1
|
Jiang T, Ling Z, Zhou Z, Chen X, Chen L, Liu S, Sun Y, Yang J, Yang B, Huang J, Huang L. Construction of a transposase accessible chromatin landscape reveals chromatin state of repeat elements and potential causal variant for complex traits in pigs. J Anim Sci Biotechnol 2022; 13:112. [PMID: 36217153 PMCID: PMC9552403 DOI: 10.1186/s40104-022-00767-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 08/10/2022] [Indexed: 11/13/2022] Open
Abstract
Background A comprehensive landscape of chromatin states for multiple mammalian tissues is essential for elucidating the molecular mechanism underlying regulatory variants on complex traits. However, the genome-wide chromatin accessibility has been only reported in limited tissue types in pigs. Results Here we report a genome-wide landscape of chromatin accessibility of 20 tissues in two female pigs at ages of 6 months using ATAC-seq, and identified 557,273 merged peaks, which greatly expanded the pig regulatory element repository. We revealed tissue-specific regulatory elements which were associated with tissue-relevant biological functions. We identified both positive and negative significant correlations between the regulatory elements and gene transcripts, which showed distinct distributions in terms of their strength and distances from corresponding genes. We investigated the presence of transposable elements (TEs) in open chromatin regions across all tissues, these included identifications of porcine endogenous retroviruses (PERVs) exhibiting high accessibility in liver and homology of porcine specific virus sequences to universally accessible transposable elements. Furthermore, we prioritized a potential causal variant for polyunsaturated fatty acid in the muscle. Conclusions Our data provides a novel multi-tissues accessible chromatin landscape that serve as an important resource for interpreting regulatory sequences in tissue-specific and conserved biological functions, as well as regulatory variants of loci associated with complex traits in pigs. Supplementary Information The online version contains supplementary material available at 10.1186/s40104-022-00767-3.
Collapse
Affiliation(s)
- Tao Jiang
- State Key Laboratory of Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Ziqi Ling
- State Key Laboratory of Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Zhimin Zhou
- State Key Laboratory of Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Xiaoyun Chen
- State Key Laboratory of Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Liqing Chen
- State Key Laboratory of Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Sha Liu
- State Key Laboratory of Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Yingchun Sun
- State Key Laboratory of Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Jiawen Yang
- State Key Laboratory of Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Bin Yang
- State Key Laboratory of Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang, 330045, China.
| | - Jianzhen Huang
- State Key Laboratory of Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang, 330045, China.
| | - Lusheng Huang
- State Key Laboratory of Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang, 330045, China
| |
Collapse
|
2
|
Paim WP, Maggioli MF, Weber MN, Rezabek G, Narayanan S, Ramachandran A, Canal CW, Bauermann FV. Virome characterization in serum of healthy show pigs raised in Oklahoma demonstrated great diversity of ssDNA viruses. Virology 2021; 556:87-95. [PMID: 33550118 DOI: 10.1016/j.virol.2021.01.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 01/11/2021] [Accepted: 01/12/2021] [Indexed: 02/08/2023]
Abstract
In the United States, show pigs are raised to compete in agricultural events. These animals are usually raised in small herds with extensive human, domestic, and wild animal contact. Therefore, pathogen monitoring in this animal category is critical for improved disease surveillance and preparedness. This study characterized the virome of healthy show pigs using high-throughput sequencing using pooled serum samples from 2018 or 2019 (200 samples each pool). Results demonstrated the presence of DNA viral families (Parvoviridae, Circoviridae, and Herpesviridae) and RNA families (Arteriviridae, Flaviviridae, and Retroviridae). Twenty-three viral species were identified, including the first detection of porcine bufavirus in the US. Moreover, important swine pathogens identified included porcine reproductive and respiratory syndrome virus, atypical porcine pestivirus, and porcine circovirus (PCV). Additionally, complete coding genomes of 17 viruses from the Parvoviridae, Anelloviridae, and Circoviridae families were retrieved and included the first near full-length genomes of US Ungulate bocaparvovirus 3 species.
Collapse
Affiliation(s)
- Willian P Paim
- Department of Veterinary Pathobiology, College of Veterinary Medicine, Oklahoma State University (OSU), Stillwater, OK, 74078, USA; Laboratório de Virologia, Faculdade de Veterinária, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil
| | - Mayara F Maggioli
- Department of Veterinary Pathobiology, College of Veterinary Medicine, Oklahoma State University (OSU), Stillwater, OK, 74078, USA
| | - Matheus N Weber
- Laboratório de Microbiologia Molecular, Instituto de Ciências da Saúde, Universidade Feevale, Novo Hamburgo, Rio Grande do Sul, Brazil
| | - Grant Rezabek
- Serology diagnostic Section, Oklahoma Animal Disease Diagnostic Laboratory (OADDL), College of Veterinary Medicine, Oklahoma State University (OSU), Stillwater, OK, 74078, USA
| | - Sai Narayanan
- Molecular diagnostic Section, Oklahoma Animal Disease Diagnostic Laboratory (OADDL), College of Veterinary Medicine, Oklahoma State University (OSU), Stillwater, OK, 74078, USA
| | - Akhilesh Ramachandran
- Molecular diagnostic Section, Oklahoma Animal Disease Diagnostic Laboratory (OADDL), College of Veterinary Medicine, Oklahoma State University (OSU), Stillwater, OK, 74078, USA
| | - Cláudio W Canal
- Laboratório de Virologia, Faculdade de Veterinária, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil
| | - Fernando V Bauermann
- Department of Veterinary Pathobiology, College of Veterinary Medicine, Oklahoma State University (OSU), Stillwater, OK, 74078, USA.
| |
Collapse
|
3
|
MnTE-2-PyP Suppresses Prostate Cancer Cell Growth via H 2O 2 Production. Antioxidants (Basel) 2020; 9:antiox9060490. [PMID: 32512786 PMCID: PMC7346125 DOI: 10.3390/antiox9060490] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 06/03/2020] [Indexed: 12/25/2022] Open
Abstract
Prostate cancer patients are often treated with radiotherapy. MnTE-2-PyP, a superoxide dismutase (SOD) mimic, is a known radioprotector of normal tissues. Our recent work demonstrated that MnTE-2-PyP also inhibits prostate cancer progression with radiotherapy; however, the mechanisms remain unclear. In this study, we identified that MnTE-2-PyP-induced intracellular H2O2 levels are critical in inhibiting the growth of PC3 and LNCaP cells, but the increased H2O2 levels affected the two cancer cells differently. In PC3 cells, many proteins were thiol oxidized with MnTE-2-PyP treatment, including Ser/Thr protein phosphatase 1 beta catalytic subunit (PP1CB). This resulted in reduced PP1CB activity; however, overall cell cycle progression was not altered, so this is not the main mechanism of PC3 cell growth inhibition. High H2O2 levels by MnTE-2-PyP treatment induced nuclear fragmentation, which could be synergistically enhanced with radiotherapy. In LNCaP cells, thiol oxidation by MnTE-2-PyP treatment was not observed previously and, similarly to PC3 cells, there was no effect of MnTE-2-PyP treatment on cell cycle progression. However, in LNCaP cells, MnTE-2-PyP caused an increase in low RNA population and sub-G1 population of cells, which indicates that MnTE-2-PyP treatment may cause cellular quiescence or direct cancer cell death. The protein oxidative modifications and mitotic catastrophes caused by MnTE-2-PyP may be the major contributors to cell growth inhibition in PC3 cells, while in LNCaP cells, tumor cell quiescence or cell death appears to be major factors in MnTE-2-PyP-induced growth inhibition.
Collapse
|
4
|
Chen J, Liu S, Su Y, Zhang X. ALDH1+ stem cells demonstrate more stem cell-like characteristics than CD44 +/CD24 -/low stem cells in different molecular subtypes of breast cancer. Transl Cancer Res 2020; 9:1652-1659. [PMID: 35117513 PMCID: PMC8798598 DOI: 10.21037/tcr.2020.01.53] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Accepted: 12/20/2019] [Indexed: 01/05/2023]
Abstract
BACKGROUND CD44+/CD24 - /low and ALDH1+ are both markers of breast cancer stem cell (BCSC), we compared the biological characteristics of CD44+/CD24 - /low and ALDH1+ BCSCs in the four molecular subtypes of breast cancer. METHODS Four fresh blocks of breast cancer tissue were obtained from patients with Luminal A, Luminal B, human epidermal receptor-2 (HER2)-overexpression and triple-negative breast cancer, respectively. Flow cytometry was used to sort CD44+/CD24 - /low and ALDH1+ BCSCs. The mammosphere (MS) formation experiment and NOD/SCID mouse xenograft experiment were performed to compare the self-renewal and tumorigenic abilities of CD44+/CD24 - /low with those of ALDH1+ BCSCs. RESULTS The proportions of CD44+/CD24 - /low BCSC and ALDH1+ BCSC in Luminal A, Luminal B, HER2 overexpression and triple-negative subtypes were 12.1% and 8.7%, 2.7% and 5.7%, 0.8% and 8.7%, 0.7% and 4.5%, respectively. The MS formation experiment demonstrated that ALDH1+ BCSC formed significantly more MSs than CD44+/CD24 - /low BCSC in the four molecular subtypes (P<0.001). The NOD/SCID mouse xenograft experiment demonstrated that the sizes of grafted tumors formed by ALDH1+ BCSC were larger than those formed by CD44+/CD24 - /low BCSC in the four molecular subtypes (P<0.05). CONCLUSIONS In the four molecular subtypes of breast cancer, ALDH1+ BCSC demonstrated better self-renewal and tumorigenic abilities than CD44+/CD24 - /low BCSC.
Collapse
Affiliation(s)
- Jie Chen
- Department of Breast Surgery, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Shiwei Liu
- Department of Breast Surgery, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Yingying Su
- Department of Breast and Thyroid Surgery, The Third Affiliated Hospital of Zunyi Medical University (The First People's Hospital of Zunyi), Zunyi 563000, China
| | - Xiao Zhang
- Department of Breast Surgery, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 611731, China
| |
Collapse
|
5
|
Niu D, Wei HJ, Lin L, George H, Wang T, Lee IH, Zhao HY, Wang Y, Kan Y, Shrock E, Lesha E, Wang G, Luo Y, Qing Y, Jiao D, Zhao H, Zhou X, Wang S, Wei H, Güell M, Church GM, Yang L. Inactivation of porcine endogenous retrovirus in pigs using CRISPR-Cas9. Science 2017; 357:1303-1307. [PMID: 28798043 DOI: 10.1126/science.aan4187] [Citation(s) in RCA: 497] [Impact Index Per Article: 62.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Accepted: 08/03/2017] [Indexed: 12/14/2022]
Abstract
Xenotransplantation is a promising strategy to alleviate the shortage of organs for human transplantation. In addition to the concerns about pig-to-human immunological compatibility, the risk of cross-species transmission of porcine endogenous retroviruses (PERVs) has impeded the clinical application of this approach. We previously demonstrated the feasibility of inactivating PERV activity in an immortalized pig cell line. We now confirm that PERVs infect human cells, and we observe the horizontal transfer of PERVs among human cells. Using CRISPR-Cas9, we inactivated all of the PERVs in a porcine primary cell line and generated PERV-inactivated pigs via somatic cell nuclear transfer. Our study highlights the value of PERV inactivation to prevent cross-species viral transmission and demonstrates the successful production of PERV-inactivated animals to address the safety concern in clinical xenotransplantation.
Collapse
Affiliation(s)
- Dong Niu
- eGenesis, Cambridge, MA 02139, USA.,College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Hong-Jiang Wei
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming 650201, China.,College of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Lin Lin
- Department of Biomedicine, Aarhus University, 8000 Aarhus C, Denmark
| | | | - Tao Wang
- eGenesis, Cambridge, MA 02139, USA
| | | | - Hong-Ye Zhao
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming 650201, China
| | - Yong Wang
- Department of Laboratory Animal Science, College of Basic Medical Sciences, Third Military Medical University, Chongqing, 400038, China
| | | | - Ellen Shrock
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | | | | | - Yonglun Luo
- Department of Biomedicine, Aarhus University, 8000 Aarhus C, Denmark
| | - Yubo Qing
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming 650201, China.,College of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Deling Jiao
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming 650201, China.,College of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Heng Zhao
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming 650201, China.,College of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Xiaoyang Zhou
- Department of Laboratory Animal Science, College of Basic Medical Sciences, Third Military Medical University, Chongqing, 400038, China
| | - Shouqi Wang
- Research Institute of Shenzhen Jinxinnong Technology, Shenzhen 518106, China
| | - Hong Wei
- Department of Laboratory Animal Science, College of Basic Medical Sciences, Third Military Medical University, Chongqing, 400038, China
| | | | - George M Church
- eGenesis, Cambridge, MA 02139, USA.,Department of Genetics, Harvard Medical School, Boston, MA 02115, USA.,Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA 02138, USA
| | | |
Collapse
|
6
|
Fani S, Kamalidehghan B, Lo KM, Nigjeh SE, Keong YS, Dehghan F, Soori R, Abdulla MA, Chow KM, Ali HM, Hajiaghaalipour F, Rouhollahi E, Hashim NM. Anticancer activity of a monobenzyltin complex C1 against MDA-MB-231 cells through induction of Apoptosis and inhibition of breast cancer stem cells. Sci Rep 2016; 6:38992. [PMID: 27976692 PMCID: PMC5157033 DOI: 10.1038/srep38992] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Accepted: 11/16/2016] [Indexed: 12/30/2022] Open
Abstract
In the present study, we examined the cytotoxic effects of Schiff base complex, [N-(3,5-dichloro-2-oxidobenzylidene)-4-chlorobenzyhydrazidato](o-methylbenzyl)aquatin(IV) chloride, and C1 on MDA-MB-231 cells and derived breast cancer stem cells from MDA-MB-231 cells. The acute toxicity experiment with compound C1 revealed no cytotoxic effects on rats. Fluorescent microscopic studies using Acridine Orange/Propidium Iodide (AO/PI) staining and flow cytometric analysis using an Annexin V probe confirmed the occurrence of apoptosis in C1-treated MDA-MB-231 cells. Compound C1 triggered intracellular reactive oxygen species (ROS) production and lactate dehydrogenase (LDH) releases in treated MDA-MB-231 cells. The Cellomics High Content Screening (HCS) analysis showed the induction of intrinsic pathways in treated MDA-MB-231 cells, and a luminescence assay revealed significant increases in caspase 9 and 3/7 activity. Furthermore, flow cytometric analysis showed that compound C1 induced G0/G1 arrest in treated MDA-MB-231 cells. Real time PCR and western blot analysis revealed the upregulation of the Bax protein and the downregulation of the Bcl-2 and HSP70 proteins. Additionally, this study revealed the suppressive effect of compound C1 against breast CSCs and its ability to inhibit the Wnt/β-catenin signaling pathways. Our results demonstrate the chemotherapeutic properties of compound C1 against breast cancer cells and derived breast cancer stem cells, suggesting that the anticancer capabilities of this compound should be clinically assessed.
Collapse
Affiliation(s)
- Somayeh Fani
- Department of Pharmacy, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Behnam Kamalidehghan
- Medical Genetics Department, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran-Karaj Highway, Tehran, Iran
| | - Kong Mun Lo
- Department of Chemistry, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | | | - Yeap Swee Keong
- Institute of Bioscience, University Putra Malaysia, 43400 Serdang, Malaysia
| | - Firouzeh Dehghan
- Department of Exercise Physiology, Faculty of Physical Education and Sport Sciences, University of Tehran, 14174 Tehran, Iran
- Department of exercise science, Sports Center, University of Malaya, Kuala Lumpur 50603, Malaysia
| | - Rahman Soori
- Department of Exercise Physiology, Faculty of Physical Education and Sport Sciences, University of Tehran, 14174 Tehran, Iran
| | - Mahmood Ameen Abdulla
- Department of Biomedical Science, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Kit May Chow
- Department of Chemistry, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Hapipah Mohd Ali
- Department of Chemistry, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia
- Center for Natural Products and Drug Discovery (CENAR), Department of Chemistry, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia
| | - Fatemeh Hajiaghaalipour
- Department of Biomedical Science, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Elham Rouhollahi
- Department of Biomedical Science, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Najihah Mohd Hashim
- Department of Pharmacy, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia
- Center for Natural Products and Drug Discovery (CENAR), Department of Chemistry, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
7
|
Shao J, Fan W, Ma B, Wu Y. Breast cancer stem cells expressing different stem cell markers exhibit distinct biological characteristics. Mol Med Rep 2016; 14:4991-4998. [PMID: 27840965 PMCID: PMC5355694 DOI: 10.3892/mmr.2016.5899] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Accepted: 09/12/2016] [Indexed: 01/11/2023] Open
Abstract
Identification and isolation of breast cancer stem cells (CSCs) based on CD44/CD24 expression and/or enzymatic activity of aldehyde dehydrogenase 1 (ALDH1). However, the differences among the CD44+/CD24‑/low cells, ALDH1+ cells and the overlap between the sub‑populations have not been frequently investigated. Thus, it is imperative to improve the understanding of breast CSC with different stem markers. CD44+/CD24‑/low, ALDH1+ and ALDH1+CD44+/CD24‑/low cell populations were isolated from fresh breast cancer tissues and analyzed by flow cytometry and immunofluorescence. Mammosphere formation, cell proliferation assay and Transwell experiments, were used to analyze self‑renewal, proliferation and invasion, respectively, for each sub‑population. Finally, in vivo experimentation in mice was performed to evaluate the tumorigenic abilities of the sub‑populations. The sub‑populations of CD44+/CD24‑/low, ALDH1+ and ALDH1+CD44+/CD24‑/low in human breast cancer cells, represented the 7.2, 4.6 and 1.5% of the total tumor cell population, respectively. ALDH1+CD44+/CD24‑/low cells had the strongest ability of self‑renewal, invasion, proliferation and tumorigenicity compared with the other sub‑populations (P<0.05). In conclusion, different phenotypes of CD44+/CD24‑/low, ALDH1+ and ALDH1+CD44+/CD24‑/low were isolated and demonstrated that breast CSCs are heterogeneous, and they exhibit distinct biological characteristics. As ALDH1+CD44+/CD24‑/low cells demonstrated the strongest stem‑like properties, it may be a useful specific stem cell marker. The utilization of more reliable biomarkers to distinguish the breast CSC pool will be important for the development of specific target therapies for breast cancer.
Collapse
Affiliation(s)
- Jun Shao
- Department of Plastic Surgery, Wuhan Tongji Hospital, Wuhan, Hubei 430030, P.R. China
| | - Wei Fan
- Department of Breast Cancer, Hubei Cancer Hospital, Wuhan, Hubei 430079, P.R. China
| | - Biao Ma
- Department of Breast Cancer, Hubei Cancer Hospital, Wuhan, Hubei 430079, P.R. China
| | - Yiping Wu
- Department of Plastic Surgery, Wuhan Tongji Hospital, Wuhan, Hubei 430030, P.R. China
| |
Collapse
|