1
|
Zhang Y, Cao K, Yang M, Hong H, Shen Y, Ning H, Xia J, Chen S. In Situ Polymerization Strategy for Improving the Stability of Sn-Based Perovskite Solar Cells. ACS APPLIED MATERIALS & INTERFACES 2024; 16:32240-32248. [PMID: 38877977 DOI: 10.1021/acsami.4c04280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/27/2024]
Abstract
Sn-based perovskite solar cells (Sn-PSCs) have received increasing attention due to their nontoxicity and potentially high efficiency. However, the poor stability of Sn2+ ions remains a major problem in achieving stable and efficient Sn-PSCs. Herein, an in situ polymerization strategy using allyl thiourea and ethylene glycol dimethacrylate as cross-linking agents in the Sn-based perovskite precursor is proposed to improve the device performance of Sn-PSCs. The C═S and N-H bonds of the cross-linkers are able to coordinate with SnI2 and inhibit the oxidation of Sn2+, thereby reducing defect density and improving the stability of Sn-based perovskite films. The high quality of the perovskite film induced by the in situ polymerization strategy delivers an improved power conversion efficiency (PCE) from 7.50 to 9.22%. More importantly, the unpackaged device with cross-linkers maintained more than 70% of the initial PCE after 150 h of AM 1.5G light soaking in a nitrogen atmosphere and 80% of the initial PCE after 1800 h in dark conditions. This work demonstrates that the in situ polymerization strategy is an effective method to enhance the stability of Sn-based perovskite films and devices.
Collapse
Affiliation(s)
- Yibo Zhang
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing 210023, China
| | - Kun Cao
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing 210023, China
| | - Ming Yang
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing 210023, China
| | - Hui Hong
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing 210023, China
| | - Yifan Shen
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing 210023, China
| | - Haosong Ning
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing 210023, China
| | - Junmin Xia
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing 210023, China
| | - Shufen Chen
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing 210023, China
| |
Collapse
|
2
|
Moreira Naves DF, Dos Reis Feliciano C, Santos MG. Restricted double access ionic imprinted polymer for online extraction and determination of copper from milk samples via FIA-FAAS system. Anal Chim Acta 2024; 1296:342308. [PMID: 38401938 DOI: 10.1016/j.aca.2024.342308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 01/25/2024] [Accepted: 01/29/2024] [Indexed: 02/26/2024]
Abstract
BACKGROUND Determining metals in complex biological samples, such as milk, typically involves dry or wet decomposition. However, these techniques have limitations, including low selectivity, risk of contamination, and the use of large reagent volumes. To solve these problems, solid-phase extraction (SPE) using multifunctional sorbents has been extensively explored. In this context, this work proposed synthesizing a new restricted double access ionic imprinted polymer (RAIIP-BSA), for online SPE and determination of Cu2+ from untreated milk samples via flow injection analysis and flame atomic absorption spectrometry (FIA-FASS). RESULTS Firstly, the polymer was obtained by bulk polymerization using Cu2+ as a template, 4-vinyl pyridine as a functional monomer, and glycidyl methacrylate as a hydrophilic comonomer. Subsequently, it was covered with bovine serum albumin, creating the restricted double access barrier. The obtained material could exclude 97 % of the proteins from milk samples. RAIIP-BSA was chemically and physically characterized. The main extraction variables were optimized via multivariate optimization. The method showed good figures of merit, such as linearity ranging from 0.05 to 1.0 mg L-1, LoD and LoQ of 0.03 and 0.05 mg L-1, intra- and interday precision ranging from 0.73 to 4.14 % and 0.16-3.68 %, and an intra- and interday accuracy ranging from 97.0 to 115.0 % and 103.0-119.0 %, respectively. SIGNIFICANCE The developed method demonstrates the effective extraction of Cu2+ from untreated milk samples, exhibiting selectivity, high extraction capacity, prolonged sorbent (RAIIP-BSA) durability, simplicity, and swift operation. This method holds promise as an alternative to conventional metal analysis approaches in complex matrices.
Collapse
Affiliation(s)
- Daysla Fernanda Moreira Naves
- Instrumental Analytical Chemistry Research Group - GPQAI, Institute of Chemistry, Federal University of Alfenas - Unifal-MG, Alfenas, MG, 37130-000, Brazil
| | - Cristiane Dos Reis Feliciano
- Instrumental Analytical Chemistry Research Group - GPQAI, Institute of Chemistry, Federal University of Alfenas - Unifal-MG, Alfenas, MG, 37130-000, Brazil
| | - Mariane Gonçalves Santos
- Instrumental Analytical Chemistry Research Group - GPQAI, Institute of Chemistry, Federal University of Alfenas - Unifal-MG, Alfenas, MG, 37130-000, Brazil.
| |
Collapse
|
3
|
Amini MH, Beyki MH. Construction of 1, 10-phenanthroline functionalized magnetic starch as a lead (II) tagged surface imprinted biopolymer for highly selective targeting of toxic lead ions. Int J Biol Macromol 2023:124996. [PMID: 37236569 DOI: 10.1016/j.ijbiomac.2023.124996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 05/13/2023] [Accepted: 05/19/2023] [Indexed: 05/28/2023]
Abstract
In this research 1, 10 - phenanthroline functionalized CaFe2O4 - starch was employed as a magnetic ion-imprinted polymer (IIP) for highly selective targeting toxic Pb2+ ions from aqueous media. VSM analysis revealed that the sorbent has magnetic saturation of 10 emu g-1 which is appropriate for magnetic separation. Moreover, TEM analysis confirmed that the adsorbent is composed of particles with a mean diameter of 10 nm. According to XPS analysis, lead coordination with phenanthroline is the main adsorption mechanism that is along with electrostatic interaction. A maximum adsorption capacity of 120 mg g-1 was obtained within 10 min at a pH of 6 and an adsorbent dosage of 20 mg. Kinetic and isotherm studies showed that lead adsorption followed the pseudo-second-order and Freundlich models, respectively. The selectivity coefficient of Pb (II) relative to Cu(II), Co(II), Ni(II), Zn(II), Mn(II), and Cd(II) was 4.7, 14, 20, 36, 13 and 25, respectively. Moreover, the IIP represents the imprinting factor of 1.32. The sorbent showed good regeneration after five cycles of the sorption/desorption process with an efficiency of >93 %. Finally represented IIP was used for lead preconcentration from various matrices i.e., water, vegetable, and fish samples.
Collapse
Affiliation(s)
| | - Mostafa Hossein Beyki
- School of Chemistry, University College of Science, university of Tehran, Tehran, Iran
| |
Collapse
|
4
|
Islam A, Rais S. A facile approach for grafting ion imprinted polymer onto magnetic multi-walled carbon nanotubes for selective removal and preconcentration of cadmium in food and wastewater samples prior to atomic spectrometric determination. Food Chem 2023; 405:134751. [PMID: 36347205 DOI: 10.1016/j.foodchem.2022.134751] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 10/13/2022] [Accepted: 10/23/2022] [Indexed: 12/14/2022]
Abstract
A 3D Fe3O4@MWCNT-CdIIP was synthesized by the oxidizing surface of multi-walled carbon nanotubes with carboxylic acid end groups and its subsequent termination with an ion imprinted polymer. An artificial neural network manifests better predictability than the central composite design methodology for optimising the adsorption procedure. The adsorption capacity was 109 mg g-1 (2.5 times more than non-imprinted polymer) under optimized conditions (pH; 5.6, time; 15 min, concentration; 800 μg mL-1 temperature; 25 °C), which was in accord with Toth isotherm. Fractal-like pseudo-second-order kinetics was found reasonably fast, with 66 % adsorption in 5 min. Solid phase extraction coupled Flame atomic absorption spectrometry method provides selective recognition towards Cd(II), with limit of detection; 1.13 µg/L, limit of quantification; 3.21 µg/L after preconcentration (preconcentration factor; 50) and good robustness. The developed method was applied for Cd(II) determination in food (tea, coffee, bread, tobacco, radish, spinach), water and wastewater (>99 % removal as well). Cd(II) loaded IIP was further utilized to remove anionic dyes with >95 % removal.
Collapse
Affiliation(s)
- Aminul Islam
- Analytical Research Laboratory, Department of Chemistry, Aligarh Muslim University, Aligarh 202002, India.
| | - Saman Rais
- Analytical Research Laboratory, Department of Chemistry, Aligarh Muslim University, Aligarh 202002, India
| |
Collapse
|
5
|
Sadiq N, Shafique M, Akbar M, Shakoor M, Mujahid A, Hussain T, Mustafa G. An Ion‐imprinted Polymer‐Receptor‐Based Electrochemical Sensor for the Sensitive and Selective Detection of Cadmium. ChemistrySelect 2023. [DOI: 10.1002/slct.202204824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2023]
Affiliation(s)
- Nauman Sadiq
- Department of Chemistry University of Okara Okara 56300 Pakistan
| | | | - Muafia Akbar
- Department of Chemistry University of Okara Okara 56300 Pakistan
| | - Memoona Shakoor
- Department of Chemistry University of Okara Okara 56300 Pakistan
| | - Adnan Mujahid
- School of Chemistry University of the Punjab Quaid-i-Azam Campus Lahore 54590 Pakistan
| | - Tajamal Hussain
- School of Chemistry University of the Punjab Quaid-i-Azam Campus Lahore 54590 Pakistan
| | - Ghulam Mustafa
- Department of Chemistry University of Okara Okara 56300 Pakistan
| |
Collapse
|
6
|
Teixeira Tarley CR, Gorla FA, Midori de Oliveira F, Nascentes CC, Ferreira MDP, Ferreira da Costa M, Segatelli MG. Investigation of the performance of cross-linked poly(acrylic acid) and poly(methacrylic acid) as efficient adsorbents in SPE columns for simultaneous preconcentration of tricyclic antidepressants in water samples. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2022; 14:5100-5109. [PMID: 36472141 DOI: 10.1039/d2ay01520j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
A solid phase extraction-based (SPE) procedure for simultaneous preconcentration of five tricyclic antidepressants (TCAs), amitriptyline hydrochloride (AMT), nortriptyline hydrochloride (NOR), doxepin hydrochloride (DOX), imipramine hydrochloride (IMI), and clomipramine hydrochloride (CLO) from water samples with determination by HPLC-DAD is proposed. Polymers were characterized by FT-IR, SEM, and thermogravimetric analysis. SPE-based methods were carried out by the preconcentration of 320.0 mL of TCAs at pH 7.0 (buffered with 0.01 mol L-1 phosphate buffer) through 70.0 mg of adsorbent packed into a SPE cartridge, followed by elution with 1.0 mL of ACN : MeOH : acetic acid solution (45 : 45 : 10% v/v). Higher preconcentration factors were obtained ranging from 117.9 to 372.2 and 207.1 to 396.1 by using poly(MAA-co-EGDMA) and poly(AA-co-EGDMA), respectively, yielding lower limits of detection (0.03 to 0.12 μg L-1) and (0.03 to 0.15 μg L-1). These outcomes show satisfactory detectability of SPE-based methods, with slightly better performance using poly(MAA-co-EGDMA). On the other hand, poly(AA-co-EGDMA) was able to preconcentrate TCAs in the presence of humic acid (7.0 mg L-1) without interference. The precision of methods assessed as RSD (%) was very similar, ranging from 1.7% to 16.3% for poly(MAA-co-EGDMA) and 1.7% to 13.4% for poly(AA-co-EGDMA). SPE cartridges packed with the polymers showed high reusability (52 cycles of preconcentration and elution) without losing adsorption efficiency. The methods were applied to determine TCAs in tap, lake, and stream water samples and the accuracy was attested by addition and recovery tests (86.7-116.0%), with determined nortriptyline ranging from 0.48 to 0.52 μg L-1 in lake water samples.
Collapse
Affiliation(s)
- César Ricardo Teixeira Tarley
- Department of Chemistry, State University of Londrina (UEL), Rodovia Celso Garcia Cid, PR 445, Km 380, CEP 86.057-970, Londrina, Parana, Brazil.
- National Institute of Science and Technology in Bioanalytics (INCTBio), Institute of Chemistry, State University of Campinas (UNICAMP), Cidade Universitária Vaz s/n, CEP 13.083-970, Campinas, São Paulo, Brazil
| | - Felipe Augusto Gorla
- Department of Chemistry, State University of Londrina (UEL), Rodovia Celso Garcia Cid, PR 445, Km 380, CEP 86.057-970, Londrina, Parana, Brazil.
- Federal Institute of Paraná (IFPR), Avenida Cívica 475, Centro Cívico, CEP 85.935-000, Assis Chateaubriand, Parana, Brazil
| | - Fernanda Midori de Oliveira
- Department of Chemistry, State University of Londrina (UEL), Rodovia Celso Garcia Cid, PR 445, Km 380, CEP 86.057-970, Londrina, Parana, Brazil.
| | - Clésia Cristina Nascentes
- Department of Chemistry, Federal University of Minas Gerais, Avenida Presidente Antônio Carlos, 6627, Pampulha, CEP 31270-901, Belo Horizonte, Minas Gerais, Brazil
| | - Milena do Prado Ferreira
- Department of Chemistry, State University of Londrina (UEL), Rodovia Celso Garcia Cid, PR 445, Km 380, CEP 86.057-970, Londrina, Parana, Brazil.
| | - Marcello Ferreira da Costa
- Department of Physics, State University of Londrina (UEL), Rodovia Celso Garcia Cid, PR 445 Km 380, CEP 86.057-970, Londrina, Parana, Brazil
| | - Mariana Gava Segatelli
- Department of Chemistry, State University of Londrina (UEL), Rodovia Celso Garcia Cid, PR 445, Km 380, CEP 86.057-970, Londrina, Parana, Brazil.
| |
Collapse
|
7
|
de Oliveira LL, Suquila FA, de Figueiredo EC, Segatelli MG, Tarley CR. Restricted access material-ion imprinted polymer-based method for on-line flow preconcentration of Cd2+ prior to flame atomic absorption spectrometry determination. Microchem J 2020. [DOI: 10.1016/j.microc.2020.105022] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
8
|
A novel morphological ion imprinted polymers for selective solid phase extraction of Cd(II): Preparation, adsorption properties and binding mechanism to Cd(II). REACT FUNCT POLYM 2020. [DOI: 10.1016/j.reactfunctpolym.2020.104569] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
9
|
Preparation of thermo-sensitive surface ion-imprinted polymers based on multi-walled carbon nanotube composites for selective adsorption of lead(II) ion. Colloids Surf A Physicochem Eng Asp 2020. [DOI: 10.1016/j.colsurfa.2019.124139] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
10
|
de Oliveira HL, Teixeira LS, Dinali LAF, Pires BC, Simões NS, Borges KB. Microextraction by packed sorbent using a new restricted molecularly imprinted polymer for the determination of estrogens from human urine samples. Microchem J 2019. [DOI: 10.1016/j.microc.2019.104162] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
11
|
Suquila FAC, Tarley CRT. Performance of restricted access copper-imprinted poly(allylthiourea) in an on-line preconcentration and sample clean-up FIA-FAAS system for copper determination in milk samples. Talanta 2019; 202:460-468. [DOI: 10.1016/j.talanta.2019.05.023] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2019] [Revised: 05/01/2019] [Accepted: 05/03/2019] [Indexed: 01/31/2023]
|
12
|
de Oliveira HL, Pires BC, Teixeira LS, Dinali LAF, Simões NS, Borges WDS, Borges KB. Novel restricted access material combined to molecularly imprinted polymer for selective magnetic solid-phase extraction of estrogens from human urine. Microchem J 2019. [DOI: 10.1016/j.microc.2019.104043] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|