1
|
Aghajani M, Garshasbi HR, Naghib SM, Mozafari MR. 3D Printing of Hydrogel Polysaccharides for Biomedical Applications: A Review. Biomedicines 2025; 13:731. [PMID: 40149707 PMCID: PMC11940176 DOI: 10.3390/biomedicines13030731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Revised: 02/27/2025] [Accepted: 03/10/2025] [Indexed: 03/29/2025] Open
Abstract
Additive manufacturing, also known as 3D printing, is becoming more and more popular because of its wide range of materials and flexibility in design. Layer by layer, 3D complex structures can be generated by the revolutionary computer-aided process known as 3D bioprinting. It is particularly crucial for youngsters and elderly patients and is a useful tool for tailored pharmaceutical therapy. A lot of research has been carried out recently on the use of polysaccharides as matrices for tissue engineering and medication delivery. Still, there is a great need to create affordable, sustainable bioink materials with high-quality mechanical, viscoelastic, and thermal properties as well as biocompatibility and biodegradability. The primary biological substances (biopolymers) chosen for the bioink formulation are proteins and polysaccharides, among the several resources utilized for the creation of such structures. These naturally occurring biomaterials give macromolecular structure and mechanical qualities (biomimicry), are generally compatible with tissues and cells (biocompatibility), and are harmonious with biological digesting processes (biodegradability). However, the primary difficulty with the cell-laden printing technique (bioprinting) is the rheological characteristics of these natural-based bioinks. Polysaccharides are widely used because they are abundant and reasonably priced natural polymers. Additionally, they serve as excipients in formulations for pharmaceuticals, nutraceuticals, and cosmetics. The remarkable benefits of biological polysaccharides-biocompatibility, biodegradability, safety, non-immunogenicity, and absence of secondary pollution-make them ideal 3D printing substrates. The purpose of this publication is to examine recent developments and challenges related to the 3D printing of stimuli-responsive polysaccharides for site-specific medication administration and tissue engineering.
Collapse
Affiliation(s)
- Mohammad Aghajani
- Nanotechnology Department, School of Advanced Technologies, Iran University of Science and Technology (IUST), Tehran 1684613114, Iran; (M.A.)
| | - Hamid Reza Garshasbi
- Nanotechnology Department, School of Advanced Technologies, Iran University of Science and Technology (IUST), Tehran 1684613114, Iran; (M.A.)
| | - Seyed Morteza Naghib
- Nanotechnology Department, School of Advanced Technologies, Iran University of Science and Technology (IUST), Tehran 1684613114, Iran; (M.A.)
| | - M. R. Mozafari
- Australasian Nanoscience and Nanotechnology Initiative (ANNI), Monash University LPO, Clayton, Melbourne, VIC 3168, Australia
| |
Collapse
|
2
|
Xu Z, Zhang G, Wang R, Zhang G, Chen G, Bian H, Jiang T, Kong Y. Degradable chiral mesoporous silica nanoparticles and carboxymethyl chitosan/cystamine hydrogels for selective loading and controlled release of S-naproxen. Int J Biol Macromol 2025; 288:138706. [PMID: 39672415 DOI: 10.1016/j.ijbiomac.2024.138706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 11/28/2024] [Accepted: 12/10/2024] [Indexed: 12/15/2024]
Abstract
Degradable chiral mesoporous silica nanoparticles (DCMSN) are synthesized for selective loading and controlled release of S-naproxen (S-NPX). Chiral silane coupling agent (APTES-L) and degradable silane coupling agent (APTES-CN) are synthesized, respectively, which are used for the synthesis of DCMSN. APTES-L endows the DCMSN with chirality, while APTES-CN endows the DCMSN with degradability. Owing to the same rotatory directions of DCMSN and S-NPX, the DCMSN can be used for the selective loading of S-NPX, and the higher selectivity of DCMSN toward S-NPX is further confirmed by the thermodynamic computations. Further, the S-NPX loaded DCMSN (DCMSN-S-NPX) is encapsulated in the hydrogels cross-linked by carboxymethyl chitosan (CMCS) and cystamine (Cys). The TEM characterization reveals that the DCMSN has a regular and spherical shape, and the BET analysis demonstrates that the DCMSN is a typical mesoporous material. The thermogravimetry reveals that the contents of the silane coupling agents in the DCMSN are about 23.9 %. The results of UV and circular dichroism (CD) spectra indicate a higher selectivity of DCMSN toward S-NPX. The release of S-NPX from the hydrogels is controlled by pH and glutathione (GSH), and the release of S-NPX follows a zero-order equation. Cytotoxicity assay indicates that the drug-free hydrogels have excellent biocompatibility.
Collapse
Affiliation(s)
- Ze Xu
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
| | - Guodong Zhang
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
| | - Rongzhi Wang
- Queen Mary School, Nanchang University, Nanchang 330031, China
| | - Guilin Zhang
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
| | - Guanyu Chen
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
| | - Huwei Bian
- The Fifth Department of Orthopedics and Traumatology, Changzhou Municipal Hospital of Traditional Chinese Medicine, Changzhou 213003, China
| | - Tao Jiang
- The Fifth Department of Orthopedics and Traumatology, Changzhou Municipal Hospital of Traditional Chinese Medicine, Changzhou 213003, China.
| | - Yong Kong
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China.
| |
Collapse
|
3
|
Dou W, Zeng X, Zhang C, Wang X, Zhu Y, Zhu S, Liu C, Ji W, Fan Q, Gao Y, Zhao K, Zhao J, Hou X, Yuan X, Liu H, Li Y, Li S. Epidermal growth factor-incorporated hydrogen bond crosslinked hemostatic microparticles capable of timely response to accidental bleeding for prehospital rescue. Int J Biol Macromol 2024; 281:136452. [PMID: 39389484 DOI: 10.1016/j.ijbiomac.2024.136452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 09/19/2024] [Accepted: 10/07/2024] [Indexed: 10/12/2024]
Abstract
Prehospital rescue of accidental massive bleeding is crucial for saving lives. However, currently available hemostatic materials are still in infancy in treating accidental bleeding due to the challenges in fully satisfying the complex outdoor hemostatic requirements. Herein, we designed an epidermal growth factor (EGF)- incorporated, microparticle-formed, high-strength, dynamic environment-stable hemostatic gel system for prehospital rescue. Carboxyl and dimethylamide were employed as the hydrogen bond (H-bond) groups and were carefully engineered into the microparticles (DHMs). We demonstrated that the unique H-bond crosslinked micronized structure enabled the DHM-based gelling system to adequately meet the outdoor hemostatic requirements. The stable H-bond groups allow the DHMs to be stored at room temperature and be easily carried around. The small sizes (150-250 μm) of the DHMs enabled the filling of irregular defects, and upon encountering water, these DHMs integrated into hydrogels (DHMs-gels) with high mechanical strength (1.61 MPa), strong tissue adhesiveness (66.5 kPa) and stable performance under dynamic environments. In vivo results showed that the EGF-incorporated DHMs-gels (DHMs-EGF gel) achieved a 100 % survival rate in a simulated rescue process and promoted wound healing. Simultaneously possessing multiple prehospital rescue-required properties, the hemostatic DHMs-EGF may become an effective tool for emergency rescue.
Collapse
Affiliation(s)
- Wenguang Dou
- College of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, Shandong Province, China
| | - Xiaojun Zeng
- College of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, Shandong Province, China; School of Life Sciences, Yantai University, Yantai 264005, Shandong Province, China
| | - Chenyang Zhang
- College of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, Shandong Province, China
| | - Xue Wang
- College of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, Shandong Province, China
| | - Ye Zhu
- College of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, Shandong Province, China; School of Life Sciences, Yantai University, Yantai 264005, Shandong Province, China
| | - Shuzhuang Zhu
- College of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, Shandong Province, China
| | - Chan Liu
- College of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, Shandong Province, China
| | - Weijun Ji
- Tianjin Key Laboratory of Composite and Functional Materials, School of Materials Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Qingmei Fan
- Department of Breast Surgery, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai 264001, Shandong Province, China
| | - Yonglin Gao
- School of Life Sciences, Yantai University, Yantai 264005, Shandong Province, China
| | - Kongyin Zhao
- State Key Laboratory of Separation Membranes and Membrane Processes, Tiangong University, Tianjin 300387, China
| | - Jin Zhao
- Tianjin Key Laboratory of Composite and Functional Materials, School of Materials Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Xin Hou
- Tianjin Key Laboratory of Composite and Functional Materials, School of Materials Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Xubo Yuan
- Tianjin Key Laboratory of Composite and Functional Materials, School of Materials Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Hongliang Liu
- College of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, Shandong Province, China; Shandong Laboratory of Yantai Advanced Materials and Green Manufacturing, Yantai 265503, Shandong Province, China.
| | - Yansheng Li
- Department of Breast Surgery, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai 264001, Shandong Province, China.
| | - Sidi Li
- College of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, Shandong Province, China.
| |
Collapse
|
4
|
Zhu J, Huang T, Chen X, Tian D, Wang L, Gao R. Preparation and characterization of vanillin-conjugated chitosan-stabilized emulsions via a Schiff-base reaction. Food Sci Biotechnol 2023; 32:1489-1499. [PMID: 37637835 PMCID: PMC10449761 DOI: 10.1007/s10068-023-01277-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 01/12/2023] [Accepted: 02/06/2023] [Indexed: 03/03/2023] Open
Abstract
In the current work, vanillin-conjugated chitosan stabilized emulsions (CSVAEs) were successfully prepared and its characterization and antibacterial properties were investigated. Under stirring condition, CSVAEs were produced by a Schiff base reaction between the vanillin aldehyde group and the chitosan active amino group. The CSVAEs were described through Fourier transform infrared spectroscopy, X-ray diffraction, ultraviolet spectrophotometry and thermogravimetric analysis, which demonstrated the generation of Schiff bases between vanillin and chitosan. Furthermore, the CSVAEs displayed differences at different pH values, indicating their potential as pH-responsive materials. By studying their release behavior, pH 4 was a critical point at which the properties of the CSVAEs changed. The antibacterial tests showed that the CSVAEs had good pH-responsive antibacterial abilities against Staphylococcus aureus and Escherichia coli.
Collapse
Affiliation(s)
- Jianfei Zhu
- School of Environment and Resources, Chongqing Technology and Business University, Chongqing, 400067 China
- Chongqing Engineering Research Center for Processing, Storage & Transportation of Characterized Agro–Products, Chongqing, 400067 People’s Republic of China
| | - Tingting Huang
- School of Environment and Resources, Chongqing Technology and Business University, Chongqing, 400067 China
| | - Xiaomei Chen
- School of Environment and Resources, Chongqing Technology and Business University, Chongqing, 400067 China
| | - Dongling Tian
- School of Environment and Resources, Chongqing Technology and Business University, Chongqing, 400067 China
| | - Lei Wang
- Guangxi Key Laboratory of Agricultural Resources Chemistry and Biotechnology, Yulin, 537000 China
- College of Chemistry and Food Science, Yulin Normal University, Yulin, 537000 China
| | - Ruiping Gao
- School of Environment and Resources, Chongqing Technology and Business University, Chongqing, 400067 China
- Chongqing Engineering Research Center for Processing, Storage & Transportation of Characterized Agro–Products, Chongqing, 400067 People’s Republic of China
| |
Collapse
|
5
|
Li W, Fang K, Yuan H, Li D, Li H, Chen Y, Luo X, Zhang L, Ye X. Acid-induced Poria cocos alkali-soluble polysaccharide hydrogel: Gelation behaviour, characteristics, and potential application in drug delivery. Int J Biol Macromol 2023; 242:124383. [PMID: 37030457 DOI: 10.1016/j.ijbiomac.2023.124383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 04/01/2023] [Accepted: 04/05/2023] [Indexed: 04/09/2023]
Abstract
Poria cocos alkali-soluble polysaccharide (PCAP), a water-insoluble β-glucan, is the main component of the total dried sclerotia of Poria cocos. However, its gelation behaviour and properties have yet to be comprehensively studied. In this study, an acid-induced physical hydrogel based on natural PCAP is fabricated. The acid-induced gelation in PCAP is explored with respect to the pH and polysaccharide concentration. PCAP hydrogels are formed in the pH range of 0.3-10.5, and the lowest gelation concentration is 0.4 wt%. Furthermore, dynamic rheological, fluorescence, and cyclic voltammetry measurements are performed to elucidate the gelation mechanism. The results reveal that hydrogen bonds and hydrophobic interactions play a dominant role in gel formation. Subsequently, the properties of the PCAP hydrogels are investigated using rheological measurements, scanning electron microscopy, gravimetric analysis, free radical scavenging, MTT assays, and enzyme-linked immunosorbent assays. The PCAP hydrogels exhibit a porous network structure and cytocompatibility, in addition to good viscoelastic, thixotropic, water-holding, swelling, antioxidant, and anti-inflammatory activities. Furthermore, using rhein as a model drug for encapsulation, it is demonstrated that its cumulative release behaviour from the PCAP hydrogel is pH dependent. These results indicate the potential of PCAP hydrogels for application in biological medicine and drug delivery.
Collapse
Affiliation(s)
- Wan Li
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China; Key Laboratory of Traditional Chinese Medicine Resource and Chemistry of Traditional Chinese Medicine in Hubei Province, College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China.
| | - Kexin Fang
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China
| | - Hao Yuan
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China
| | - Dongru Li
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China
| | - Haochen Li
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China
| | - Yin Chen
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China
| | - Xinyao Luo
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China
| | - Lian Zhang
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China
| | - Xiaochuan Ye
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China; Key Laboratory of Traditional Chinese Medicine Resource and Chemistry of Traditional Chinese Medicine in Hubei Province, College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China.
| |
Collapse
|
6
|
Stimuli-Responsive Polysaccharide Hydrogels and Their Composites for Wound Healing Applications. Polymers (Basel) 2023; 15:polym15040986. [PMID: 36850269 PMCID: PMC9958605 DOI: 10.3390/polym15040986] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 02/08/2023] [Accepted: 02/10/2023] [Indexed: 02/18/2023] Open
Abstract
There is a growing concern about wound care, since traditional dressings such as bandages and sutures can no longer meet existing needs. To address the demanding requirements, naturally occurring polymers have been extensively exploited for use in modern wound management. Polysaccharides, being the most abundant biopolymers, have some distinct characteristics, including biocompatibility and biodegradability, which render them ideal candidates for wound healing applications. Combining them with inorganic and organic moieties can produce effective multifunctional composites with the desired mechanical properties, high wound healing efficiencies and excellent antibacterial behavior. Recent research endeavors focus on the development of stimuli-responsive polysaccharide composites for biomedical applications. Polysaccharide composites, being sensitive to the local environment, such as changes of the solution temperature, pH, etc., can sense and react to the wound conditions, thus promoting an effective interaction with the wound. This review highlights the recent advances in stimuli-responsive polysaccharide hydrogels and their composites for use in wound healing applications. The synthetic approaches, physical, chemical, and biochemical properties as well as their function in wound healing will be discussed.
Collapse
|
7
|
Zhang X, Liu B, Feng W, Wei W, Shen W, Fang S, Fan K. Fully physically crosslinked POSS-based hydrogel with low swelling, high stretchable, self-healing, and conductive properties for human motion sensing. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.130016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
8
|
Liu C, Yang P, Li J, Cao S, Shi J. NIR/pH-responsive chitosan hydrogels containing Ti3C2/AuNRs with NIR-triggered photothermal effect. Carbohydr Polym 2022; 295:119853. [DOI: 10.1016/j.carbpol.2022.119853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 06/21/2022] [Accepted: 07/06/2022] [Indexed: 11/26/2022]
|
9
|
Shokrani H, Shokrani A, Sajadi SM, Khodadadi Yazdi M, Seidi F, Jouyandeh M, Zarrintaj P, Kar S, Kim SJ, Kuang T, Rabiee N, Hejna A, Saeb MR, Ramakrishna S. Polysaccharide-based nanocomposites for biomedical applications: a critical review. NANOSCALE HORIZONS 2022; 7:1136-1160. [PMID: 35881463 DOI: 10.1039/d2nh00214k] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Polysaccharides (PSA) have taken specific position among biomaterials for advanced applications in medicine. Nevertheless, poor mechanical properties are known as the main drawback of PSA, which highlights the need for PSA modification. Nanocomposites PSA (NPSA) are a class of biomaterials widely used as biomedical platforms, but despite their importance and worldwide use, they have not been reviewed. Herein, we critically reviewed the application of NPSA by categorizing them into generic and advanced application realms. First, the application of NPSA as drug and gene delivery systems, along with their role in the field as an antibacterial platform and hemostasis agent is discussed. Then, applications of NPSA for skin, bone, nerve, and cartilage tissue engineering are highlighted, followed by cell encapsulation and more critically cancer diagnosis and treatment potentials. In particular, three features of investigations are devoted to cancer therapy, i.e., radiotherapy, immunotherapy, and photothermal therapy, are comprehensively reviewed and discussed. Since this field is at an early stage of maturity, some other aspects such as bioimaging and biosensing are reviewed in order to give an idea of potential applications of NPSA for future developments, providing support for clinical applications. It is well-documented that using nanoparticles/nanomaterials above a critical concentration brings about concerns of toxicity; thus, their effect on cellular interactions would become critical. We compared nanoparticles used in the fabrication of NPSA in terms of toxicity mechanism to shed more light on future challenging aspects of NPSA development. Indeed, the neutralization mechanisms underlying the cytotoxicity of nanomaterials, which are expected to be induced by PSA introduction, should be taken into account for future investigations.
Collapse
Affiliation(s)
- Hanieh Shokrani
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources and International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, 210037 Nanjing, China.
- Department of Chemical Engineering, Sharif University of Technology, Tehran, Iran
| | - Amirhossein Shokrani
- Department of Mechanical Engineering, Sharif University of Technology, Azadi Ave., Tehran, Iran
| | - S Mohammad Sajadi
- Department of Nutrition, Cihan University-Erbil, Kurdistan Region, 625, Erbil, Iraq
| | - Mohsen Khodadadi Yazdi
- Center of Excellence in Electrochemistry, School of Chemistry, College of Science, University of Tehran, Tehran, Iran
| | - Farzad Seidi
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources and International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, 210037 Nanjing, China.
| | - Maryam Jouyandeh
- Center of Excellence in Electrochemistry, School of Chemistry, College of Science, University of Tehran, Tehran, Iran
| | - Payam Zarrintaj
- School of Chemical Engineering, Oklahoma State University, 420 Engineering North, Stillwater, OK 74078, USA
| | - Saptarshi Kar
- College of Engineering and Technology, American University of the Middle East, Kuwait
| | - Seok-Jhin Kim
- School of Chemical Engineering, Oklahoma State University, Stillwater, OK, USA
| | - Tairong Kuang
- College of Material Science and Engineering, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Navid Rabiee
- School of Engineering, Macquarie University, Sydney, New South Wales, 2109, Australia
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk, 37673, South Korea
| | - Alexander Hejna
- Department of Polymer Technology, Faculty of Chemistry, Gdańsk University of Technology, Narutowicza 11/12, 80-233 Gdańsk, Poland.
| | - Mohammad Reza Saeb
- Department of Polymer Technology, Faculty of Chemistry, Gdańsk University of Technology, Narutowicza 11/12, 80-233 Gdańsk, Poland.
| | - Seeram Ramakrishna
- Department of Mechanical Engineering, National University Singapore, 10 Kent Ridge, Crescent 119260, Singapore.
| |
Collapse
|
10
|
Recent Advances in 3D Bioprinting: A Review of Cellulose-Based Biomaterials Ink. Polymers (Basel) 2022; 14:polym14112260. [PMID: 35683932 PMCID: PMC9183181 DOI: 10.3390/polym14112260] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 05/28/2022] [Accepted: 05/30/2022] [Indexed: 12/19/2022] Open
Abstract
Cellulose-based biodegradable hydrogel proves to be excellently suitable for the medical and water treatment industry based on the expressed properties such as its flexible structure and broad compatibility. Moreover, their potential to provide excellent waste management from the unutilized plant has triggered further study on the advanced biomaterial applications. To extend the use of cellulose-based hydrogel, additive manufacturing is a suitable technique for hydrogel fabrication in complex designs. Cellulose-based biomaterial ink used in 3D bioprinting can be further used for tissue engineering, drug delivery, protein study, microalgae, bacteria, and cell immobilization. This review includes a discussion on the techniques available for additive manufacturing, bio-based material, and the formation of a cellulose-based hydrogel.
Collapse
|
11
|
Nowacka M, Kowalewska A. Self-Healing Silsesquioxane-Based Materials. Polymers (Basel) 2022; 14:polym14091869. [PMID: 35567038 PMCID: PMC9099987 DOI: 10.3390/polym14091869] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 04/24/2022] [Accepted: 04/27/2022] [Indexed: 02/06/2023] Open
Abstract
This review is devoted to self-healing materials (SHM) containing polyhedral oligomeric silsesquioxanes (POSS) as building blocks. The synthetic approach can vary depending on the role POSS are expected to play in a given system. POSS (especially double-decker silsesquioxanes) can be grafted in side chains of a polymer backbone or used as segments of the main chain. Appropriate functionalization allows the formation of dynamic bonds with POSS molecules and makes them an active component of SHM, both as crosslinking agents and as factors that enhance the dynamics of macromolecules in the polymer matrix. The latter effect can be achieved by reversible release of bulky POSS cages or by the formation of separated inclusions in the polymer matrix through hydrophobic interactions and POSS aggregation. The unique properties of POSS-based self-healing systems make them interesting and versatile materials for various applications (e.g., repairable coatings, sealants, sensors, soft materials for tissue engineering, drug delivery, and wound healing).
Collapse
|
12
|
Transcutaneous Drug Delivery Systems Based on Collagen/Polyurethane Composites Reinforced with Cellulose. Polymers (Basel) 2021; 13:polym13111845. [PMID: 34199447 PMCID: PMC8199638 DOI: 10.3390/polym13111845] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 05/11/2021] [Accepted: 05/26/2021] [Indexed: 02/07/2023] Open
Abstract
Designing composites based on natural polymers has attracted attention for more than a decade due to the possibility to manufacture medical devices which are biocompatible with the human body. Herein, we present some biomaterials made up of collagen, polyurethane, and cellulose doped with lignin and lignin-metal complex, which served as transcutaneous drug delivery systems. Compared with base material, the compressive strength and the elastic modulus of biocomposites comprising lignin or lignin-metal complex were significantly enhanced; thus, the compressive strength increased from 61.37 to 186.5 kPa, while the elastic modulus increased from 0.828 to 1.928 MPa. The release of ketokonazole from the polymer matrix follows a Korsmeyer–Peppas type kinetics with a Fickian diffusion. All materials tested were shown to be active against pathogenic microorganisms. The mucoadhesiveness, bioadhesiveness, mechanical resistance, release kinetic, and antimicrobial activity make these biocomposites to be candidates as potential systems for controlled drug release.
Collapse
|