1
|
Ghasemizadeh H, Pourmadadi M, Yazdian F, Rashedi H, Navaei-Nigjeh M, Rahdar A, Díez-Pascual AM. Novel carboxymethyl cellulose-halloysite-polyethylene glycol nanocomposite for improved 5-FU delivery. Int J Biol Macromol 2023; 232:123437. [PMID: 36708898 DOI: 10.1016/j.ijbiomac.2023.123437] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 01/15/2023] [Accepted: 01/22/2023] [Indexed: 01/27/2023]
Abstract
Drug nano-carriers are crucial for achieving targeted treatment against cancer disorders with minimal side effects. In this study, a pH-responsive nanocomposite based on halloysite nanotube (HNT) coated with carboxymethyl cellulose (CMC)/polyethylene glycol (PEG) hydrogel for controlled delivery of 5-Fluorouracil (5-FU), a hydrophobic chemotherapy drug prescribed for different types of cancers was synthesized for the first time using the water-in-oil-in-water (W/O/W) technique. The developed CMC/PEG/HNT/5-FU nanocomposite was characterized by dynamic light scattering (DLS), zeta potential, Fourier-transform infrared spectroscopy (FTIR), X-ray diffraction (XRD) and Field emission scanning electron microscope (FE-SEM) to get information about the particle size, surface charge, interactions between functional groups, crystalline structure and morphology, respectively. High efficiencies in terms of drug entrapment and loading (46 % and 87 %, respectively) were attained. In-vitro drug release results revealed an improved and sustained 5-FU delivery in an acid environment compared to the physiological medium, corroborating the pH-sensitivity of the developed nano-carrier. Flow cytometry and MTT assays demonstrated that the 5-FU loaded nanocomposite had considerable cytotoxicity on MCF-7 breast cancer cells while it is not toxic against L929 fibroblast cells. The nanocomposite synthesized herein could serve as a platform for the pH-sensitive release of anti-cancer drugs.
Collapse
Affiliation(s)
- Haniyeh Ghasemizadeh
- Department of Biotechnology, School of Chemical Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | - Mehrab Pourmadadi
- Department of Biotechnology, School of Chemical Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | - Fatemeh Yazdian
- Department of Life Science Engineering, Faculty of New Science and Technologies, University of Tehran, Tehran, Iran.
| | - Hamid Rashedi
- Department of Biotechnology, School of Chemical Engineering, College of Engineering, University of Tehran, Tehran, Iran.
| | - Mona Navaei-Nigjeh
- Pharmaceutical Sciences Research Center, the Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran; Department of Pharmaceutical Biomaterials and Medical Biomaterials Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Abbas Rahdar
- Department of Physics, Faculty of Sciences, University of Zabol, Zabol 538-98615, Iran.
| | - Ana M Díez-Pascual
- Universidad de Alcalá, Facultad de Ciencias, Departamento de Química Analítica, Química Física e Ingeniería Química, Ctra. Madrid-Barcelona Km. 33.6, 28805 Alcalá de Henares, Madrid, Spain.
| |
Collapse
|
2
|
Controlled 5‐FU Release from P(NIPAM‐co‐VIm)‐g‐PEG Dual Responsive Hydrogels. ChemistrySelect 2023. [DOI: 10.1002/slct.202203522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2023]
|
3
|
Hosseini SM, Farmany A, Alikhani MY, Taheri M, Asl SS, Alamian S, Arabestani MR. Co-Delivery of Doxycycline and Hydroxychloroquine Using CdTe-Labeled Solid Lipid Nanoparticles for Treatment of Acute and Chronic Brucellosis. Front Chem 2022; 10:890252. [PMID: 35646816 PMCID: PMC9130827 DOI: 10.3389/fchem.2022.890252] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Accepted: 04/07/2022] [Indexed: 12/15/2022] Open
Abstract
Brucellosis is a systemic disease in both acute and chronic forms which can affect any organ or tissue in the body. One of the biggest issues in treating this disease is its relapse. In this study, a complete treatment of brucellosis was evaluated using enhanced performance of doxycycline and hydroxychloroquine drugs by using solid lipid nanoparticles (SLN) conjugated cadmium-telluride quantum dots. The double emulsion method was used to prepare SLN and cadmium-telluride quantum dots. The physicochemical properties of NPs were determined. The effect of nanoparticle-loaded antibiotics against Brucella melitensis was determined by well diffusion, minimum inhibitory concentration (MIC), cell culture, and animal studies. The means of particle size, PDI, zeta potential, drugs loading, and encapsulation efficiency were 214 ± 25 nm, 0.385 ± 0.022, −18.7 ± 2.3 mV, 17.7 ± 1.5%, and 94.15 ± 2.6%, respectively. The results of FTIR and DSC showed that no chemical reaction occurred between the components of the NPs. The effect of free drug and NPs on bacteria was the same by well diffusion and MIC method. Drug-loaded NPs significantly reduced the number of CFUs in the cell line and acute and chronic brucellosis compared to the free drug. In conclusion, the synthesized nanoparticles were safe and green. With the slow release of the drug (100 h), the accumulation of the drug at the bacterial site increases and causes a greater effect on the B. melitensis and improves the disease of brucellosis. The use of synthesized nanodrugs in this study had promising therapeutic results.
Collapse
Affiliation(s)
- Seyed Mostafa Hosseini
- Department of Microbiology, Faculty of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Abbas Farmany
- Dental Research Center, School of Dentistry, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Mohammad Yousef Alikhani
- Department of Microbiology, Faculty of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Mohammad Taheri
- Department of Microbiology, Faculty of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Sara Soleimani Asl
- Department of Anatomical Sciences, Faculty of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Saeed Alamian
- Razi Vaccine and Serum Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran
| | - Mohammad Reza Arabestani
- Department of Microbiology, Faculty of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
- Brucellosis Research Center, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
- *Correspondence: Mohammad Reza Arabestani,
| |
Collapse
|
4
|
Gerami SE, Pourmadadi M, Fatoorehchi H, Yazdian F, Rashedi H, Nigjeh MN. Preparation of pH-sensitive chitosan/polyvinylpyrrolidone/α-Fe 2O 3 nanocomposite for drug delivery application: Emphasis on ameliorating restrictions. Int J Biol Macromol 2021; 173:409-420. [PMID: 33454326 DOI: 10.1016/j.ijbiomac.2021.01.067] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 12/26/2020] [Accepted: 01/12/2021] [Indexed: 12/25/2022]
Abstract
Chitosan (CS)/polyvinylpyrrolidone (PVP)/hematite (α-Fe2O3) nanocomposites loaded with Doxorubicin (drug model) were synthesized via an oil-in-water emulsification method to develop a biocompatible and pH-sensitive drug nanocarrier for the first time. A hydrogel, including CS, PVP, and α-Fe2O3, was fabricated successfully with glutaraldehyde (GA) as the cross-linker. Incorporating α-Fe2O3 into CS/PVP hydrogel improved the pH-sensitivity and developed beneficial hydrogel. FTIR and XRD analysis illustrated physical interactions between polymer-polymer, polymer-drug, and crystalline behavior of prepared nanocomposite. These analyses also confirmed chemical bonding in nanocomposite's structure. The FE-SEM analysis showed successful impregnation of α-Fe2O3 into CS/PVP matrix and spherical structure. To clarify the size distribution and surface charge of the drug-loaded nanocomposite (CS/PVP/α-Fe2O3/Dox), DLS and zeta analyses were conducted. They showed the mean size of nanocomposites at about 247 nm. Drug-loaded CS/PVP/α-Fe2O3 nanocomposite and CS/PVP/Dox were studied for their release behavior and kinetics. Furthermore, the effect of α-Fe2O3 on release from CS/PVP/α-Fe2O3/Dox nanocomposite was investigated. That showed an increase in encapsulation of Doxorubicin and beneficial release behavior such as slow-release and retention effect. The release from this drug-loaded nanocomposite revealed excellent pH-sensitive and controlled release of the drug. Besides, the in vitro cytotoxicity and cell apoptosis were studied to recognize biological properties. These analyses revealed that drug-loaded nanocomposite caused high inhibition to MCF-7 cells in presence of α-Fe2O3 and proved the hematite's anti-cancer effect. By and large, this study confirmed CS/PVP/α-Fe2O3 nanocomposites as a potential candidate for the controlled pH-sensitive release of the drug.
Collapse
Affiliation(s)
- Saman Emami Gerami
- School of Chemical Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | - Mehrab Pourmadadi
- School of Chemical Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | - Hooman Fatoorehchi
- School of Chemical Engineering, College of Engineering, University of Tehran, Tehran, Iran.
| | - Fatemeh Yazdian
- Department of Life Science Engineering, Faculty of New Science and Technologies, University of Tehran, Tehran, Iran.
| | - Hamid Rashedi
- Department of Biotechnology, School of Chemical Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | - Mona Navaei Nigjeh
- Pharmaceutical Sciences Research Center, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Science, Tehran, Iran
| |
Collapse
|
5
|
Liu R, Liu S, Hu G, Lindsey JS. Aqueous solubilization of hydrophobic tetrapyrrole macrocycles by attachment to an amphiphilic single-chain nanoparticle (SCNP). NEW J CHEM 2020. [DOI: 10.1039/d0nj04413j] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Snapping a heterotelechelic amphiphilic polymer onto a tetrapyrrole imparts aqueous solubility to the otherwise hydrophobic macrocycle as demonstrated for a chlorin, bacteriochlorin and phthalocyanine.
Collapse
Affiliation(s)
- Rui Liu
- Department of Chemistry
- North Carolina State University
- Raleigh
- USA
| | - Sijia Liu
- Department of Chemistry
- North Carolina State University
- Raleigh
- USA
| | - Gongfang Hu
- Department of Chemistry
- North Carolina State University
- Raleigh
- USA
| | | |
Collapse
|
6
|
Jahangir MA, Gilani SJ, Muheem A, Jafar M, Aslam M, Ansari MT, Barkat MA. Quantum Dots: Next Generation of Smart Nano-Systems. Pharm Nanotechnol 2019; 7:234-245. [PMID: 31486752 DOI: 10.2174/2211738507666190429113906] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 12/03/2018] [Accepted: 04/10/2019] [Indexed: 02/06/2023]
Abstract
BACKGROUND The amalgamation of biological sciences with nano stuff has significantly expedited the progress of biological strategies, greatly promoting practical applications in biomedical fields. OBJECTIVE With distinct optical attributes (e.g., robust photostability, restricted emission spectra, tunable broad excitation, and high quantum output), fluorescent quantum dots (QDs) have been feasibly functionalized with manageable interfaces and considerably utilized as a new class of optical probe in biological investigations. METHODS In this review article, we structured the current advancements in the preparation methods and attributes of QDs. Furthermore, we extend an overview of the outstanding potential of QDs for biomedical research and radical approaches to drug delivery. CONCLUSION Notably, the applications of QDs as smart next-generation nanosystems for neuroscience and pharmacokinetic studies have been explained. Moreover, recent interests in the potential toxicity of QDs are also apprised, ranging from cell investigations to animal studies.
Collapse
Affiliation(s)
- Mohammed Asadullah Jahangir
- Department of Pharmaceutics, Nibha Institute of Pharmaceutical Sciences, Karimpur, Rajgir, Nalanda- 803116, Bihar, India
| | - Sadaf Jamal Gilani
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jouf University, Sakaka 2014, Aljouf, Saudi Arabia
| | - Abdul Muheem
- School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Mohammed Jafar
- Department of Pharmaceutics, College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam-31441, Saudi Arabia
| | - Mohammed Aslam
- School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Mohammed Tahir Ansari
- Faculty of Pharmacy and Health Sciences, University Kuala Lumpur, Royal College of Medicine, Perak, Ipoh, Malaysia
| | - Mohammed Abul Barkat
- Department of Pharmaceutics, School of Medical and Allied Sciences, K.R. Mangalam University, Sohna Road, Gurgaon-122103, Delhi-NCR, India
| |
Collapse
|