1
|
Le HT, Mahara A, Fukazawa K, Nagasaki T, Yamaoka T. Widely distributable and retainable in-situ gelling material for treating myocardial infarction. Acta Biomater 2024; 176:221-233. [PMID: 38242190 DOI: 10.1016/j.actbio.2024.01.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 01/10/2024] [Accepted: 01/11/2024] [Indexed: 01/21/2024]
Abstract
Intramyocardial hydrogel injection is a promising therapy to prevent negative remodeling following myocardial infarction (MI). In this study, we report a mechanism for in-situ gel formation without external stimulation, resulting in an injectable and tissue-retainable hydrogel for MI treatment, and investigate its therapeutic outcomes. A liquid-like polymeric solution comprising poly(3-acrylamidophenylboronic acid-co-acrylamide) (BAAm), polyvinyl alcohol (PVA), and sorbitol (S) increases the viscous modulus by reducing the pre-added sorbitol concentration is developed. This solution achieves a sol-gel transition in-vitro in heart tissue by spontaneously diffusing the sorbitol. After intramyocardial injection, the BAAm/PVA/S with lower initial viscous modulus widely spreads in the myocardium and gelate compared to a viscoelastic alginate (ALG) hydrogel and is retained longer than the BAAm/S solution. Serial echocardiogram analyses prove that injecting the BAAm/PVA/S into the hearts of subacute MI rats significantly increases the fraction shortening and ejection shortening and attenuates the expansion of systolic LV diameter for up to 21 d after injection compared to the saline injection as a control, but the ALG injection does not. In addition, histological evaluation shows that only the BAAm/PVA/S decreases the infarct size and increases the wall thickness 21 d after injection. The BAAm/PVA/S intramyocardial injection is better at restraining systolic ventricular dilatation and cardiac failure in the rat MI model than in the control groups. Our findings highlight an effective injectable hydrogel therapy for MI by optimizing injectability-dependent distribution and retention of injected material. STATEMENT OF SIGNIFICANCE: In-situ gelling material is a promising strategy for intramyocardial hydrogel injection therapy for myocardial infarction (MI). Since the sol-gel transition of reported materials is driven by external stimulation such as temperature, pH, or ultraviolet, their application in vivo remains challenging. In this study, we first reported a synthetic in-situ gelling material (BAAm/PVA/S) whose gelation is stimulated by spontaneously reducing pre-added sorbitol after contacting the heart tissue. The BAAm/PVA/S solution spreads evenly, and is retained for at least 21 d in the heart tissue. Our study demonstrated that intramyocardial injection of the BAAm/PVA/S with more extensive distribution and longer retention had better effects on preventing LV dilation and improving cardiac function after MI than that of viscoelastic ALG and saline solution. We expect that these findings provide fundamental information for the optimum design of injectable biomaterials for treating MI.
Collapse
Affiliation(s)
- Hue Thi Le
- Department of Biomedical Engineering, National Cerebral and Cardiovascular Center Research Institute, 6-1 Kishibe Shimmachi, Suita, Osaka 564-8565, Japan; Department of Physiology, Hanoi Medical University, Hanoi 10000, Vietnam
| | - Atsushi Mahara
- Department of Biomedical Engineering, National Cerebral and Cardiovascular Center Research Institute, 6-1 Kishibe Shimmachi, Suita, Osaka 564-8565, Japan
| | - Kyoko Fukazawa
- Department of Biomedical Engineering, National Cerebral and Cardiovascular Center Research Institute, 6-1 Kishibe Shimmachi, Suita, Osaka 564-8565, Japan
| | - Takeshi Nagasaki
- Department of Applied Chemistry and Bioengineering, Graduate School of Engineering, Osaka Metropolitan University, 3-3-138 Sugimoto, Sumiyoshi-ku, Osaka 558-8585, Japan
| | - Tetsuji Yamaoka
- Department of Biomedical Engineering, National Cerebral and Cardiovascular Center Research Institute, 6-1 Kishibe Shimmachi, Suita, Osaka 564-8565, Japan; Department of Clinical Engineering, Faculty of Health Sciences, Komatsu University, He 14-1, Mukai-motoori-machi, Komatsu, Ishikawa 923-0961, Japan.
| |
Collapse
|
2
|
Moriwaki S, Yoshizaki Y, Konno T. Phospholipid polymer hydrogels with rapid dissociation for reversible cell immobilization. J Mater Chem B 2022; 10:2628-2636. [PMID: 35015009 DOI: 10.1039/d1tb02316k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A reversible and cytocompatible cell immobilization polymer matrix with a rapid dissociation rate was prepared using a zwitterionic phospholipid polymer bearing phenylboronic acid and poly(vinyl alcohol) (PVA). A reversible and spontaneously forming phospholipid polymer hydrogel is reported for use as a cell immobilization matrix which caused no invasive damage to the cells. To improve the possibility of applying the hydrogels as a reversible cell immobilization matrix, the stimuli-responsive dissociation rate of polymer hydrogels was designed to have a more rapid rate to ease the recovery of the immobilized cells. In this study, a phospholipid polymer containing 3-methacrylamide phenylboronic acid (MAPBA) as the phenylboronic acid unit was synthesized. The water-soluble phospholipid polymer (PMB-MAPBA) can spontaneously form polymer hydrogels after mixing with PVA solution under normal pressure, room temperature, and neutral pH conditions. Also, the dissociation of the hydrogels after the addition of D-sorbitol completely occurred within 10 minutes. The cells were easily immobilized on the hydrogels during the preparation process. Also, the recovery ratio of the immobilized cells was improved due to the rapid dissociation of the hydrogels. The reversible and spontaneously formed phospholipid polymer hydrogels are promising for use as soft materials for platforms for cell engineering.
Collapse
Affiliation(s)
- Sachi Moriwaki
- Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3, Aoba, Aramaki, Aoba-ku, Sendai 980-8578, Japan.
| | - Yuta Yoshizaki
- Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3, Aoba, Aramaki, Aoba-ku, Sendai 980-8578, Japan.
| | - Tomohiro Konno
- Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3, Aoba, Aramaki, Aoba-ku, Sendai 980-8578, Japan.
| |
Collapse
|
3
|
Ishihara K, Kaneyasu M, Fukazawa K, Zhang R, Teramura Y. Induction of mesenchymal stem cell differentiation by co-culturing with mature cells in double-layered 2-methacryloyloxyethyl phosphorylcholine polymer hydrogel matrices. J Mater Chem B 2021; 10:2561-2569. [PMID: 34878485 DOI: 10.1039/d1tb01817e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The effects of differentiated cells on stem cell differentiation were analyzed via co-culturing using a cell-encapsulated double-layered hydrogel system. As a polymer hydrogel matrix, a water-soluble zwitterionic polymer having both a 2-methacryloyloxyethyl phosphorylcholine unit and a p-vinylphenylboronic acid unit (PMBV), was complexed spontaneously with poly(vinyl alcohol) (PVA) under mild cell culture conditions. The creep modulus of the hydrogel was controlled by changing the composition of the polymer in the solution. Mouse mesenchymal stem cells (MSCs), C3H10T1/2 cells, were encapsulated into PMBV/PVA hydrogels and cultured. In the PMBV/PVA hydrogel with a lower creep modulus (0.40 kPa), proliferation of C3H10T1/2 cells occurred, and the formation of cell aggregates was observed. On the other hand, a higher creep modulus (1.7 kPa) of the hydrogel matrix prevented cell proliferation. Culturing C3H10T1/2 cells encapsulated in the PMBV/PVA hydrogel in the presence of bone morphogenetic protein-2 increased the activity of intracellular alkaline phosphatase (ALP). This indicated that C3H10T1/2 cells differentiated into mature osteoblasts. When the C3H10T1/2 cells encapsulated in the PMBV/PVA hydrogel were cultured in combination with the mature osteoblasts in the hydrogel by a close contacting double-layered hydrogel structure, higher ALP activity was observed compared with the cells cultured separately. It was considered that the differentiation of C3H10T1/2 cells in the hydrogel layer was induced by cytokines diffused from mature osteoblasts encapsulated in another hydrogel layer. It could be concluded that the PMBV/PVA hydrogel system provides a good way to observe the effects of the surrounding cells on cell function in three-dimensional culture.
Collapse
Affiliation(s)
- Kazuhiko Ishihara
- Department of Materials Engineering, School of Engineering, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-8656, Japan. .,Department of Bioengineering, School of Engineering, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Miu Kaneyasu
- Department of Materials Engineering, School of Engineering, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-8656, Japan.
| | - Kyoko Fukazawa
- Department of Materials Engineering, School of Engineering, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-8656, Japan.
| | - Ren Zhang
- Department of Bioengineering, School of Engineering, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Yuji Teramura
- Department of Bioengineering, School of Engineering, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| |
Collapse
|
4
|
Ishihara K, Narita Y, Teramura Y, Fukazawa K. Preparation of Magnetic Hydrogel Microparticles with Cationic Surfaces and Their Cell-Assembling Performance. ACS Biomater Sci Eng 2021; 7:5107-5117. [PMID: 34677934 DOI: 10.1021/acsbiomaterials.1c01150] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Cationic magnetic hydrogel microparticles with high retention on cell surfaces were prepared using a two-step procedure. Using these magnetic hydrogel microparticles, cells were clustered with each other, and cell aggregates were prepared effectively. Cross-linked poly(vinyl alcohol) (PVA) hydrogel microparticles containing iron oxide nanoparticles were prepared. The diameter of the microparticles was in the range of 200-500 nm. Water-soluble cationic polymers containing both trimethyl ammonium (TMA) groups and phenylboronic acid (PBA) groups were synthesized for the surface modification of the microparticles. To regulate the composition, electrically neutral phosphorylcholine groups were introduced into the polymer. Covalent bonds were formed between the hydroxy groups of PVA microparticles and PBA groups in the polymer. The surface zeta potential of the microparticles reflected the composition of the TMA groups. The particles responded to an external magnetic field and clustered rapidly. Microparticles were adsorbed on the floating cell surface and induced cell aggregation quickly when a magnetic field was applied. Under the most effective conditions, the diameter of the cell aggregates increased to approximately 1 mm after 30 min. Denser cell aggregates were formed by the synergistic effects of the magnetic field and the properties of the microparticles. The formed cell aggregates continued to grow for more than 4 days under an applied magnetic field, indicating that the ability of the cells in the aggregate to proliferate was well maintained.
Collapse
Affiliation(s)
- Kazuhiko Ishihara
- Department of Materials Engineering, School of Engineering, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-8656, Japan.,Department of Bioengineering, School of Engineering, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Yusuke Narita
- Department of Materials Engineering, School of Engineering, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Yuji Teramura
- Department of Bioengineering, School of Engineering, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Kyoko Fukazawa
- Department of Materials Engineering, School of Engineering, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| |
Collapse
|
5
|
Ishihara K, Abe M, Fukazawa K, Konno T. Control of Cell-Substrate Binding Related to Cell Proliferation Cycle Status Using a Cytocompatible Phospholipid Polymer Bearing Phenylboronic Acid Groups. Macromol Biosci 2021; 21:e2000341. [PMID: 33502108 DOI: 10.1002/mabi.202000341] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 12/18/2020] [Indexed: 12/19/2022]
Abstract
To provide high-quality cellular raw materials for cell engineering and pharmaceutical engineering, a polymer substrate is prepared for cell separation focusing on the cell proliferation cycle. There are many types of sugar chains on cell membranes, which function as signaling molecules to control interactions with the exterior of the cell; their abundance changes during the cell-proliferation cycle. In this study, a phenylboronic acid group, which has affinity for sugar chains, is introduced into a polymer containing a phosphorylcholine group that does not induce cell activation. On the surface of this polymer, human promyelocytic leukemia cells can adhere. The adhesion rate is increased by pretreating the substrate with an alkaline solution. Moreover, cell adhesion is dependent on the sugar additive in the culture medium. Therefore, cell adhesion is governed by reactions between the sugar chain on the cell membrane and the phenylboronic acid groups on the substrate. It is revealed that the adhesion rate changes depending on the expression level of sugar chains related to the cell-proliferation cycle. Based on this, it may be proposed a cell proliferation cycle-specific separation process using the polymer substrate based on cell adhesion depending on sugar chain density.
Collapse
Affiliation(s)
- Kazuhiko Ishihara
- Department of Materials Engineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan.,Department of Bioengineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Masashi Abe
- Department of Bioengineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Kyoko Fukazawa
- Department of Materials Engineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Tomohiro Konno
- Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aoba-Aramaki, Sendai, Miyagi, 980-8578, Japan
| |
Collapse
|
6
|
Zhang R, Teramura Y, Fukazawa K, Ishihara K. Phospholipid Polymer Hydrogel Matrices with Dually Immobilized Cytokines for Accelerating Secretion of the Extracellular Matrix by Encapsulated Cells. Macromol Biosci 2020; 20:e2000114. [PMID: 32567166 DOI: 10.1002/mabi.202000114] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 05/19/2020] [Indexed: 12/12/2022]
Abstract
Construction of 3D tissues by various types of cells with specific characteristics is an important and fundamental technology in tissue reconstruction medicine and animal-free diagnosis system. To do so, an excellent extracellular matrix (ECM) is needed for encapsulation of cells and maintaining cell activity. Spontaneously forming hydrogel matrix is used by complexation between two water-soluble polymers, 2-methacryloyloxyethyl phosphorylcholine polymer bearing phenylboronic acid groups and poly(vinyl alcohol). Two cytokines for cell proliferation are immobilized in the hydrogel matrix to control the activities of the encapsulated cells. The cytokine-immobilized hydrogel matrix can encapsulate both L929 fibroblasts and normal human dermal fibroblasts under mild condition. The physical properties of the hydrogel matrix can follow the proliferation process of the encapsulated cells. The encapsulated cells secrete ECM in the polymer hydrogel networks upon 3D culturing for 7 days. Consequently, the tissue-mimicking ECM hybrid hydrogels are fabricated successfully.
Collapse
Affiliation(s)
- Ren Zhang
- Department of Bioengineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, 113-8656, Japan
| | - Yuji Teramura
- Department of Bioengineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, 113-8656, Japan.,Department of Immunology, Genetics, and Pathology (IGP), Uppsala University, Dag Hammarskjölds väg 20, Uppsala, SE-751 85, Sweden
| | - Kyoko Fukazawa
- Department of Materials Engineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, 113-8656, Japan
| | - Kazuhiko Ishihara
- Department of Bioengineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, 113-8656, Japan.,Department of Materials Engineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, 113-8656, Japan
| |
Collapse
|
7
|
Spontaneously and reversibly forming phospholipid polymer hydrogels as a matrix for cell engineering. Biomaterials 2020; 230:119628. [DOI: 10.1016/j.biomaterials.2019.119628] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 11/11/2019] [Accepted: 11/11/2019] [Indexed: 12/16/2022]
|