1
|
Scimone C, Alibrandi S, Donato L, Alafaci C, Germanò A, Vinci SL, D’Angelo R, Sidoti A. Editome landscape of CCM-derived endothelial cells. RNA Biol 2022; 19:852-865. [PMID: 35771000 PMCID: PMC9248949 DOI: 10.1080/15476286.2022.2091306] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 06/13/2022] [Indexed: 02/03/2023] Open
Abstract
By regulating several phases of gene expression, RNA editing modifications contribute to maintaining physiological RNA expression levels. RNA editing dysregulation can affect RNA molecule half-life, coding/noncoding RNA interaction, alternative splicing, and circular RNA biogenesis. Impaired RNA editing has been observed in several pathological conditions, including cancer and Alzheimer's disease. No data has been published yet on the editome profile of endothelial cells (ECs) isolated from human cerebral cavernous malformation (CCM) lesions. Here, we describe a landscape of editome modifications in sporadic CCM-derived ECs (CCM-ECs) by comparing editing events with those observed in human brain microvascular endothelial cells (HBMECs). With a whole transcriptome-based variant calling pipeline, we identified differential edited genes in CCM-ECs that were enriched in pathways related to angiogenesis, apoptosis and cell survival, inflammation and, in particular, to thrombin signalling mediated by protease-activated receptors and non-canonical Wnt signalling. These pathways, not yet associated to CCM development, could be a novel field for further investigations on CCM molecular mechanisms. Moreover, enrichment analysis of differentially edited miRNAs suggested additional small noncoding transcripts to consider for development of targeted therapies.
Collapse
Affiliation(s)
- Concetta Scimone
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Messina, Italy
- therapies, I.E.ME.S.TDepartment of Biomolecular strategies, genetics, cutting-edge, Palermo, Italy
| | - Simona Alibrandi
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Messina, Italy
- therapies, I.E.ME.S.TDepartment of Biomolecular strategies, genetics, cutting-edge, Palermo, Italy
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Luigi Donato
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Messina, Italy
- therapies, I.E.ME.S.TDepartment of Biomolecular strategies, genetics, cutting-edge, Palermo, Italy
| | - Concetta Alafaci
- Neurosurgery Unit, Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Messina, Italy
| | - Antonino Germanò
- Neurosurgery Unit, Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Messina, Italy
| | - Sergio L. Vinci
- Neuroradiology Unit, Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Messina, Italy
| | - Rosalia D’Angelo
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Messina, Italy
- therapies, I.E.ME.S.TDepartment of Biomolecular strategies, genetics, cutting-edge, Palermo, Italy
| | - Antonina Sidoti
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Messina, Italy
- therapies, I.E.ME.S.TDepartment of Biomolecular strategies, genetics, cutting-edge, Palermo, Italy
| |
Collapse
|
2
|
Zhu L, Zhou H, Xu F, Yang H, Li P, Sheng Y, Liu P, Kong W, Liu X, Yang L, Liu L, Liu X. Hepatic Ischemia-Reperfusion Impairs Blood-Brain Barrier Partly Due to Release of Arginase From Injured Liver. Front Pharmacol 2021; 12:724471. [PMID: 34721021 PMCID: PMC8548691 DOI: 10.3389/fphar.2021.724471] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Accepted: 09/13/2021] [Indexed: 11/20/2022] Open
Abstract
Aim: Hepatic ischemia-reperfusion (HIR) induces remote organs injury, including the brain. The homeostasis of the brain is maintained by the blood-brain barrier (BBB); thus, we aimed to investigate whether HIR impaired BBB and attempted to elucidate its underlying mechanism. Methods: Cell viability of human cerebral microvascular endothelial cells (hCMEC/D3) was measured following 24 h incubation with a serum of HIR rat undergoing 1 h ischemia and 4 h reperfusion, liver homogenate, or lysate of primary hepatocytes of the rat. The liver homogenate was precipitated using (NH4)2SO4 followed by separation on three columns and electrophoresis to identify the toxic molecule. Cell activity, apoptosis, proliferation, cell cycle, and expressions of proteins related to cell cycle were measured in hCMEC/D3 cells incubated with identified toxic molecules. HIR rats undergoing 1 h ischemia and 24 h reperfusion were developed to determine the release of an identified toxic molecule. BBB function was indexed as permeability to fluorescein and brain water. Endothelial cell proliferation and expressions of proteins related to the cell cycle in cerebral microvessels were measured by immunofluorescence and western blot. Results: Toxic molecule to BBB in the liver was identified to be arginase. Arginase inhibitor nor-NOHA efficiently attenuated hCMEC/D3 damage caused by liver homogenate and serum of HIR rats. Both arginase and serum of HIR rats significantly lowered arginine (Arg) in the culture medium. Arg addition efficiently attenuated the impairment of hCMEC/D3 caused by arginase or Arg deficiency, demonstrating that arginase impaired hCMEC/D3 via depriving Arg. Both arginase and Arg deficiency damaged hCMEC/D3 cells by inhibiting cell proliferation, retarding the cell cycle to G1 phase, and downregulating expressions of cyclin A, cyclin D, CDK2, and CDK4. HIR notably increased plasma arginase activity and lowered Arg level, increased the BBB permeability accompanied with enhanced brain water, and decreased the proliferative cells (marked by Ki67) in cerebral microvessels (marked by CD31) and protein expressions of cyclin A, cyclin D, CDK2 and CDK4 in isolated brain microvessels. Oral supplement of Arg remarkably attenuated these HIR-induced alterations. Conclusion: HIR leads to substantial release of arginase from the injured liver and then deprives systemic Arg. The Arg deficiency further impairs BBB via inhibiting the proliferation of brain microvascular endothelial cells by cell cycle arrest.
Collapse
Affiliation(s)
- Liang Zhu
- Center of Drug Metabolism and Pharmacokinetics, School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Han Zhou
- Center of Drug Metabolism and Pharmacokinetics, School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Feng Xu
- Center of Drug Metabolism and Pharmacokinetics, School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Hanyu Yang
- Center of Drug Metabolism and Pharmacokinetics, School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Ping Li
- Center of Drug Metabolism and Pharmacokinetics, School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Yun Sheng
- Center of Drug Metabolism and Pharmacokinetics, School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Peihua Liu
- Center of Drug Metabolism and Pharmacokinetics, School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Weimin Kong
- Center of Drug Metabolism and Pharmacokinetics, School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Xiaonan Liu
- Center of Drug Metabolism and Pharmacokinetics, School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Lu Yang
- Center of Drug Metabolism and Pharmacokinetics, School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Li Liu
- Center of Drug Metabolism and Pharmacokinetics, School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Xiaodong Liu
- Center of Drug Metabolism and Pharmacokinetics, School of Pharmacy, China Pharmaceutical University, Nanjing, China
| |
Collapse
|
3
|
Yamashita R, Komaki Y, Yang G, Ibuki Y. Cell line-dependent difference in glutathione levels affects the cigarette sidestream smoke-induced inhibition of nucleotide excision repair. MUTATION RESEARCH. GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2020; 858-860:503273. [PMID: 33198939 DOI: 10.1016/j.mrgentox.2020.503273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 09/15/2020] [Accepted: 09/21/2020] [Indexed: 10/23/2022]
Abstract
We recently reported that cigarette sidestream smoke (CSS) induced inhibition of nucleotide excision repair (NER) and the cause was NER molecule degradation by aldehydes contained in CSS [Carcinogenesis39, 56-65, 2018; Mutat. Res.834, 42-50, 2018]. In this study, we examined the relationship between intracellular glutathione (GSH) levels and CSS-induced NER inhibition. CSS treatment decreased the intracellular GSH level in human keratinocytes HaCaT, in which the repair of pyrimidine (6-4) pyrimidone photoproducts (6-4PPs) after UVB irradiation was suppressed. We used l-buthionine-(S,R)-sulfoximine (BSO) to artificially deplete intracellular GSH level. BSO treatment remarkably accelerated the CSS-induced NER inhibition. The NER inhibition by CSS was attributed to the delay of accumulation of NER molecules (TFIIH and XPG) to DNA damaged sites, which was further enhanced by BSO treatment. CSS degraded TFIIH, and BSO promoted it as expected. Formaldehyde (FA), a major constituent of CSS, showed similar intracellular GSH reduction and NER inhibition, and BSO promoted its inhibitory effect. Five cultured cell lines showed considerable variability in intrinsic GSH levels, and CSS-induced NER inhibitory effect was significantly correlated with the GSH levels. Chemicals like aldehydes are known to react not only with proteins but also with DNA, causing DNA lesions targeted by NER. Our results suggest that the tissues and cells with low intrinsic GSH levels are susceptible to treatment with CSS and electrophilic compounds like aldehydes through NER inhibition, thus leading to higher genotoxicity and carcinogenicity.
Collapse
Affiliation(s)
- Riko Yamashita
- Graduate Division of Nutritional and Environmental Sciences, University of Shizuoka, 52-1 Yada, Shizuoka, 422-8526, Japan
| | - Yukako Komaki
- Graduate Division of Nutritional and Environmental Sciences, University of Shizuoka, 52-1 Yada, Shizuoka, 422-8526, Japan
| | - Guang Yang
- Graduate Division of Nutritional and Environmental Sciences, University of Shizuoka, 52-1 Yada, Shizuoka, 422-8526, Japan
| | - Yuko Ibuki
- Graduate Division of Nutritional and Environmental Sciences, University of Shizuoka, 52-1 Yada, Shizuoka, 422-8526, Japan.
| |
Collapse
|
4
|
Hooke MC, Hatch D, Hockenberry MJ, Whitman S, Moore I, Montgomery D, Marano K, Mitby P, Scheurer ME, Taylor O, Pan W. The Longitudinal Parallel Process Analysis of Biomarkers of Oxidative Stress, Symptom Clusters, and Cognitive Function in Children With Leukemia. J Pediatr Oncol Nurs 2020; 37:244-254. [PMID: 32141369 DOI: 10.1177/1043454220909785] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Background: During treatment for acute lymphoblastic leukemia (ALL), children report co-occurring symptoms of fatigue, sleep disturbance, pain, nausea, and depression as a symptom cluster. Central nervous system-directed ALL therapies also put children at risk for cognitive impairments. Cancer therapies can cause an increase in oxidative stress, which may contribute to treatment-related symptoms. This study examined the longitudinal relationships between biomarkers of oxidative stress in the cerebrospinal fluid, the Childhood Cancer Symptom Cluster-Leukemia (CCSC-L), and cognition, in children over the first year of ALL treatment. Methods: Glutathione (GSH) biomarkers of oxidative stress were measured in cerebrospinal fluid collected during treatment lumbar punctures. GSH biomarkers, symptoms, and cognitive function of 132 children aged 3 to 18 years were evaluated at four time points during the first year of leukemia treatment. Participants, 7 years and older, completed self-report measures, and parents reported for younger children. Cognitive function measurements for all participants were completed by parents. A longitudinal parallel-process model was used to explore the influence of the initial measurement and the subsequent change over four time points of the GSH biomarkers on the CCSC-L and cognition. Results: GSH biomarkers increased over the four time points indicating decreasing oxidative stress. When GSH biomarkers were higher (less oxidative stress) at the initial measurement, the CCSC-L severity was lower, cognition was better, and cognition improved over the four measurements. Screening children for high levels of oxidative stress would be a foundation for future intervention studies to address symptom distress and cognitive impairments.
Collapse
Affiliation(s)
- Mary C Hooke
- University of Minnesota, Minneapolis, MN, USA
- Children's Minnesota Cancer and Blood Disorders Program, Minneapolis, MN, USA
| | | | - Marilyn J Hockenberry
- Children's Minnesota Cancer and Blood Disorders Program, Minneapolis, MN, USA
- Texas Children's Cancer and Hematology Centers/Baylor College of Medicine, Houston, TX, USA
| | | | - Ida Moore
- University of Arizona, Tucson, AZ, USA
| | | | | | - Pauline Mitby
- Children's Minnesota Cancer and Blood Disorders Program, Minneapolis, MN, USA
| | - Michael E Scheurer
- Texas Children's Cancer and Hematology Centers/Baylor College of Medicine, Houston, TX, USA
| | - Olga Taylor
- Texas Children's Cancer and Hematology Centers/Baylor College of Medicine, Houston, TX, USA
| | - Wei Pan
- Duke University, Durham, NC, USA
| |
Collapse
|
5
|
Biswas A, Clark EC, Sen CK, Gordillo GM. Phytochemical Inhibition of Multidrug Resistance Protein-1 as a Therapeutic Strategy for Hemangioendothelioma. Antioxid Redox Signal 2017; 26:1009-1019. [PMID: 27706944 PMCID: PMC5467139 DOI: 10.1089/ars.2016.6881] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
AIMS Hemangiomas are endothelial cell tumors and the most common soft tissue tumors in infants. They frequently cause deformity and can cause death. Current pharmacologic therapies have high-risk side-effect profiles, which limit the number of children who receive treatment. The objectives of this work were to identify the mechanisms through which standardized berry extracts can inhibit endothelial cell tumor growth and test these findings in vivo. RESULTS EOMA cells are a validated model that generates endothelial cell tumors when injected subcutaneously into syngeneic (129P/3) mice. EOMA cells treated with a blend of powdered natural berry extracts (NBE) significantly inhibited activity of multidrug resistance protein-1 (MRP-1) compared to vehicle controls. This resulted in nuclear accumulation of oxidized glutathione (GSSG) and apoptotic EOMA cell death. When NBE-treated EOMA cells were injected into mice, they generated smaller tumors and had a higher incidence of apoptotic cell death compared to vehicle-treated EOMA cells as demonstrated by immunocytochemistry. Kaplan-Meier survival curves for tumor-bearing mice showed that NBE treatment significantly prolonged survival compared to vehicle-treated controls. INNOVATION These are the first reported results to show that berry extracts can inhibit MRP-1 function that causes apoptotic tumor cell death by accumulation of GSSG in the nucleus of EOMA cells where NADPH oxidase is hyperactive and causes pathological angiogenesis. CONCLUSIONS These findings indicate that berry extract inhibition of MRP-1 merits consideration and further investigation as a therapeutic intervention and may have application for other cancers with elevated MRP-1 activity. Antioxid. Redox Signal. 26, 1009-1019.
Collapse
Affiliation(s)
- Ayan Biswas
- 1 Department of Plastic Surgery, The Ohio State University , Columbus, Ohio
| | - Emma C Clark
- 1 Department of Plastic Surgery, The Ohio State University , Columbus, Ohio
| | - Chandan K Sen
- 2 Department of Surgery, David Heart and Lung Research Institute, The Ohio State University , Columbus, Ohio
| | - Gayle M Gordillo
- 1 Department of Plastic Surgery, The Ohio State University , Columbus, Ohio
| |
Collapse
|
6
|
Gordillo GM, Biswas A, Khanna S, Spieldenner JM, Pan X, Sen CK. Multidrug Resistance-associated Protein-1 (MRP-1)-dependent Glutathione Disulfide (GSSG) Efflux as a Critical Survival Factor for Oxidant-enriched Tumorigenic Endothelial Cells. J Biol Chem 2016; 291:10089-103. [PMID: 26961872 DOI: 10.1074/jbc.m115.688879] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Indexed: 12/28/2022] Open
Abstract
Endothelial cell tumors are the most common soft tissue tumors in infants. Tumor-forming endothelial (EOMA) cells are able to escape cell death fate despite excessive nuclear oxidant burden. Our previous work recognized perinuclear Nox-4 as a key contributor to EOMA growth. The objective of this work was to characterize the mechanisms by which EOMA cells evade oxidant toxicity and thrive. In EOMA cells, compared with in the cytosol, the nuclear GSSG/GSH ratio was 5-fold higher. Compared to the ratio observed in healthy murine aortic endothelial (MAE) cells, GSSG/GSH was over twice as high in EOMA cells. Multidrug resistance-associated protein-1 (MRP-1), an active GSSG efflux mechanism, showed 2-fold increased activity in EOMA compared with MAE cells. Hyperactive YB-1 and Ape/Ref-1 were responsible for high MRP-1 expression in EOMA. Proximity ligand assay demonstrated MRP-1 and YB-1 binding. Such binding enabled the nuclear targeting of MRP-1 in EOMA in a leptomycin-B-sensitive manner. MRP-1 inhibition as well as knockdown trapped nuclear GSSG, causing cell death of EOMA. Disulfide loading of cells by inhibition of GSSG reductase (bischoloronitrosourea) or thioredoxin reductase (auranofin) was effective in causing EOMA death as well. In sum, EOMA cells survive a heavy oxidant burden by rapid efflux of GSSG, which is lethal if trapped within the cell. A hyperactive MRP-1 system for GSSG efflux acts as a critical survival factor for these cells, making it a potential target for EOMA therapeutics.
Collapse
Affiliation(s)
- Gayle M Gordillo
- From the Department of Plastic Surgery, Davis Heart and Lung Research Institute, and
| | - Ayan Biswas
- From the Department of Plastic Surgery, Davis Heart and Lung Research Institute, and
| | - Savita Khanna
- Davis Heart and Lung Research Institute, and Department of Surgery
| | | | - Xueliang Pan
- Center for Biostatistics, Ohio State University Wexner Medical Center, Columbus, Ohio 43212
| | - Chandan K Sen
- Davis Heart and Lung Research Institute, and Department of Surgery
| |
Collapse
|
7
|
Tautges B, Or V, Garcia J, Shaw JT, Louie AY. Preparation of a conjugation-ready thiol responsive molecular switch. Tetrahedron Lett 2015; 56:6569-6573. [PMID: 26594066 PMCID: PMC4649948 DOI: 10.1016/j.tetlet.2015.10.019] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
In this work we synthesize molecular switches that are responsive to cysteine, homocysteine, and glutathione; three redox systems that make up the majority of the body's antioxidant defenses. Synthesized spiropyran isomers with conjugation-ready linkages showed good selectivity of response to these major antioxidant thiols over nucleophilic amino acids; however the position of the linking group can affect selectivity and reversibility of the switching response. An isomer with selectivity for cysteine against GSH and Hcy was identified.
Collapse
Affiliation(s)
- Brandon Tautges
- Department of Chemistry, University of California at Davis, One Shields Ave, Davis, California 95616, United States
| | - Victor Or
- Department of Chemistry, University of California at Davis, One Shields Ave, Davis, California 95616, United States
| | - Joel Garcia
- Department of Biomedical Engineering, University of California at Davis, One Shields Ave, Davis, California 95616, United States
| | - Jared T. Shaw
- Department of Chemistry, University of California at Davis, One Shields Ave, Davis, California 95616, United States
| | - Angelique Y. Louie
- Department of Biomedical Engineering, University of California at Davis, One Shields Ave, Davis, California 95616, United States
| |
Collapse
|
8
|
You BR, Park WH. Auranofin induces mesothelioma cell death through oxidative stress and GSH depletion. Oncol Rep 2015; 35:546-51. [PMID: 26530353 DOI: 10.3892/or.2015.4382] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Accepted: 10/11/2015] [Indexed: 11/06/2022] Open
Abstract
Mesothelioma is an aggressive tumor associated with asbestos exposure. Auranofin as an inhibitor of thioredoxin reductase (TrxR) affects many biological processes such as inflammation and proliferation. In the present study, we investigated the cellular effects of auranofin on patient-derived mesothelioma cells in relation to reactive oxygen species (ROS) and glutathione (GSH) levels. Basal TrxR1 levels have no difference between mesothelial cells and certain mesothelioma cells. In particular, ADA, CON and Hmeso mesothelioma cells showed lower levels of TrxR1 expression. Auranofin inhibited the proliferation of mesothelioma cells in a dose-dependent manner. Among mesothelioma cells were ADA and CON cells sensitive to auranofin. This agent also induced caspase-independent apoptosis and necrosis in ADA cells. In addition, auranofin increased ROS levels including O2(•-) and induced GSH depletion in mesothelioma cells. While N-acetyl cysteine (NAC) prevented cell death and decreased ROS levels in auranofin-treated mesothelioma cells, L-buthionine sulfoximine (BSO) intensified apoptosis and GSH depletion in these cells. In conclusion, auranofin induced mesothelioma cell death through oxidative stress and the death was regulated by the status of GSH content.
Collapse
Affiliation(s)
- Bo Ra You
- Department of Physiology, Medical School, Institute for Medical Sciences, Chonbuk National University, Jeonju 561‑180, Republic of Korea
| | - Woo Hyun Park
- Department of Physiology, Medical School, Institute for Medical Sciences, Chonbuk National University, Jeonju 561‑180, Republic of Korea
| |
Collapse
|
9
|
Methamphetamine is not Toxic but Disrupts the Cell Cycle of Blood-Brain Barrier Endothelial Cells. Neurotox Res 2015; 28:8-17. [PMID: 25666340 DOI: 10.1007/s12640-015-9520-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Revised: 01/01/2015] [Accepted: 01/22/2015] [Indexed: 01/07/2023]
Abstract
The cytotoxic effects of methamphetamine (MA) are well established to be caused via induced oxidative stress which in turn compromises the core function of the blood-brain barrier (BBB) by reducing its ability to regulate the homeostatic environment of the brain. While most studies were conducted over a period of 24-48 h, this study investigated the mechanisms by which chronic exposure of MA adversely affect the endothelial cells of BBB over an extended period of 96 h. MA induced significant depression of cell numbers at 96 h. This result was supported by flow cytometric data on the cell cycle which showed that brain endothelial cells (bEnd5) at 96 h were significantly suppressed in the S-phase of the cell cycle. In contrast, at 24-72 h control cell numbers for G1, S and G2-M phases were similar to MA-exposed cells. MA (0-1,000 µM) did not, however, statistically affect the viability and cytotoxicity of the bEnd5 cells, and the profile of ATP production and DNA synthesis (BrdU) across 96 h did not provide a rationale for the suppression of cell division. Our study reports for the first time that chronic exposure to MA results in long-term disruption of the cell cycle phases which eventuates in the attenuation of brain capillary endothelial cell growth after 96 h, compounding and contributing to the already well-known adverse short-term permeability effects of MA exposure on the BBB.
Collapse
|
10
|
Fernández DA, Louzao MC, Vilariño N, Fraga M, Espiña B, Vieytes MR, Botana LM. Evaluation of the intestinal permeability and cytotoxic effects of cylindrospermopsin. Toxicon 2014; 91:23-34. [DOI: 10.1016/j.toxicon.2014.08.072] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2014] [Revised: 08/20/2014] [Accepted: 08/22/2014] [Indexed: 10/24/2022]
|
11
|
Busu C, Atanasiu V, Caldito G, Aw TY. Influence of GSH synthesis inhibition on temporal distribution of NAD+/NADH during vascular endothelial cells proliferation. J Med Life 2014; 7:611-8. [PMID: 25713632 PMCID: PMC4316149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2014] [Accepted: 09/25/2014] [Indexed: 11/30/2022] Open
Abstract
Pathological conditions states such as stroke, diabetes mellitus, hypertension, dyslipidemia are associated with increased levels of free radicals that alter normal function of the vascular endothelium and perturb vascular homeostasis. The redox couples reduced glutathione (GSH)/oxidized glutathione (GSSG), NADH/NAD+, and NADPH/NADP+ play major functions in the intracellular redox balance. Any decrease in tissue or systemic GSH levels under the aforementioned pathologies would enhance oxidative damage to the vascular endothelium. Beside their role as coenzyme that participate in cellular metabolism, pyridine nucleotides serve also as substrate for enzymes involved in DNA repair and longevity. There is scant data on NAD+/NADH kinetics and distribution during human cells proliferation. Here, we determined the influence of cellular GSH status on the early dynamics of nuclear-to-cytosol (N-to-C) NAD+ and nuclear NADH kinetics (6 h interval) over 72 h of endothelial cell proliferation. The IHEC cell line was used as a surrogate for human brain micro vascular endothelial cells. Inhibition of GSH synthesis by buthionine sulfoximine (BSO) and sustained low cellular GSH significantly increased nuclear NADH levels (p<0.01), which correlated with lower nuclear GSH and prolonged cell cycle S-phase. When BSO was removed the pattern of nuclear NAD+ resembled that of control group, but nuclear NADH concentrations remained elevated, as in GSH deficient cells (p<0.01). The coincidence of high nuclear NADH and lower nuclear NAD+ with S-phase prolongation are suggestive of CtBP and NAD+-dependent DNA repair enzyme activation under conditions of decreased cellular GSH. These results provide important insights into GSH control of vascular endothelial growth and restitution, key processes in the restoration of the endothelium adjacent to the post-injury lesion site.
Collapse
Affiliation(s)
- C Busu
- "Carol Davila" University of Medicine and Pharmacy, Medical School, Biochemistry Department, Bucharest, Romania ; Department of Molecular & Cellular Physiology, Louisiana State University Health Sciences Center, Shreveport, LA, USA
| | - V Atanasiu
- "Carol Davila" University of Medicine and Pharmacy, Medical School, Biochemistry Department, Bucharest, Romania
| | - G Caldito
- Department of Molecular & Cellular Physiology, Louisiana State University Health Sciences Center, Shreveport, LA, USA
| | - T Y Aw
- Department of Molecular & Cellular Physiology, Louisiana State University Health Sciences Center, Shreveport, LA, USA
| |
Collapse
|
12
|
Darley-Usmar V, Grune T, Lamas S, Aw TY. Redox Biology celebrates its first anniversary with over 100 articles, Listing In PubMed and 120,000 downloads with over 230 citations! Redox Biol 2014; 2:640-1. [PMID: 24936436 PMCID: PMC4052525 DOI: 10.1016/j.redox.2014.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Affiliation(s)
| | | | - Santiago Lamas
- Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), Madrid, Spain
| | - Tak Yee Aw
- LSU Health Sciences Center, Molecular and Cellular Physiology, Shreveport, LA, USA
| |
Collapse
|