1
|
Mia MH, Wan Y, Jiang Q, Huang L, Zhou M, Xu J, Gong X, Hu X, Yu Z, He H. A sustainable alginate-based multifunctional porous material with integrated thermal barrier and reversible fire warning for enhanced building protection. Carbohydr Polym 2025; 358:123563. [PMID: 40383601 DOI: 10.1016/j.carbpol.2025.123563] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Revised: 03/27/2025] [Accepted: 03/28/2025] [Indexed: 05/20/2025]
Abstract
The need for innovative bio-based building material development that solves excessive energy consumption and environmental sustainability and enables thermal barrier with sensitive early fire warnings is urgent. This study focuses on developing a sustainable multifunctional SNAP (sodium alginate/nickel oxide/ammonium polyphosphate/polypyrrole) porous material, fabricated by incorporating sodium alginate (NaAlg) as the primary structural matrix, ammonium polyphosphate (APP) as a flame retardant, nickel oxide (NiO) for temperature sensing and enhanced flame retardancy, and polypyrrole (PPy) to improve electrical conductivity for fire warning functionality. The inclusion of APP, NiO, and PPy significantly improved the limiting oxygen index to 48.7 %, and a robust char layer during flame exposure provided effective thermal barrier and self-extinguishing properties. The porous material exhibited thermal conductivity of 0.076 W·m-1·K-1. The synergistic integration of NiO and PPy enhanced temperature sensing and electrical conductivity, enabling ultrafast (0.9 s) flame detection and a stable fire warning period of 227 s (under continuous exposure) with reversible warning characteristics. Post-crosslinking with Ca2+ ion improved mechanical strength (0.32 MPa) and maintained stability up to 48 h of immersion in deionized water. This innovative, environmentally friendly composite material holds significant promise in advanced building materials where high fire safety and early warning systems are critical.
Collapse
Affiliation(s)
- Md Hasib Mia
- State Key Laboratory of New Textile Materials and Advanced Processing, School of Textile Science and Engineering, Wuhan Textile University, Wuhan 430200, China
| | - Yuhang Wan
- State Key Laboratory of New Textile Materials and Advanced Processing, School of Textile Science and Engineering, Wuhan Textile University, Wuhan 430200, China
| | - Qing Jiang
- State Key Laboratory of New Textile Materials and Advanced Processing, School of Textile Science and Engineering, Wuhan Textile University, Wuhan 430200, China
| | - Lele Huang
- State Key Laboratory of New Textile Materials and Advanced Processing, School of Textile Science and Engineering, Wuhan Textile University, Wuhan 430200, China
| | - Mi Zhou
- State Key Laboratory of New Textile Materials and Advanced Processing, School of Textile Science and Engineering, Wuhan Textile University, Wuhan 430200, China
| | - Jie Xu
- State Key Laboratory of New Textile Materials and Advanced Processing, School of Textile Science and Engineering, Wuhan Textile University, Wuhan 430200, China
| | - Xiaoli Gong
- State Key Laboratory of New Textile Materials and Advanced Processing, School of Textile Science and Engineering, Wuhan Textile University, Wuhan 430200, China
| | - Xiaodong Hu
- College of Material and Chemical Engineering, Hunan Institute of Engineering, Xiangtan 411104, China
| | - Zhicai Yu
- State Key Laboratory of New Textile Materials and Advanced Processing, School of Textile Science and Engineering, Wuhan Textile University, Wuhan 430200, China.
| | - Hualing He
- State Key Laboratory of New Textile Materials and Advanced Processing, School of Textile Science and Engineering, Wuhan Textile University, Wuhan 430200, China.
| |
Collapse
|
2
|
Bakr AM, El Nahrawy AM, Mansour AM, Abou Hammad AB. Exploring of spectroscopic, dielectric, and bioactivity performance of bioglass/sodium alginate-PVP loaded-Amoxicillin/Clavulanic Acid microspheres for bone tissue engineering. Sci Rep 2025; 15:15395. [PMID: 40316637 PMCID: PMC12048656 DOI: 10.1038/s41598-025-96590-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Accepted: 03/31/2025] [Indexed: 05/04/2025] Open
Abstract
This study aims to develop an innovative drug delivery bio-system using bioglass (BIOGLASS) and biopolymers of Sodium Alginate (SA) and polyvinylpyrrolidone (PVP) in microsphere form as a carrier for Amoxicillin/Clavulanic Acid drug. In this work BIOGLASS/SA-PVP and Amoxicillin/Clavulanic Acid loaded BIOGLASS/SA-PVP microspheres (0%, 5%, 10%, and 15%) were synthesized using the ion crosslinking method technique. The fabricated microspheres were analyzed using FT-IR, FESEM/EDX, and XRD confirming the in-vitro examination. XRD and FTIR data demonstrate the effective creation of the apatite layer and the appearance of new apatite peaks at both 605 cm-1 and 565 cm-1, distinguishing the prolonged vibrations associated with the [Formula: see text] group. SEM images reveal that the prepared bio-beads have a spherical shape, with sizes falling in the micro-scale. The dielectric constant (ε'), the dielectric loss (ε"), and the AC conductivity (σ) were slow at the frequency range of 4 Hz to 8 MHz at room temperature. The antibacterial examinations of the fabricated microspheres were performed employing agar diffusion procedure against the clinical pathogens Gram+ and Gram- bacteria. The SBF (simulated body fluid) experiments display the formation of a hydroxy appetite coating on the microsphere's surfaces that approves their significant bioactivity. Furthermore, antimicrobial results of BIOGLASS/SA-PVP/Amoxicillin/Clavulanic Acid microspheres reveal a notable impact on the antimicrobial performance. The in-vitro tests established that fabricated bio-microspheres are a promising opportunity for bone tissue engineering (substitutes and regeneration), signifying their promise for bone application.
Collapse
Affiliation(s)
- Ahmed M Bakr
- Spectroscopy Department, Physics Research Institute, National Research Centre, 33 El-Bohouth St., Dokki, 12622, Giza, Egypt.
| | - Amany M El Nahrawy
- Solid State Physics Department, Physics Research Institute, National Research Centre, 33 El Bohouth St., Dokki, 12622, Giza, Egypt
| | - A M Mansour
- Solid State Physics Department, Physics Research Institute, National Research Centre, 33 El Bohouth St., Dokki, 12622, Giza, Egypt
| | - Ali B Abou Hammad
- Solid State Physics Department, Physics Research Institute, National Research Centre, 33 El Bohouth St., Dokki, 12622, Giza, Egypt
| |
Collapse
|
3
|
Abouelnaga AM, El Nahrawy AM. Spectroscopic investigation, dielectric and antimicrobial properties of chitin-cellulose@ZnO/CuO conductive nanocomposites. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 320:124646. [PMID: 38875926 DOI: 10.1016/j.saa.2024.124646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 05/12/2024] [Accepted: 06/10/2024] [Indexed: 06/16/2024]
Abstract
In this research, we fabricated a functional conductive nanocomposite with valuable properties through a chitin (CH) and cellulose (CE) polymerization process, incorporating ZnO/(0.1, 0.2, 0.3 mol.%) CuO bioactive nanoparticles. These bioactive nanoparticles, synthesized through sol-gel and polymerization interactions, greatly enhanced the structural, dielectric, and antimicrobial characteristics of CH-CE@ZnO/CuO conductive nanocomposites. The morphological analysis revealed that these nanoparticles, with diameters ranging from 11-25 nm, formed covalent bonds with the membrane matrix, bolstering the conductive nanocomposites ' structural integrity and dielectric performance. The dielectric properties of the conductive nanocomposites were significantly enhanced by the even distribution of ZnO/CuO nanoparticles within the CH-CE composite. Additionally, antimicrobial assessments demonstrated that the CH-CE@ZnO/CuO conductive nanocomposites displayed significant antibacterial properties against the Escherichia coli and Staphylococcus aureus, showcasing their potential as active packaging materials for electronic, biosensors, and sustainable applications.
Collapse
Affiliation(s)
| | - Amany M El Nahrawy
- Solid State Physics Department, Physics Research Institute, National Research Centre (NRC), 33 El-Bohouth St., Dokki, Cairo 12622, Egypt.
| |
Collapse
|
4
|
Adhikari L, Sayeed M, Mudireddy RR, Villalon KL, Shekhawat GS, Bleher R, Duncan TV. Surface Heterogeneity at the Polymer-Food Interface Influences Ag Migration from Plastic Packaging Incorporating Ag-Exchanged Zeolites. ACS APPLIED MATERIALS & INTERFACES 2024; 16:48163-48175. [PMID: 39214570 DOI: 10.1021/acsami.4c05581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Silver-enabled polymers, with their antimicrobial properties, could prolong the shelf life and maintain quality in packaged foods. However, there is limited understanding about how the Ag form in the polymer, food chemistry, and other factors affect the transfer (migration) of Ag from the polymer to the food under the intended conditions of use. In this study, we investigated the release of Ag from polymer composites (PCs) incorporating two different Ag-exchanged zeolites (Ag-Y), which have been explored as potential scaffolds for loading high concentrations of Ag within common polymers. We manufactured two Ag-Y films based on low-density polyethylene (LDPE): one incorporating ionic Ag (Ag+) and one incorporating nanoparticulate Ag (AgNPs), each with similar initial Ag concentrations. Then, we assessed the migration of Ag out of these PCs into food simulants under accelerated room temperature storage conditions. In all simulants investigated, the Ag+-Y/LDPE film exhibited a higher migration of Ag compared to the AgNP-Y/LDPE film, suggesting a lower fraction of readily releasable Ag in the latter material. Total Ag migration from AgNP-Y/LDPE over 10 days at 40 °C was 11.10 ± 2.05 ng cm-2 of packaging surface area in water, 7.63 ± 1.59 ng cm-2 in a 9 wt % aqueous sucrose solution, and 21.29 ± 1.98 ng cm-2 in a commercial sweetened carbonated beverage (Squirt). In contrast, Ag migration from Ag+-Y/LDPE was measured at 49.61 ± 3.46, 57.48 ± 9.65, and 91.54 ± 5.58 ng cm-2 in water, sucrose solution, and Squirt drink, respectively. Surface characterization techniques, including atomic force microscopy (AFM), scanning electron microscopy (SEM), and conductivity measurements, revealed the presence of exposed zeolite particles at the surface of the films, suggesting that direct interactions between Ag-exchanged zeolites and food components at the simulant-polymer interface play an important role in determining Ag migration from Ag-Y/LDPE PCs.
Collapse
Affiliation(s)
- Laxmi Adhikari
- Center for Food Safety and Nutrition, U.S. Food and Drug Administration, Bedford Park, Illinois 60501, United States
| | - Maryam Sayeed
- Department of Food Science and Nutrition, Illinois Institute of Technology, Bedford Park, Illinois 60501, United States
| | - Rakesh R Mudireddy
- Department of Food Science and Nutrition, Illinois Institute of Technology, Bedford Park, Illinois 60501, United States
| | - Krysten L Villalon
- Department of Materials Science and Engineering and the Northwestern University Atomic and Nanoscale Characterization Experimental (NUANCE) Center, Northwestern University, Evanston, Illinois 60208, United States
| | - Gajendra S Shekhawat
- Department of Materials Science and Engineering and the Northwestern University Atomic and Nanoscale Characterization Experimental (NUANCE) Center, Northwestern University, Evanston, Illinois 60208, United States
| | - Reiner Bleher
- Department of Materials Science and Engineering and the Northwestern University Atomic and Nanoscale Characterization Experimental (NUANCE) Center, Northwestern University, Evanston, Illinois 60208, United States
| | - Timothy V Duncan
- Center for Food Safety and Nutrition, U.S. Food and Drug Administration, Bedford Park, Illinois 60501, United States
| |
Collapse
|
5
|
Abouelnaga AM, Mansour AM, Abou Hammad AB, El Nahrawy AM. Optimizing magnetic, dielectric, and antimicrobial performance in chitosan-PEG-Fe 2O 3@NiO nanomagnetic composites. Int J Biol Macromol 2024; 260:129545. [PMID: 38272427 DOI: 10.1016/j.ijbiomac.2024.129545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/12/2024] [Accepted: 01/15/2024] [Indexed: 01/27/2024]
Abstract
There is a growing interest in eco-friendly and cost-effective organic-inorganic nanocomposites due to their alignment with the principles of "green" chemistry, as well as their biocompatibility and non-toxicity. This study focused on producing Chitosan-PEG-Fe2O3@NiO nanomagnetic composites to improve the stability, dielectric properties, and antimicrobial effectiveness of these nanocomposite materials. The process involved synthesizing Fe2O3@NiO via sol-gel and polymerizing chitosan-PEG. The nanocomposites were characterized by XRD, TEM, FTIR, optical, dielectric, and VSM. Incorporating Fe2O3@NiO significantly improved stability, and the interaction with Fe2O3 during the sol-gel process facilitated the formation of NiFe2O4 with an increase in the crystallinity within the chitosan-PEG matrix. The study examined optical and dielectric properties, highlighting that the 3 NiO-doped chitosan-PEG-Fe2O3 composites had high electrical conductivity (1.8 ∗ 10-3 S/cm) and a significant dielectric constant (106 at low frequencies). As the ratio of NiO NPs within the chitosan-PEG-Fe2O3 increases, the energy band gap of chitosan-PEG-Fe2O3 films decreases up to 3.7 eV. This decrease is owing to the quantum confinement effect. These composites also demonstrated improved antimicrobial activity against E. coli and S. aureus and higher activity in the presence of nanomagnetic particles. The minimum inhibitory concentrations of CS-PEG-Fe2O3/NiO NPs against (Bacillus cereus, M. luteus, S. aureus and (S. enterica, H. pylori, E. coli) were (22-35 mm) and (21-34 mm), respectively.
Collapse
Affiliation(s)
- Amel Mohamed Abouelnaga
- Department of Physics, College of Science, Jazan University, P.O. Box 114, Jazan 45142, Saudi Arabia
| | - A M Mansour
- Solid-State Physics Department, Physics Research Institute, National Research Centre, 33 El-Bohouth St., Dokki, Giza 12622, Egypt
| | - Ali B Abou Hammad
- Solid-State Physics Department, Physics Research Institute, National Research Centre, 33 El-Bohouth St., Dokki, Giza 12622, Egypt
| | - Amany M El Nahrawy
- Solid-State Physics Department, Physics Research Institute, National Research Centre, 33 El-Bohouth St., Dokki, Giza 12622, Egypt.
| |
Collapse
|
6
|
Alkahtani ME, Elbadawi M, Chapman CAR, Green RA, Gaisford S, Orlu M, Basit AW. Electroactive Polymers for On-Demand Drug Release. Adv Healthc Mater 2024; 13:e2301759. [PMID: 37861058 PMCID: PMC11469020 DOI: 10.1002/adhm.202301759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 09/16/2023] [Indexed: 10/21/2023]
Abstract
Conductive materials have played a significant role in advancing society into the digital era. Such materials are able to harness the power of electricity and are used to control many aspects of daily life. Conductive polymers (CPs) are an emerging group of polymers that possess metal-like conductivity yet retain desirable polymeric features, such as processability, mechanical properties, and biodegradability. Upon receiving an electrical stimulus, CPs can be tailored to achieve a number of responses, such as harvesting energy and stimulating tissue growth. The recent FDA approval of a CP-based material for a medical device has invigorated their research in healthcare. In drug delivery, CPs can act as electrical switches, drug release is achieved at a flick of a switch, thereby providing unprecedented control over drug release. In this review, recent developments in CP as electroactive polymers for voltage-stimuli responsive drug delivery systems are evaluated. The review demonstrates the distinct drug release profiles achieved by electroactive formulations, and both the precision and ease of stimuli response. This level of dynamism promises to yield "smart medicines" and warrants further research. The review concludes by providing an outlook on electroactive formulations in drug delivery and highlighting their integral roles in healthcare IoT.
Collapse
Affiliation(s)
- Manal E. Alkahtani
- UCL School of PharmacyUniversity College London29–39 Brunswick SquareLondonWC1N 1AXUK
- Department of PharmaceuticsCollege of PharmacyPrince Sattam bin Abdulaziz UniversityAlkharj11942Saudi Arabia
| | - Moe Elbadawi
- UCL School of PharmacyUniversity College London29–39 Brunswick SquareLondonWC1N 1AXUK
- School of Biological and Behavioural SciencesQueen Mary University of LondonLondonE1 4NSUK
| | - Christopher A. R. Chapman
- Department of BioengineeringImperial College LondonLondonSW7 2AZUK
- Centre for Bioengineering, School of Engineering and Materials ScienceQueen Mary University of LondonLondonE1 4NSUK
| | - Rylie A. Green
- Department of BioengineeringImperial College LondonLondonSW7 2AZUK
| | - Simon Gaisford
- UCL School of PharmacyUniversity College London29–39 Brunswick SquareLondonWC1N 1AXUK
| | - Mine Orlu
- UCL School of PharmacyUniversity College London29–39 Brunswick SquareLondonWC1N 1AXUK
| | - Abdul W. Basit
- UCL School of PharmacyUniversity College London29–39 Brunswick SquareLondonWC1N 1AXUK
| |
Collapse
|
7
|
Flores León J, Quiroz Castillo JM, Rodríguez Félix DE, Castillo Ortega MM, Cabrera-González AD, Ramirez-Mendoza CG, Santacruz-Ortega H, Suárez-Campos G, Valenzuela-García JL, Herrera-Franco PJ. Preparation and Characterization of Extruded PLA Films Coated with Polyaniline or Polypyrrole by In Situ Chemical Polymerization. ACS OMEGA 2023; 8:43243-43253. [PMID: 38024776 PMCID: PMC10653065 DOI: 10.1021/acsomega.3c07201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 10/16/2023] [Accepted: 10/18/2023] [Indexed: 12/01/2023]
Abstract
Conductive polymers, such as polypyrrole and polyaniline, have been extensively studied for their notable intrinsic electronic and ionic conductivities, rendering them suitable for a range of diverse applications. In this study, in situ chemical polymerization was employed to coat extruded PLA films with PPy and PANi. Morphological analysis reveals a uniform and compact deposition of both polyaniline and polypyrrole after polymerization periods of 3 and 1 h, respectively. Furthermore, the PLA-PANi-3h and PLA-PPy-1h composites exhibited the highest electrical conductivity, with values of 0.042 and 0.022 S cm-1, respectively. These findings were in agreement with the XPS results, as the polyaniline-coated film showed a higher proportion of charge carriers compared to the polypyrrole composite. The elastic modulus of the coated films showed an increase compared with that of pure PLA films. Additionally, the inflection temperatures for the PLA-PANi-3h and PLA-PPy-1h composites were 368.7 and 367.2 °C, respectively, while for pure PLA, it reached 341.47 °C. This improvement in mechanical and thermal properties revealed the effective interfacial adhesion between the PLA matrix and the conducting polymer. Therefore, this work demonstrates that coating biopolymeric matrices with PANi or PPy enables the production of functional and environmentally friendly conductive materials suitable for potential use in the removal of heavy metals in water treatment.
Collapse
Affiliation(s)
- José
Ramón Flores León
- Departamento
de Investigación en Polímeros y Materiales, Universidad de Sonora, C.P. 83000 Hermosillo, Sonora, México
| | - Jesús Manuel Quiroz Castillo
- Departamento
de Investigación en Polímeros y Materiales, Universidad de Sonora, C.P. 83000 Hermosillo, Sonora, México
| | - Dora E. Rodríguez Félix
- Departamento
de Investigación en Polímeros y Materiales, Universidad de Sonora, C.P. 83000 Hermosillo, Sonora, México
| | - María Mónica Castillo Ortega
- Departamento
de Investigación en Polímeros y Materiales, Universidad de Sonora, C.P. 83000 Hermosillo, Sonora, México
| | - Ana Daymi Cabrera-González
- Departamento
de Investigación en Polímeros y Materiales, Universidad de Sonora, C.P. 83000 Hermosillo, Sonora, México
| | | | - Hisila Santacruz-Ortega
- Departamento
de Investigación en Polímeros y Materiales, Universidad de Sonora, C.P. 83000 Hermosillo, Sonora, México
| | - Guillermo Suárez-Campos
- Departamento
de Investigación en Física, Universidad de Sonora, C.P. 83000 Hermosillo, Sonora, México
| | | | | |
Collapse
|
8
|
Abou Hammad AB, Al-Esnawy AA, Mansour AM, El Nahrawy AM. Synthesis and characterization of chitosan-corn starch-SiO 2/silver eco-nanocomposites: Exploring optoelectronic and antibacterial potential. Int J Biol Macromol 2023; 249:126077. [PMID: 37532191 DOI: 10.1016/j.ijbiomac.2023.126077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 07/21/2023] [Accepted: 07/29/2023] [Indexed: 08/04/2023]
Abstract
This work discusses the physicochemical and antimicrobial characteristics of chitosan-corn starch eco-nanocomposites integrated with silica@Ag nano-spheres. These composites were synthesized through sol-gel polymerization and subsequently exposed to simulated body fluid (SBF). The incorporation of Ag into the eco-nanocomposites led to a decrease in diffuse reflectance across the entire wavelength range. The dielectric permittivity exhibited an increase up to 52.1 at a frequency of 100 kHz, while the ac conductivity reached a value of 5.2 ∗ 10-6 (S cm-1) at the same frequency for the sample with the highest Ag content. The study utilized XRD and FTIR techniques to examine the materials before and after in vitro testing and evaluated the antibacterial properties of the eco-nanocomposites against several pathogenic microorganisms, including Staphylococcus haemolyticus, Staphylococcus aureus, Klebsiella pneumoniae, and Escherichia coli, using the agar diffusion method. The eco-nanocomposites demonstrated bioactivity by forming a hydroxy appetite layer on their surfaces and were capable of releasing silver (Ag) at concentrations of 1.3, 1.9, and 2.5 mol%. This study suggests that chitosan-corn starch-SiO2-based doped with Ag eco-nanocomposite has the potential for various applications, including biomedical and environmental fields, where their antibacterial properties can be utilized to combat harmful microorganisms.
Collapse
Affiliation(s)
- Ali B Abou Hammad
- Solid State Physics Department, Physics Research Institute, National Research Centre (NRC), 33 El-Bohouth St., Dokki, Cairo 12622, Egypt
| | - A A Al-Esnawy
- Physics Department, Faculty of Science, Al-Azhar University, Nasr City, Cairo 11884, Egypt.
| | - A M Mansour
- Solid State Physics Department, Physics Research Institute, National Research Centre (NRC), 33 El-Bohouth St., Dokki, Cairo 12622, Egypt
| | - Amany M El Nahrawy
- Solid State Physics Department, Physics Research Institute, National Research Centre (NRC), 33 El-Bohouth St., Dokki, Cairo 12622, Egypt.
| |
Collapse
|
9
|
Yang Y, Zhou R, Yuan M, He H. Nano Ag/PPy Biocomposites Based on Graphene Oxide Modified Bacterial Cellulose from the Juice of Xinhui Citrus and Its Antibacterial Activity. MICROMACHINES 2023; 14:1809. [PMID: 37893246 PMCID: PMC10608959 DOI: 10.3390/mi14101809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 09/08/2023] [Accepted: 09/19/2023] [Indexed: 10/29/2023]
Abstract
Bacterial cellulose (BC) is a green, natural biopolymer with excellent biocompatibility and a film-forming ability. However, its lack of inherent antibacterial activity restricts its application in medical materials and food preservation. In this study, BC derived from the juice of discarded Xinhui citrus was obtained through fermentation and further modified in situ with graphene oxide (GO) to obtain BC(GO). Subsequently, BC(GO) was loaded with cell-compatible polypyrrole (PPy) and antibacterial agent silver nanoparticles (AgNPs) to prepare Ag-PPy/BC(GO) composite films. Composite films were characterized using Fourier-transform infrared spectroscopy (FTIR) and scanning electron microscopy-energy-dispersive X-ray spectroscopy (SEM-EDS) to evaluate their chemical structure and morphology. The results demonstrate effective adsorption of PPy and AgNPs onto the surface of BC nanofibers modified with GO. Antibacterial experiments reveal synergistic antibacterial effects of PPy and AgNPs. The Ag-PPy/BC(GO) membranes exhibit strong antibacterial activity against both Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus), with 48-h growth inhibition rates of 75-84% and 82-84%, respectively.
Collapse
Affiliation(s)
- Yihong Yang
- School of Materials Science and Food Engineering, Zhongshan Institute, University of Electronic Science and Technology of China, Zhongshan 528400, China; (R.Z.); (M.Y.); (H.H.)
| | | | | | | |
Collapse
|
10
|
Chang XX, Mubarak NM, Karri RR, Tan YH, Khalid M, Dehghani MH, Tyagi I, Khan NA. Insights into chitosan-based cellulose nanowhiskers reinforced nanocomposite material via deep eutectic solvent in green chemistry. ENVIRONMENTAL RESEARCH 2023; 219:115089. [PMID: 36529332 DOI: 10.1016/j.envres.2022.115089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 11/29/2022] [Accepted: 12/14/2022] [Indexed: 06/17/2023]
Abstract
In the present work, the synthesis of cellulose nanowhiskers (CNW)/chitosan nanocomposite films via deep eutectic solvents (DES) changing the chemical structures were carried out. It was observed that a pure chitosan film has broadband at 3180-3400 cm-1, indicating amide and hydroxyl groups. Upon CNW incorporation, the peak gets sharper and stronger and shifts to a greater wavelength. Further, the addition of DES infuses more elements of amide into the nanocomposite films. Moreover, the mechanical properties incorporating CNW filler into a chitosan matrix show an enhancement in tensile strength (TS), Young's modulus (YM), and elongation at break. The TS and YM increase while the elongation decrease as the CNW concentration increases. The YM of biocomposite films is increased to 723 MPa at 25% CNW into chitosan films. Besides, the TS has enhanced to 11.48 MPa at 15% CNW concentration in the biocomposite films. The elongation at break has decreased to 11.7% at 25% CNW concentration. Hence, incorporating CNW into the chitosan matrix via DES can still improve the mechanical properties of the nanocomposite films. Therefore, the application of DES results in a lower YM and TS as the films are hygroscopic. In conclusion, DES can be considered the new green solvent media for synthesizing materials. It has the potential to replace ionic liquids due to its biodegradability and non-toxic properties while preserving the character of low-vapour pressure. Besides that, chitosan can be used as potential material for applications in process industries, such as the biomedical and pharmaceutical industries. Thus, DES can be used as a green solvent and aim to reduce the toxic effect of chemicals on the environment during chemical production.
Collapse
Affiliation(s)
- Xin Xiong Chang
- Department of Chemical and Energy Engineering, Faculty of Engineering and Science, Curtin University Malaysia, CDT 250, 98009, Miri, Sarawak, Malaysia
| | - Nabisab Mujawar Mubarak
- Petroleum and Chemical Engineering, Faculty of Engineering, Universiti Teknologi Brunei, Bandar Seri Begawan, BE1410, Brunei Darussalam.
| | - Rama Rao Karri
- Petroleum and Chemical Engineering, Faculty of Engineering, Universiti Teknologi Brunei, Bandar Seri Begawan, BE1410, Brunei Darussalam.
| | - Yie Hua Tan
- Department of Chemical and Energy Engineering, Faculty of Engineering and Science, Curtin University Malaysia, CDT 250, 98009, Miri, Sarawak, Malaysia
| | - Mohammad Khalid
- Graphene & Advanced 2D Materials Research Group (GAMRG), School of Engineering and Technology, Sunway University, No. 5, Jalan University, Bandar Sunway, 47500, Subang Jaya, Selangor, Malaysia
| | - Mohammad Hadi Dehghani
- Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran; Institute for Environmental Research, Center for Solid Waste Research, Tehran University of Medical Sciences, Tehran, Iran
| | - Inderjeet Tyagi
- Centre for DNA Taxonomy, Molecular Systematics Division, Zoological Survey of India, Kolkata, 700 053, India
| | - Nadeem A Khan
- Department of Civil Engineering, Mewat Engineering College, Nuh-122107,Haryana, India
| |
Collapse
|
11
|
Salim E, Hany W, Elshahawy AG, Oraby AH. Investigation on optical, structural and electrical properties of solid-state polymer nanocomposites electrolyte incorporated with Ag nanoparticles. Sci Rep 2022; 12:21201. [PMID: 36481775 PMCID: PMC9732284 DOI: 10.1038/s41598-022-25304-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Accepted: 11/28/2022] [Indexed: 12/13/2022] Open
Abstract
A solid polymer electrolyte based on polyvinyl alcohol (PVA)/carboxymethyl cellulose (CMC)/polyethylene 3,4-dioxythiophene: sodium polystyrene sulfonate (PEDOT:PSS) has been prepared with various concentrations of incorporated silver (Ag) nanoparticles (NPs) by using solution cast approach. The FTIR spectroscopic study revealed the complexation between the polymeric nanocomposite (PNC) and the Ag NPs. The X-ray diffraction (XRD) results infer that the semicrystalline phase of PNC decreases as the amount of incorporated Ag NPs increases. The transmission electron microscope (TEM) image revealed that Ag NPs have diameters ranging from 22 to 43 nm. Complex dielectric permittivity and alternating current (AC) electrical conductivity of nanocomposite films have been investigated in the frequency range from 0.1 Hz to 20 MHz at 30 °C. Dc conductivity ([Formula: see text]) values for the nanocomposite films are estimated from AC conductivity plots. The [Formula: see text] value was observed to increase from 1.98 × 10-9 to 2.29 × 10-7 S.cm-1 for the PNC system incorporated with optimal Ag NPs. From complex impedance (Z*) analysis, it has been found that the bulk electrical resistance (Rb) of the PNC films decreases with increasing the Ag NPs content. Therefore, these obtained PNC films have promising applications in energy storage devices.
Collapse
Affiliation(s)
- E Salim
- Physics Department, Faculty of Science, Mansoura University, Mansoura, Egypt.
| | - Wessam Hany
- Physics Department, Faculty of Science, Mansoura University, Mansoura, Egypt
| | - A G Elshahawy
- Physics Department, Faculty of Science, Mansoura University, Mansoura, Egypt
| | - A H Oraby
- Physics Department, Faculty of Science, Mansoura University, Mansoura, Egypt
| |
Collapse
|
12
|
Synthesis of CuO/α-Fe2O3 Nanocomposite by Q-Switched Pulsed Laser Ablation and its Catalytic Activity for Environmental Applications. ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING 2022. [DOI: 10.1007/s13369-022-07462-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
13
|
El Nahrawy AM, Ali AI, Mansour A, Abou Hammad AB, Hemdan BA, Kamel S. Talented Bi0.5Na0.25K0.25TiO3/oxidized cellulose films for optoelectronic and bioburden of pathogenic microbes. Carbohydr Polym 2022; 291:119656. [DOI: 10.1016/j.carbpol.2022.119656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 05/10/2022] [Accepted: 05/22/2022] [Indexed: 11/26/2022]
|
14
|
Jafari-Kashi A, Rafiee-Pour HA, Shabani-Nooshabadi M. A new strategy to design label-free electrochemical biosensor for ultrasensitive diagnosis of CYFRA 21-1 as a biomarker for detection of non-small cell lung cancer. CHEMOSPHERE 2022; 301:134636. [PMID: 35447211 DOI: 10.1016/j.chemosphere.2022.134636] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 03/15/2022] [Accepted: 04/13/2022] [Indexed: 06/14/2023]
Abstract
Lung cancer is one of the most dangerous cancers with high mortality rate among other cancers therefore, early detection of this cancer is very important. Many studies have been reported in ways of diagnostic lung cancer early. According to reports, one of the most important biomarkers to detect lung cancer is Cytokeratin 19 fragment 21-1 (CYFRA21-1), which is significantly related to non-small cell lung cancer, in particular, squamous cell carcinoma. Thus, finding a new method for the early diagnosis of CYFRA 21-1 (DNA target probe) is essential. In the present report, we design a novel label-free electrochemical DNA-biosensor related to the signal of guanine oxidation. The proposed DNA biosensor is fabricated by a modified glassy carbon electrode (GCE) with reduced-graphene oxide (rGO), poly pyrrole (PPy), silver nanoparticles (AgNPs) and single-strand DNA (ssDNA as capture probe) GCE/rGO/PPy/AgNPs/ssDNA. The differential pulse voltammetry (DPV) and cyclic voltammetry (CV) techniques are used to verify the hybridization process between capture and target probes. Electrochemical impedance spectroscopy (EIS), energy diffraction X-ray (EDX) and field-emission scanning microscopy (FE-SEM) techniques are applied to the characterization of different modified GCE surfaces as well as X-ray diffraction (XRD) for graphene oxide synthesis. The XRD pattern of the synthesized GO that its diffraction peak appears at 10.2. The applied CV and DPV for the guanine oxidation are determined under optimal conditions. The label-free DNA biosensor showed a great result for the determination of CYFRA21-1 with a wide linear range from two consecutive linear relationships of peak current and CYFRA21-1 concentration were found (1.0 × 10-14 - 1.0 × 10-10 M, R2 = 0.9936 and 1.0 × 10-9 - 1.0 × 10-6 M, R2 = 0.9955). Proposed electrochemical biosensor displayed low detection limit (2.4 fM).
Collapse
Affiliation(s)
- Abbas Jafari-Kashi
- Department of Analytical Chemistry, Faculty of Chemistry, University of Kashan, Kashan, I.R, Iran
| | - Hossain-Ali Rafiee-Pour
- Department of Cell and Molecular Biology, Faculty of Chemistry, University of Kashan, Kashan, I. R, Iran.
| | - Mehdi Shabani-Nooshabadi
- Department of Analytical Chemistry, Faculty of Chemistry, University of Kashan, Kashan, I.R, Iran; Institute of Nano Science and Nano Technology, University of Kashan, Kashan, Iran.
| |
Collapse
|
15
|
Developing cellulosic functional materials from multi-scale strategy and applications in flexible bioelectronic devices. Carbohydr Polym 2022; 283:119160. [DOI: 10.1016/j.carbpol.2022.119160] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 01/04/2022] [Accepted: 01/17/2022] [Indexed: 12/29/2022]
|
16
|
Rajasekar R, Thanasamy R, Samuel M, Edison TNJI, Raman N. Ecofriendly synthesis of silver nanoparticles using Heterotheca subaxillaris flower and its catalytic performance on reduction of methyl orange. Biochem Eng J 2022. [DOI: 10.1016/j.bej.2022.108447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
17
|
Conjoined-network induced highly tough hydrogels by using copolymer and nano-cellulose for oilfield water plugging. J IND ENG CHEM 2022. [DOI: 10.1016/j.jiec.2022.01.038] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
18
|
El-Kholy AI, Abdel Fadeel D, Nasr M, El-Sherbiny I, Fadel M. (Rose Bengal)/(Eosin Yellow)-Gold-Polypyrrole Hybrids: A Design for Dual Photo-Active Nano-System with Ultra-High Loading Capacity. Drug Des Devel Ther 2021; 15:5011-5023. [PMID: 34938068 PMCID: PMC8685768 DOI: 10.2147/dddt.s338922] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Accepted: 11/19/2021] [Indexed: 11/23/2022] Open
Abstract
Purpose Enhancement of the photodynamic/photothermal efficiency of two water-soluble dyes, rose bengal (RB) and eosin yellow (EY), via conjugation to a polymeric nano-system gold-polypyrrole nanoparticle (AuPpy NPs). Methodology A multi-step synthesis method and an in situ one-pot synthesis method were used. Loading percentage, particle size, zeta potential, morphology, UV-Vis-NIR spectrophotometry and in vitro photothermal activity were measured. Then, both hybrid nanocomposites were examined for their cytotoxicity and photocytotoxicity on HepG2 cell line as a model for cancer cells. Results Dyes loaded in the traditional multi-step method did not exceed 9% w/w, while in the one-pot synthesis method they reached ~67% w/w and ~75% w/w for EY-AuPpy NPs and RB-AuPpy NPs, respectively. UV-Vis-NIR spectrophotometry showed that both nano-systems exhibited intense absorption in the NIR region. The mean size of the nanoparticles was ~31.5 nm (RB-AuPpy NPs) and ~33.6 nm (EY-AuPpy NPs) with zeta potential values of −26.5 mV and −33 mV, respectively. TEM imaging revealed the morphology of both hybrids, showing ultra-nano spherical-shaped gold cores in the case of RB-AuPpy NPs, and different shapes of larger gold cores in the case of EY-AuPpy NPs, both embedded in the polymer film. Conjugation to AuPpy was found to significantly reduce the dark cytotoxicity of both RB and EY, preserving the photocytotoxicity of EY and enhancing the photocytotoxicity of RB. Conclusion Gold-polypyrrole nanoparticles represent an effective delivery system to improve the photodynamic and photothermal properties of RB and EY. The in situ one-pot synthesis method provided a means to greatly increase the loading capacity of AuPpy NPs. While both hybrid nanocomposites exhibited greatly diminished dark cytotoxicity, RB-AuPpy NPs showed significantly enhanced photocytotoxicity compared to the free dyes. This pattern enables the safe use of both dyes in high concentrations with sustained action, reducing dose frequency and side effects.
Collapse
Affiliation(s)
- Abdullah I El-Kholy
- Department of Medical Applications of Laser, Pharmaceutical Nano-Technology Unit, National Institute of Laser Enhanced Sciences (NILES), Cairo University, Giza, Egypt
| | - Doaa Abdel Fadeel
- Department of Medical Applications of Laser, Pharmaceutical Nano-Technology Unit, National Institute of Laser Enhanced Sciences (NILES), Cairo University, Giza, Egypt
| | - Maha Nasr
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Ibrahim El-Sherbiny
- Nanomaterials Lab, Center for Materials Science, Zewail City of Science and Technology, 6th October City, Giza, Egypt
| | - Maha Fadel
- Department of Medical Applications of Laser, Pharmaceutical Nano-Technology Unit, National Institute of Laser Enhanced Sciences (NILES), Cairo University, Giza, Egypt
| |
Collapse
|
19
|
Katouah HA, El-Sayed R, El-Metwaly NM. Solution blowing spinning technology and plasma-assisted oxidation-reduction process toward green development of electrically conductive cellulose nanofibers. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:56363-56375. [PMID: 34050912 DOI: 10.1007/s11356-021-14615-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 05/25/2021] [Indexed: 04/15/2023]
Abstract
Cellulose fibers have been one of the most common fibers due to their biodegradability, excellent mechanical properties, biocompatibility, high absorption ability, cheapness and renewability. In this study, novel, simple and green method is concerned with the production of multifunctional cellulose nanofibers (CNFs). Nanocomposites consisting of silver nanoparticles (AgNPs) and polyaniline (PANi) were in situ synthesized into plasma-pretreated cellulosic nanofibers fabricated by solution blowing spinning technique. The produced cellulose acetate nanofibers were then subjected to deacetylation followed by plasma-activation followed by a treatment with aniline and silver nitrate (AgNO3) in the presence of ammonium acetate. Plasma-assisted oxidation polymerization process of aniline into PANi associated with a reduction of Ag+ into AgNPs results in their permanent insolubility into the surface of the cellulose nanofibers. The morphologies and elemental contents were determined by polarizing optical microscope (POM), X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FT-IR), energy-dispersive X-ray patterns and scanning electron microscopy (SEM). Additionally, transmission electron microscope (TEM) was applied to explore the morphologies of silver nanoparticles and PANi showing particle diameter between 12 and 25 nm. The antimicrobial Ag NPs were formed from an aqueous medium of silver nitrate by taking the reduction ability advantage of the electrically active PANi. The immobilization of polyaniline and silver nanoparticles into the surface of the cellulose nanofibers enhanced its electrical conductivity. The produced CNFs demonstrated a high UV protection as well as antibacterial activity.
Collapse
Affiliation(s)
- Hanadi A Katouah
- Department of Chemistry, Faculty of Applied Science, Umm-Al-Qura University, Makkah, Saudi Arabia
| | - Refat El-Sayed
- Department of Chemistry, Faculty of Applied Science, Umm-Al-Qura University, Makkah, Saudi Arabia
- Department of Chemistry, Faculty of Science, Benha University, Benha, Egypt
| | - Nashwa M El-Metwaly
- Department of Chemistry, Faculty of Applied Science, Umm-Al-Qura University, Makkah, Saudi Arabia.
- Department of Chemistry, Faculty of Science, Mansoura University, El-Gomhoria Street, Mansoura, Egypt.
| |
Collapse
|
20
|
Development of Green and Sustainable Cellulose Acetate/Graphene Oxide Nanocomposite Films as Efficient Adsorbents for Wastewater Treatment. Polymers (Basel) 2020; 12:polym12112501. [PMID: 33121200 PMCID: PMC7693400 DOI: 10.3390/polym12112501] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 10/21/2020] [Accepted: 10/25/2020] [Indexed: 12/26/2022] Open
Abstract
: Novel ecofriendly adsorbents, cellulose acetate/graphene oxide (CA-GO) nanocomposite, were prepared from sugarcane bagasse agro-waste for removing Ni2+ ions from wastewater. Graphene oxide (GO) was prepared by the oxidation of sugarcane bagasse using ferrocene under air atmosphere. Cellulose acetate (CA) was also prepared from sugarcane bagasse by extraction of cellulose through a successive treatments with sulfuric acid (10% v/v), sodium hydroxide (5% w/v), ethylenediaminetetraacetic acid, and hydrogen peroxide, and finally , followed by acetylation. CA-GO was prepared via mixing of GO and CA in the presence of calcium carbonate and different concentrations of GO, including 5, 10, 15, 20, 25, and 30 wt% relative to the weight of CA. The CA-GO nanocomposite showed porous microstructures with high surface area, which enhance their ability towars the adsorption of Ni2+ ions from wastewater. The morphological properties of the prepared adsorbents were explored by scanning electron microscope (SEM) and Fourier-transform infrared spectroscopy (FT-IR). The efficiency of the CA-GO towards the adsorption of Ni2+ ions from wastewater was explored against as time, temperature, and total content of Ni2+ ions. The adsorption measurements of Ni2+ ions were investigated within the concentration range of 10-40 mg/L, time range between 15 and 90 minutes, and temperature range between 25 °C and 55 °C. The results displayed a considerable improvement in the adsorption process of Ni2+ ions by CA-GO-2 with a removal efficiency of 96.77%. The isotherms were monitored to best fit the Langmuir model. Finally, the adsorption performance of the prepared CA-GO nanocomposite films demonstrated promising properties as green, sustainable and cheap adsorbents for water pollutants.
Collapse
|
21
|
Zyane A, Ablouh EH, Sabbar EM, Brouillette F, Belfkira A. Addition of microcrystalline cellulose to an alkyd resin/titanium dioxide film: effect on dielectric properties. Heliyon 2020; 6:e04977. [PMID: 32995641 PMCID: PMC7505806 DOI: 10.1016/j.heliyon.2020.e04977] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 07/28/2020] [Accepted: 09/16/2020] [Indexed: 11/30/2022] Open
Abstract
In this study, various composite films were prepared by varying the amounts of long-oil Alkyd Resin (AR), Titanium Dioxide (TiO2) and Microcrystalline Cellulose (MCC). The effects of each component, TiO2 and MCC, on the properties and microstructure of the dry film were determined by examining images obtained by scanning electron microscopy (SEM) and studying the evolution of dielectric properties, the dielectric constant and the loss factor, against frequency at room temperature. Results showed that the introduction of the TiO2/MCC powder with a weight ratio larger than 1 and a volumetric pigment concentration (VPC) less than 50% allowed a better dispersion of the particles and fitted well the Linchtencker logarithmic mixing law and the Maxwell-Garnett theory. Finally, a marked improvement of the dielectric constant with respect to those of pure alkyd resin and AR/TiO2 composites was observed.
Collapse
Affiliation(s)
- Adel Zyane
- Bioorganic and Macromolecular Chemistry Laboratory, Department of Chemistry, Faculty of Sciences and Technology, Cadi Ayyad University, 40000, Marrakesh, Morocco
| | - El-Houssaine Ablouh
- Bioorganic and Macromolecular Chemistry Laboratory, Department of Chemistry, Faculty of Sciences and Technology, Cadi Ayyad University, 40000, Marrakesh, Morocco.,Center of Analysis and Characterization, Cadi Ayyad University, 40000, Marrakesh, Morocco
| | - El Mouloudi Sabbar
- Chouaïb Doukkali University, Material Physicochemistry Laboratory, BP 20, 24000 El-Jadida, Morocco
| | - François Brouillette
- Innovations Institute in Ecomaterials, Ecoproducts, and EcoEnergies - Biomass Based (I2E3), Université du Québec à Trois-Rivières, Trois-Rivières, QC, G9A 5H7 Canada
| | - Ahmed Belfkira
- Bioorganic and Macromolecular Chemistry Laboratory, Department of Chemistry, Faculty of Sciences and Technology, Cadi Ayyad University, 40000, Marrakesh, Morocco
| |
Collapse
|
22
|
Hamidouche F, Ghebache Z, Boudieb N, Sanad MMS, Djelali NE. Enhancing the Supercapacitive and Conductivity Properties of Polypyrrole via In-situ Polymerization with HY Zeolite Nanoparticles. J Inorg Organomet Polym Mater 2020. [DOI: 10.1007/s10904-020-01707-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
23
|
Kamel S, A. Khattab T. Recent Advances in Cellulose-Based Biosensors for Medical Diagnosis. BIOSENSORS 2020; 10:E67. [PMID: 32560377 PMCID: PMC7345568 DOI: 10.3390/bios10060067] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Revised: 06/10/2020] [Accepted: 06/15/2020] [Indexed: 12/11/2022]
Abstract
Cellulose has attracted much interest, particularly in medical applications such as advanced biosensing devices. Cellulose could provide biosensors with enhanced biocompatibility, biodegradability and non-toxicity, which could be useful for biosensors. Thus, they play a significant role in environmental monitoring, medical diagnostic tools, forensic science, and foodstuff processing safety applications. This review summarizes the recent developments in cellulose-based biosensors targeting the molecular design principles toward medical detection purposes. The recognition/detection mechanisms of cellulose-based biosensors demonstrate two major classes of measurable signal generation, including optical and electrochemical cellulosic biosensors. As a result of their simplicity, high sensitivity, and low cost, cellulose-based optical biosensors are particularly of great interest for including label-free and label-driven (fluorescent and colorimetric) biosensors. There have been numerous types of cellulose substrates employed in biosensors, including several cellulose derivatives, nano-cellulose, bacterial cellulose, paper, gauzes, and hydrogels. These kinds of cellulose-based biosensors were discussed according to their preparation procedures and detection principle. Cellulose and its derivatives with their distinctive chemical structure have demonstrated to be versatile materials, affording a high-quality platform for accomplishing the immobilization process of biologically active molecules into biosensors. Cellulose-based biosensors exhibit a variety of desirable characteristics, such as sensitivity, accuracy, convenience, quick response, and low-cost. For instance, cellulose paper-based biosensors are characterized as being low-cost and easy to operate, while nano-cellulose biosensors are characterized as having a good dispersion, high absorbance capacity, and large surface area. Cellulose and its derivatives have been promising materials in biosensors which could be employed to monitor various bio-molecules, such as urea, glucose, cell, amino acid, protein, lactate, hydroquinone, gene, and cholesterol. The future interest will focus on the design and construction of multifunctional, miniaturized, low-cost, environmentally friendly, and integrated biosensors. Thus, the production of cellulose-based biosensors is very important.
Collapse
Affiliation(s)
- Samir Kamel
- Cellulose and Paper Department, National Research Centre, Cairo 12622, Egypt;
| | - Tawfik A. Khattab
- Dyeing, Printing and Auxiliaries Department, National Research Centre, Cairo 12622, Egypt
| |
Collapse
|
24
|
Singh P, Shukla SK. A structurally aligned nickel oxide encapsulated polypyrrole nanocomposite for hydrogen peroxide sensing. Dalton Trans 2020; 49:8744-8754. [DOI: 10.1039/d0dt01847c] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Chemically responsive and structurally aligned nickel oxide encapsulated polypyrrole nano-composite has been prepared for H2O2 sensing in liquid and vapor phase.
Collapse
Affiliation(s)
- Pratibha Singh
- Department of Chemistry
- University of Delhi
- Delhi-110007
- India
- Department of Polymer Science
| | - S. K. Shukla
- Department of Polymer Science
- Bhaskaracharya College of Applied Sciences
- University of Delhi
- Delhi-110075
- India
| |
Collapse
|