment methods and can also have implications for policy and practice.
Collapse
Affiliation(s)
- Changlei Xia
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Sang-Woo Joo
- Department of Chemistry, Soongsil University, Seoul, 06978, South Korea.
| | - Akbar Hojjati-Najafabadi
- School of Materials Science and Physics, China University of Mining and Technology, Xuzhou, 221116, PR China
| | - Huan Xie
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Yingji Wu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Tebogo Mashifana
- The University of Johannesburg, Department of Chemical Engineering, P.O. Box 17011, Doornfontein 2088, South Africa
| | - Yasser Vasseghian
- Department of Chemistry, Soongsil University, Seoul, 06978, South Korea; School of Engineering, Lebanese American University, Byblos, Lebanon; Department of Sustainable Engineering, Saveetha School of Engineering, SIMATS, Chennai, 602105, India.
| |
Collapse
|
3
|
Gouda MH, Elessawy NA, Toghan A. Development of hybrid green nanocomposite polymeric beads doped with nano sulfated zirconia for effective removal of Cefotaxime antibiotic from aqueous solution. Sci Rep 2022; 12:12701. [PMID: 35882879 PMCID: PMC9325701 DOI: 10.1038/s41598-022-16473-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 07/11/2022] [Indexed: 12/01/2022] Open
Abstract
Adsorption efficiency of Cefotaxime by novel nanocomposites beads composed of iota carrageenan (IC), sulfonated poly vinyl alcohol (SPVA) and nano sulfated zirconia (SZrO2) was evaluated in this study. SZrO2 was synthesized from solvent-free and easy calcination technique then embedded with 1–2.5 wt.% into the polymeric matrix. A batch adsorption experiment was carried out to investigate the effects of dosage, pH, beginning concentration, and time on Cefotaxime antibiotic adsorption. The ideal conditions to achieve complete removal are 88.97 mg L−1 initial cefotaxime concentration at time 3.58 h with 11.68 mg of beads composite with 2.5 wt.% of SZrO2. The pseudo second order kinetics model better illustrated the adsorption of cefotaxime on nanocomposite beads, and the maximum adsorption capacity are 659 mg g−1 for the composite with 2.5 wt.% of SZrO2. The mechanism of adsorption process depend mainly on the interactions between the different functional groups of SPVA, IC and SZrO2. The nanocomposites beads also exhibit excellent reproducibility after ten adsorption cycles. This type of nanocomposites beads can be easily separated from water without leaving any residue, verifying this novel nanocomposite beads has strong potential in water treatment for the antibiotic contaminant removal.
Collapse
Affiliation(s)
- Marwa H Gouda
- Polymer Materials Research Department, Advanced Technology and New Materials Research Institute (ATNMRI), City of Scientific Research and Technological Applications City (SRTA-City), Alexandria, 21934, Egypt
| | - Noha A Elessawy
- Computer Based Engineering Applications Department, Informatics Research Institute IRI, City of Scientific Research & Technological Applications (SRTA-City), Alexandria, 21934, Egypt.
| | - Arafat Toghan
- Chemistry Department, Faculty of Science, South Valley University, Qena, 83523, Egypt.,Chemistry Department, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, 11623, Saudi Arabia
| |
Collapse
|
4
|
Ma Y, Chen X, Wang S, Dong H, Zhai X, Shi X, Wang J, Ma R, Zhang W. Significantly enhanced antifouling and separation capabilities of PVDF membrane by synergy of semi-interpenetrating polymer and TiO2 gel nanoparticles. J IND ENG CHEM 2022. [DOI: 10.1016/j.jiec.2021.11.038] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
5
|
Membrane pH responsibility as a remote control for pore size arrangement and surface charge adjustment in order to efficient separation of doxorubicin antitumor drug. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2021.120116] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
6
|
Sokhandan F, Homayoonfal M, Hajheidari M. Sodium alginate coating: A strategy to fabricate a membrane surface resistant against sodium alginate fouling. Chem Eng Res Des 2021. [DOI: 10.1016/j.cherd.2021.10.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
7
|
Zabihi Z, Homayoonfal M. Strategies to modify the structure of thin‐film composite membranes for advanced separation of metronidazole antibiotic from wastewater. POLYM ADVAN TECHNOL 2021. [DOI: 10.1002/pat.5469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Zohreh Zabihi
- Department of Chemical Engineering College of Engineering, University of Isfahan Isfahan Iran
| | - Maryam Homayoonfal
- Department of Chemical Engineering College of Engineering, University of Isfahan Isfahan Iran
| |
Collapse
|
8
|
Idress H, Zaidi SZJ, Sabir A, Shafiq M, Khan RU, Harito C, Hassan S, Walsh FC. Cellulose acetate based Complexation-NF membranes for the removal of Pb(II) from waste water. Sci Rep 2021; 11:1806. [PMID: 33469047 PMCID: PMC7815919 DOI: 10.1038/s41598-020-80384-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 12/02/2020] [Indexed: 01/21/2023] Open
Abstract
This study investigates the removal of Pb(II) using polymer matrix membranes, cellulose acetate/vinyl triethoxysilane modified graphene oxide and gum Arabic (GuA) membranes. These complexation-NF membranes were successfully synthesized via dissolution casting method for better transport phenomenon. The varied concentrations of GuA were induced in the polymer matrix membrane. The prepared membranes M-GuA2–M-GuA10 were characterized by Fourier transform infrared spectroscopy, scanning electron microscopy, transmission electron microscopy, atomic force microscope and bio-fouling studies. Thermal stability of the membranes was determined by thermogravimetric analysis under nitrogen atmosphere. Dead end nanofiltration was carried out to study the perm- selectivity of all the membranes under varied pressure and concentration of Pb(NO3)2. The complexation-NF membrane performances were significantly improved after the addition of GuA in the polymer matrix membrane system. M-GuA8 membrane showed optimum result of permeation flux 8.6 l m−2 h−1. Rejection of Pb(II) ions was observed to be around 97.6% at pH 9 for all the membranes due to electrostatic interaction between CA and Gum Arabic. Moreover, with the passage of time, the rate of adsorption was also increased up to 15.7 mg g−1 until steady state was attained. Gum Arabic modified CA membranes can open up new possibilities in enhancing the permeability, hydrophilicity and anti-fouling properties.
Collapse
Affiliation(s)
- H Idress
- Department of Polymer Engineering and Technology, University of the Punjab, Lahore, 54590, Pakistan.
| | - S Z J Zaidi
- Institute of Chemical Engineering and Technology, University of the Punjab, Lahore, Pakistan.
| | - A Sabir
- Department of Polymer Engineering and Technology, University of the Punjab, Lahore, 54590, Pakistan
| | - M Shafiq
- Department of Polymer Engineering and Technology, University of the Punjab, Lahore, 54590, Pakistan
| | - R U Khan
- Department of Polymer Engineering and Technology, University of the Punjab, Lahore, 54590, Pakistan
| | - C Harito
- Industrial Engineering Department, Faculty of Engineering, Bina Nusantara University, Jakarta, 11480, Indonesia
| | - S Hassan
- Mechanical Engineering, Faculty of Engineering and Physical Sciences, University of Southampton, Highfield, Southampton, SO17 1BJ, UK
| | - F C Walsh
- Electrochemical Engineering Laboratory, Faculty of Engineering and Environment, Engineering Sciences, University of Southampton, Highfield, Southampton, SO17 1BJ, UK
| |
Collapse
|
9
|
Karimi R, Homayoonfal M. The supplement role of iron oxide and zirconium oxide nanoparticles as an advanced composite compound for enhancing the efficiency of thin‐film nanocomposite membranes. POLYM ADVAN TECHNOL 2020. [DOI: 10.1002/pat.5181] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Rezvan Karimi
- Department of Chemical Engineering College of Engineering, University of Isfahan Isfahan Iran
| | - Maryam Homayoonfal
- Department of Chemical Engineering College of Engineering, University of Isfahan Isfahan Iran
| |
Collapse
|
10
|
Ramzan M, Imran M, Ullah S, Khan MA, Naz G, Ghouri M, Iqbal HM. Fabrication and characterization of multifunctional thin multi-layer films for transparent conducting oxides. PROGRESS IN ORGANIC COATINGS 2020; 149:105976. [DOI: 10.1016/j.porgcoat.2020.105976] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
11
|
Sokhandan F, Homayoonfal M, Davar F. Application of zinc oxide and sodium alginate for biofouling mitigation in a membrane bioreactor treating urban wastewater. BIOFOULING 2020; 36:660-678. [PMID: 32752888 DOI: 10.1080/08927014.2020.1798934] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 07/12/2020] [Accepted: 07/14/2020] [Indexed: 06/11/2023]
Abstract
This research aimed to mitigate fouling in membrane bioreactors (MBR) through concurrent usage of zinc oxide as an antibacterial agent (A) and sodium alginate as a hydrophilic agent (H) within a polyacrylonitrile membrane (PM) structure. The antibacterial polymeric membranes (APM) and antibacterial hydrophilic polymeric membranes (AHPM) synthesized showed a higher porosity, mechanical strength and bacterial inhibition zone, and a lower contact angle in comparison with PM membranes. EDS, SEM and AFM analyses were used to characterize the chemical, structural, and morphological properties of PM, APM, and AHPM. The flux of PM, APM, and AHPM in MBR was 37, 48, and 51 l m-2 h-1 and COD removal was 81, 93.5, and 96.7%, respectively. After MBR operation for 35 days in an urban wastewater treatment, only 50% of the flux of PM was recovered, while the antibacterial and hydrophilic agents yielded a flux recovery of 72.7 and 100% for APM and AHPM, respectively.
Collapse
Affiliation(s)
- Fatemeh Sokhandan
- Department of Chemical Engineering, College of Engineering, University of Isfahan, Isfahan, Iran
| | - Maryam Homayoonfal
- Department of Chemical Engineering, College of Engineering, University of Isfahan, Isfahan, Iran
| | - Fatemeh Davar
- Department of Chemistry, Isfahan University of Technology, Isfahan, Iran
| |
Collapse
|
12
|
Grządka E, Matusiak J. Changes in the CMC/ZrO2 system properties in the presence of hydrocarbon, fluorocarbon and silicone surfactants. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.112699] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
13
|
Application of UV irradiation enhanced by CuS photosensitive nanoparticles to mitigate polysulfone membrane fouling. J Photochem Photobiol A Chem 2020. [DOI: 10.1016/j.jphotochem.2019.112304] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
14
|
Monsef K, Homayoonfal M, Davar F. Engineering arrangement of nanoparticles within nanocomposite membranes matrix: a suggested way to enhance water flux. POLYM-PLAST TECH MAT 2019. [DOI: 10.1080/25740881.2019.1695264] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Kamalodin Monsef
- Department of Chemical Engineering, College of Engineering, University of Isfahan, Isfahan, Iran
| | - Maryam Homayoonfal
- Department of Chemical Engineering, College of Engineering, University of Isfahan, Isfahan, Iran
| | - Fatemeh Davar
- Department of Chemistry, Isfahan University of Technology, Isfahan, Iran
| |
Collapse
|