1
|
Sandu T, Chiriac AL, Zaharia A, Iordache TV, Sarbu A. New Trends in Preparation and Use of Hydrogels for Water Treatment. Gels 2025; 11:238. [PMID: 40277674 PMCID: PMC12026611 DOI: 10.3390/gels11040238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2025] [Revised: 03/11/2025] [Accepted: 03/18/2025] [Indexed: 04/26/2025] Open
Abstract
Hydrogel-based wastewater treatment technologies show certain outstanding features, which include exceptional efficiency, sustainability, reusability, and the precise targeting of specific contaminants. Moreover, it becomes possible to minimize the environmental impact when using these materials. Their flexibility, low energy consumption, and adaptability to meet specific requirements for different purposes offer significant advantages over traditional methods like activated carbon filtration, membrane filtration, and chemical treatments. Recent advancements in hydrogel technology, including new production methods and hybrid materials, enhance their ability to efficiently adsorb contaminants without altering their biocompatibility and biodegradability. Therefore, innovative materials that are ideal for sustainable water purification were developed. However, these materials also suffer from several limitations, mostly regarding the scalability, long-term stability in real-world systems, and the need for precise functionalization. Therefore, overcoming these issues remains a challenge. Additionally, improving the efficiency and cost-effectiveness of regeneration methods is essential for their practical use. Finally, assessing the environmental impact of hydrogel production, use, and disposal is crucial to ensure these technologies are beneficial in the long run. This review summarizes recent advancements in developing polymer-based hydrogels for wastewater treatment by adsorption processes to help us understand the progress made during recent years. In particular, the studies presented within this work are compared from the point of view of the synthesis method, raw materials used such as synthetic/natural or hybrid networks, and the targeted class of pollutants-dyes or heavy metal ions. In several sections of this paper, discussions regarding the most important properties of the newly emerged adsorbents, e.g., kinetics, the adsorption capacity, and reusability, are also discussed.
Collapse
Affiliation(s)
| | | | | | - Tanta-Verona Iordache
- Advanced Polymer Materials and Polymer Recycling Group, National Institute for Research & Development in Chemistry and Petrochemistry ICECHIM, Spl. Independentei 202, 6th District, 060021 Bucharest, Romania; (T.S.); (A.-L.C.); (A.Z.)
| | - Andrei Sarbu
- Advanced Polymer Materials and Polymer Recycling Group, National Institute for Research & Development in Chemistry and Petrochemistry ICECHIM, Spl. Independentei 202, 6th District, 060021 Bucharest, Romania; (T.S.); (A.-L.C.); (A.Z.)
| |
Collapse
|
2
|
Bakhiia T, Toropov A, Nevolin I, Maslakov K, Romanchuk A, Kalmykov S. Carbon materials for effective purification of aqueous solutions from tributyl phosphate. Phys Chem Chem Phys 2024; 26:25977-25985. [PMID: 39370867 DOI: 10.1039/d4cp02731k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
This study investigates various sorbents for the effective sorption of dissolved organic substances, using tributyl phosphate (TBP) as a model compound. TBP is one of the most commonly used extractants in the nuclear industry. Four different carbon materials with high specific surface areas (2000-3000 m2 g-1) were selected for evaluation. The sorption of TBP from nitric acid solutions was examined over a wide range of concentrations. The samples with the largest specific surface areas showed the highest sorption capacity for organic matter. To enable repeated use, a purification scheme was developed to restore the sorbents' original properties. The samples were subjected to various treatments, analyzed using X-ray photoelectron spectroscopy, and used in subsequent sorption experiments.
Collapse
Affiliation(s)
- Tamuna Bakhiia
- Department of Chemistry, Lomonosov Moscow State University, Leninskie Gory, Moscow, 119991, Russia.
| | - Andrey Toropov
- Department of Chemistry, Lomonosov Moscow State University, Leninskie Gory, Moscow, 119991, Russia.
| | - Iurii Nevolin
- Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, 31 Bldg 4, Leninsky Prosp., Moscow, 119071, Russia
| | - Konstantin Maslakov
- Department of Chemistry, Lomonosov Moscow State University, Leninskie Gory, Moscow, 119991, Russia.
| | - Anna Romanchuk
- Department of Chemistry, Lomonosov Moscow State University, Leninskie Gory, Moscow, 119991, Russia.
| | - Stepan Kalmykov
- Department of Chemistry, Lomonosov Moscow State University, Leninskie Gory, Moscow, 119991, Russia.
| |
Collapse
|
3
|
Zhang W, Zeng Y, Cai F, Wei H, Wu Y, Yu H. Facile preparation of interpenetrating network hydrogel adsorbent from starch- chitosan for effective removal of methylene blue in water. Int J Biol Macromol 2024; 277:134340. [PMID: 39094889 DOI: 10.1016/j.ijbiomac.2024.134340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 07/10/2024] [Accepted: 07/29/2024] [Indexed: 08/04/2024]
Abstract
Hydrogels based on biopolymers have attracted considerable interest in the last decades. Herein, an interpenetrating network hydrogel (IPN-Gel) adsorbent from starch-chitosan was fabricated facilely in one-pot through tandem Schiff base reaction and photopolymerization. First, aldehyde starch (DAS) was synthesized by the reaction of soluble starch with sodium periodate. Afterward, acrylamide (AM), 2-acrylamido-2-methylpropanesulfonic acid (AMPS), polyethylene glycol dimethacrylate (PEGDMA), photoinitiator, chitosan and DAS were dissolved in water to obtain a clear solution. Schiff base reaction between chitosan and DAS took place quickly to form the first network, and then photopolymerization of AM, AMPS, and PEGDMA occurred under ultraviolet radiation to form the second network. The preparation conditions of the as-prepared IPN-Gel were optimized with two indexes of gel mass fraction and swelling ratio. Its swelling behavior with pH and temperature change was explored. Finally, its adsorption performance was characterized with methylene blue (MB) as a model contaminant. The maximum adsorption capacity of IPN-Gel can reach 2039 mg·g-1 at pH =10. Its adsorption performance accords with Langmuir isothermal model and pseudo-second-order kinetic model and it was mainly controlled by chemisorption. This strategy is expected to found broad application prospects in the preparation of hydrogel adsorbents.
Collapse
Affiliation(s)
- Wenjing Zhang
- School of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou, PR China
| | - Yin Zeng
- School of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou, PR China
| | - Fengying Cai
- School of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou, PR China
| | - Hongliang Wei
- National Engineering Research Center of Wheat and Corn Further Processing, Henan University of Technology, PR China; School of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou, PR China.
| | - Yuxuan Wu
- School of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou, PR China
| | - Hui Yu
- School of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou, PR China
| |
Collapse
|
4
|
Rahmatpour A, Shoghinia B, Alizadeh AH. A self-assembling hydrogel nanocomposite based on xanthan gum modified with SiO 2 NPs and HPAM for improved adsorption of crystal violet cationic dye from aqueous solution. Carbohydr Polym 2024; 330:121819. [PMID: 38368101 DOI: 10.1016/j.carbpol.2024.121819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 12/20/2023] [Accepted: 01/10/2024] [Indexed: 02/19/2024]
Abstract
This paper presents the rational design and novel synthesis of multifunctional nanocomposite hydrogel derived from xanthan gum (XG) modified with silica nanoparticles and partially hydrolyzed polyacrylamide (HPAM) via H-bonding interactions (self-assembly) through the "green" gelation process in water. Different techniques have been employed to characterize HPAM/SiO2@XG, including FT-IR, FE-SEM, XRD, TEM, BET, and TG/DTG as well as swelling kinetics. Crystal violet (CV)'s adsorption performance was investigated using batch experiments by varying various variables involving adsorbent composition, pH, adsorbent quantity, contact time, CV concentration, ionic strength, and temperature. A well-fitting Langmuir isotherm was found for the adsorption data at 30 °C and pH 7.0, yielding 342.19 mg CV/g as the equilibrium state's maximum adsorption (qm). CV adsorption data agreed better with the pseudo-second-order model than other kinetic models. Furthermore, the HPAM/SiO2@XG nanocomposite hydrogel showed a significant increase in adsorption capacity over the SiO2@XG hydrogel precursor. According to thermodynamic analysis, CV adsorbs to HPAM/XG@SiO2 spontaneously and exothermically. Our results showed that the nanocomposite hydrogel's functional groups interact with CV predominantly through electrostatic interactions, coupled with H-bonding. Nanocomposite hydrogel has been regenerated using a five-cycle adsorption-desorption process, and the efficiency of CV removal has remained a satisfactory level of removal efficiency (94.5 % to 71.5 %).
Collapse
Affiliation(s)
- Ali Rahmatpour
- Polymer Chemistry Research Laboratory, Faculty of Chemistry and Petroleum Science, Shahid Beheshti University, P. O. Box: 1983969411, Tehran, Iran.
| | - Bahareh Shoghinia
- Polymer Chemistry Research Laboratory, Faculty of Chemistry and Petroleum Science, Shahid Beheshti University, P. O. Box: 1983969411, Tehran, Iran
| | - Amir Hossein Alizadeh
- Polymer Chemistry Research Laboratory, Faculty of Chemistry and Petroleum Science, Shahid Beheshti University, P. O. Box: 1983969411, Tehran, Iran
| |
Collapse
|
5
|
Dursun S. Removal of cationic dye pollutants from wastewater with HS loaded semi-IPN composites: kinetic and thermodynamic studies. ENVIRONMENTAL MONITORING AND ASSESSMENT 2023; 196:27. [PMID: 38063933 DOI: 10.1007/s10661-023-12207-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 11/30/2023] [Indexed: 12/18/2023]
Abstract
In this study, methylene blue (MB) pollutant in water was removed using produced hazelnut shell loaded semi-interpenetrating polymer networks (HS loaded semi-IPN) adsorbent. The physical and chemical characterizations of the adsorbents were investigated using TGA, DSC, FT-IR, BET, FE-SEM, and EDX. Experimental parameters such as temperature, swelling, dye concentration, contact time, pH solution, and adsorbent dosage for MB adsorption were thoroughly investigated. It was determined that the HS loaded semi-IPN adsorbent removed 92.1% of MB dye. Subsequently, the adsorption properties between the adsorbent and dye were investigated in detail using several different kinetic, isotherm, and thermodynamic models. As a result of the obtained data, the interaction between adsorbent and dye molecules is discussed. Moreover, studies on the industrial usability of the adsorbent have been carried out, and it has been observed that the adsorbent can be employed even after four cycles.
Collapse
Affiliation(s)
- Sami Dursun
- Deparment of Metallurgical and Materials Engineering, Konya Technical University, Selçuklu, 42130, Konya, Turkey.
| |
Collapse
|
6
|
Rout DR, Jena HM, Baigenzhenov O, Hosseini-Bandegharaei A. Graphene-based materials for effective adsorption of organic and inorganic pollutants: A critical and comprehensive review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 863:160871. [PMID: 36521616 DOI: 10.1016/j.scitotenv.2022.160871] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 12/06/2022] [Accepted: 12/08/2022] [Indexed: 06/17/2023]
Abstract
Water scarcity has been felt in many countries and will become a critical issue in the coming years. The release of toxic organic and inorganic contaminants from different anthropogenic activities, like mining, agriculture, industries, and domestic households, enters the natural waterbody and pollutes them. Keeping this in view in combating the environmental crises, removing pollutants from wastewater is one of the ongoing environmental challenges. Adsorption technology is an economical, fast, and efficient physicochemical method for removing both organic and inorganic pollutants, even at low concentrations. In the last decade, graphene and its composite materials have become the center of attraction for numerous applications, including wastewater treatment, due to the large surface area, highly active surface, and exclusive physicochemical properties, which make them potential adsorbents with unique physicochemical properties, like low density, chemical strength, structural variability, and the possibility of large-scale fabrications. This review article provides a thorough summary/critical appraisal of the published literature on graphene-, GO-, and rGO-based adsorbents for the removal of organic and inorganic pollutants from wastewater. The synthesis methods, experimental parameters, adsorption behaviors, isotherms, kinetics, thermodynamics, mechanisms, and the performance of the regeneration-desorption processes of these substances are scrutinized. Finally, the research challenges, limitations, and future research studies are also discussed. Certainly, this review article will benefit the research community by getting substantial information on suitable techniques for synthesizing such adsorbents and utilizing them in water treatment and designing water treatment systems.
Collapse
Affiliation(s)
- Dibya Ranjan Rout
- Department of Chemical Engineering, National Institute of Technology, Rourkela 769008, Orissa, India.
| | - Hara Mohan Jena
- Department of Chemical Engineering, National Institute of Technology, Rourkela 769008, Orissa, India.
| | | | | |
Collapse
|
7
|
Dutta S, Gupta RS, Pathan S, Bose S. Interpenetrating polymer networks for desalination and water remediation: a comprehensive review of research trends and prospects. RSC Adv 2023; 13:6087-6107. [PMID: 36814875 PMCID: PMC9939980 DOI: 10.1039/d2ra07843k] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 01/22/2023] [Indexed: 02/22/2023] Open
Abstract
Interpenetrating polymer network (IPN) architectures have gained a lot of interest in recent decades, mainly due to their wide range of applications including water treatment and environmental remediation. IPNs are composed of two or more crosslinked polymeric matrices that are physically entangled but not chemically connected. In polymer science, the interpenetrating network structure with its high polymer chain entanglement is commonly used to generate materials with many functional properties, such as mechanical robustness and adaptable structure. In order to remove a targeted pollutant from contaminated water, it is feasible to modify the network architectures to increase the selectivity by choosing the monomer appropriately. This review aims to give a critical overview of the recent design concepts of IPNs and their applications in desalination and water treatment and their future prospects. This article also discusses the inclusion of inorganic nanoparticles into traditional polymeric membrane networks and its advantages. In the first part, the current scenario for desalination, water pollution and conventional desalination technologies along with their challenges is discussed. Subsequently, the main strategies for the synthesis of semi-IPNs and full-IPNs, and their relevant properties in water remediation are presented based on the nature of the networks and mechanism, with an emphasis on the IPN membrane. This review article has thoroughly investigated and critically assessed published works that describe the latest study on developing IPN membranes, hydrogels and composite materials in water purification and desalination. The goal of this critical analysis is to elicit fresh perspectives regarding the application and advantages of IPNs in desalination and water treatment. This article will also provide a glimpse into future areas of research to address the challenges relating to advanced water treatment as well as its emerging sustainable approaches. The study has put forward a convincing justification and establishes the relevance of IPNs being one of the most intriguing and important areas for achieving a sustainable generation of advanced materials that could benefit mankind.
Collapse
Affiliation(s)
- Soumi Dutta
- Department of Materials Engineering, Indian Institute of Science Bengaluru 560012 India
| | - Ria Sen Gupta
- Department of Materials Engineering, Indian Institute of Science Bengaluru 560012 India
| | - Shabnam Pathan
- Department of Materials Engineering, Indian Institute of Science Bengaluru 560012 India
| | - Suryasarathi Bose
- Department of Materials Engineering, Indian Institute of Science Bengaluru 560012 India
| |
Collapse
|
8
|
Advances in the role of natural gums-based hydrogels in water purification, desalination and atmospheric-water harvesting. Int J Biol Macromol 2022; 222:2888-2921. [DOI: 10.1016/j.ijbiomac.2022.10.067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 09/01/2022] [Accepted: 10/08/2022] [Indexed: 11/05/2022]
|