1
|
Cheng P, Gan L, Wu J, Hao X, Li Q, Chen L. ALDH2 delays ventricular pressure overload-induced heart failure by promoting cardiomyocyte proliferation in mice. Exp Cell Res 2025; 448:114571. [PMID: 40273968 DOI: 10.1016/j.yexcr.2025.114571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2025] [Revised: 04/21/2025] [Accepted: 04/21/2025] [Indexed: 04/26/2025]
Abstract
The adult mammalian heart is a terminally differentiated organ in which the majority of cardiomyocytes are in a state of cell cycle arrest, rendering them incapable of effectively proliferating to replace damaged cells. ALDH2, an enzyme known for alleviating oxidative stress, has been demonstrated to play a critical role in cardiac protection. However, whether ALDH2 regulates cardiomyocyte proliferation has not been conclusively established. We found that activation of ALDH2 activity significantly promotes cardiomyocyte proliferation and extends the proliferation window during early postnatal development in neonatal mice. Furthermore, administration of Alda-1 to activate ALDH2 in adult mice subjected to transverse aortic constriction markedly enhanced cardiomyocyte proliferation and delayed the onset of pressure overload-induced heart failure. In summary, our findings identify ALDH2 as a potential target for regulating cardiomyocyte proliferation and offer a novel therapeutic approach for treating heart failure.
Collapse
Affiliation(s)
- Peng Cheng
- Department of Physiology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, China
| | - Lu Gan
- Department of Physiology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, China
| | - Jieyun Wu
- Department of Physiology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, China
| | - Xiaodan Hao
- Department of Physiology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, China
| | - Qiyong Li
- Department of Cardiology, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu, China
| | - Li Chen
- Department of Physiology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, China.
| |
Collapse
|
2
|
Nguyen DC, Stephan JK, Brainard RE, Brittian KR, Luque LG, Wells CK, Taylor MS, Martinez-Ondaro Y, Gouwens KR, Little DT, Boyd N, Singhal RA, Hellmann J, Wysoczynski M, Hill BG. TGFβ-activated kinase 1 signaling controls acquisition of the inflammatory fibroblast phenotype and regulates cardiac remodeling after myocardial infarction. RESEARCH SQUARE 2025:rs.3.rs-6122755. [PMID: 40162230 PMCID: PMC11952645 DOI: 10.21203/rs.3.rs-6122755/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Organ health and function depend on communication between cell types to coordinate tissue growth and repair. Recent studies have indicated that fibroblasts are critical to this process; however, their role in regulating inflammatory responses to injury have remained ambiguous. Here, we demonstrate that transforming growth factor β-activated kinase 1 (TAK1) is a gatekeeper of the inflammatory cardiac fibroblast phenotype. We find that TAK1 propagates IL-1β and TNF-α signaling in cardiac fibroblasts and coordinates the synthesis and secretion of chemokines as well as inflammatory and pro-resolving lipid mediators. Deletion of TAK1 in fibroblasts decreased immune cell recruitment after MI, which was associated with improved cardiac structural and functional remodeling in male mice. Nevertheless, we found the effects of TAK1 deletion to be sexually dimorphic in nature, providing support to the idea that the protected phenotype of the female sex may be based in disparate immune and inflammatory responses. Moreover, TAK1 signaling controlled the acquisition of novel markers of the inflammatory fibroblast phenotype, having a biological basis in redox stress, chemokine and lipid mediator biosynthesis, metalloproteinase activity, and damage-associated molecular pattern recognition. Collectively, these results further resolve the nature and function of inflammatory cardiac fibroblasts in cardiac responses to injury and identify TAK1 signaling in fibroblasts as a potential target for therapy.
Collapse
Affiliation(s)
- Daniel C. Nguyen
- Center for Cardiometabolic Science, Christina Lee Brown Envirome Institute, School of Medicine, University of Louisville, Louisville, KY
- Department of Physiology, University of Louisville, Louisville, KY
| | - Jonah K. Stephan
- Center for Cardiometabolic Science, Christina Lee Brown Envirome Institute, School of Medicine, University of Louisville, Louisville, KY
- Department of Biochemistry and Molecular Genetics, University of Louisville, Louisville, KY
| | | | - Kenneth R. Brittian
- Center for Cardiometabolic Science, Christina Lee Brown Envirome Institute, School of Medicine, University of Louisville, Louisville, KY
| | - Lianay Gutierrez Luque
- Center for Cardiometabolic Science, Christina Lee Brown Envirome Institute, School of Medicine, University of Louisville, Louisville, KY
- Department of Biochemistry and Molecular Genetics, University of Louisville, Louisville, KY
| | - Collin K. Wells
- Center for Cardiometabolic Science, Christina Lee Brown Envirome Institute, School of Medicine, University of Louisville, Louisville, KY
- Department of Biochemistry and Molecular Genetics, University of Louisville, Louisville, KY
| | - Madison S. Taylor
- Center for Cardiometabolic Science, Christina Lee Brown Envirome Institute, School of Medicine, University of Louisville, Louisville, KY
| | - Yania Martinez-Ondaro
- Center for Cardiometabolic Science, Christina Lee Brown Envirome Institute, School of Medicine, University of Louisville, Louisville, KY
| | - Kara R. Gouwens
- Center for Cardiometabolic Science, Christina Lee Brown Envirome Institute, School of Medicine, University of Louisville, Louisville, KY
- Department of Physiology, University of Louisville, Louisville, KY
| | - Danielle T. Little
- Center for Cardiometabolic Science, Christina Lee Brown Envirome Institute, School of Medicine, University of Louisville, Louisville, KY
- Department of Biochemistry and Molecular Genetics, University of Louisville, Louisville, KY
| | - Nolan Boyd
- Center for Cardiometabolic Science, Christina Lee Brown Envirome Institute, School of Medicine, University of Louisville, Louisville, KY
| | - Richa A. Singhal
- Center for Cardiometabolic Science, Christina Lee Brown Envirome Institute, School of Medicine, University of Louisville, Louisville, KY
| | - Jason Hellmann
- Center for Cardiometabolic Science, Christina Lee Brown Envirome Institute, School of Medicine, University of Louisville, Louisville, KY
| | - Marcin Wysoczynski
- Center for Cardiometabolic Science, Christina Lee Brown Envirome Institute, School of Medicine, University of Louisville, Louisville, KY
| | - Bradford G. Hill
- Center for Cardiometabolic Science, Christina Lee Brown Envirome Institute, School of Medicine, University of Louisville, Louisville, KY
| |
Collapse
|
3
|
Fischer AG, Elliott EM, Brittian KR, Garrett L, Sadri G, Aebersold J, Singhal RA, Nong Y, Leask A, Jones SP, Moore Iv JB. Matricellular protein CCN1 promotes collagen alignment and scar integrity after myocardial infarction. Matrix Biol 2024; 133:14-32. [PMID: 39098433 PMCID: PMC11476287 DOI: 10.1016/j.matbio.2024.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 07/17/2024] [Accepted: 08/01/2024] [Indexed: 08/06/2024]
Abstract
BACKGROUND Members of the cellular communication network family (CCN) of matricellular proteins, like CCN1, have long been implicated in the regulation of cellular processes underlying wound healing, tissue fibrogenesis, and collagen dynamics. While many studies suggest antifibrotic actions for CCN1 in the adult heart through the promotion of myofibroblast senescence, they largely relied on exogenous supplementation strategies in in vivo models of cardiac injury where its expression is already induced-which may confound interpretation of its function in this process. The objective of this study was to interrogate the role of the endogenous protein on fibroblast function, collagen structural dynamics, and its associated impact on cardiac fibrosis after myocardial infarction (MI). METHODS/RESULTS Here, we employed CCN1 loss-of-function methodologies, including both in vitro siRNA-mediated depletion and in vivo fibroblast-specific knockout mice to assess the role of the endogenous protein on cardiac fibroblast fibrotic signaling, and its involvement in acute scar formation after MI. In vitro depletion of CCN1 reduced cardiac fibroblast senescence and proliferation. Although depletion of CCN1 decreased the expression of collagen processing and stabilization enzymes (i.e., P4HA1, PLOD1, and PLOD2), it did not inhibit myofibroblast induction or type I collagen synthesis. Alone, fibroblast-specific removal of CCN1 did not negatively impact ventricular performance or myocardial collagen content but did contribute to disorganization of collagen fibrils and increased matrix compliance. Similarly, Ccn1 ablated animals subjected to MI showed no discernible alterations in cardiac structure or function one week after permanent coronary artery ligation, but exhibited marked increases in incidence of mortality and cardiac rupture. Consistent with our findings that CCN1 depletion does not assuage myofibroblast conversion or type I collagen synthesis in vitro, Ccn1 knockout animals revealed no measurable differences in collagen scar width or mass compared to controls; however, detailed structural analyses via SHG and TEM of scar regions revealed marked alterations in their scar collagen topography-exhibiting changes in numerous macro- and micro-level collagen architectural attributes. Specifically, Ccn1 knockout mice displayed heightened ECM structural complexity in post-MI scar regions, including diminished local alignment and heightened tortuosity of collagen fibers, as well as reduced organizational coherency, packing, and size of collagen fibrils. Associated with these changes in ECM topography with the loss of CCN1 were reductions in fibroblast-matrix interactions, as evidenced by reduced fibroblast nuclear and cellular deformation in vivo and reduced focal-adhesion formation in vitro; findings that ultimately suggest CCN1's ability to influence fibroblast-led collagen alignment may in part be credited to its capacity to augment fibroblast-matrix interactions. CONCLUSIONS These findings underscore the pivotal role of endogenous CCN1 in the scar formation process occurring after MI, directing the appropriate arrangement of the extracellular matrix's collagenous components in the maturing scar-shaping the mechanical properties that support its structural stability. While this suggests an adaptive role for CCN1 in regulating collagen structural attributes crucial for supporting scar integrity post MI, the long-term protracted expression of CCN1 holds maladaptive implications, potentially diminishing collagen structural complexity and compliance in non-infarct regions.
Collapse
Affiliation(s)
- Annalara G Fischer
- Center for Cardiometabolic Science, University of Louisville School of Medicine, 580 South Preston Street, Delia Baxter Research Building, Room 304C, Louisville, KY 40202, USA
| | - Erin M Elliott
- Center for Cardiometabolic Science, University of Louisville School of Medicine, 580 South Preston Street, Delia Baxter Research Building, Room 304C, Louisville, KY 40202, USA
| | - Kenneth R Brittian
- Center for Cardiometabolic Science, University of Louisville School of Medicine, 580 South Preston Street, Delia Baxter Research Building, Room 304C, Louisville, KY 40202, USA
| | - Lauren Garrett
- Center for Cardiometabolic Science, University of Louisville School of Medicine, 580 South Preston Street, Delia Baxter Research Building, Room 304C, Louisville, KY 40202, USA
| | - Ghazal Sadri
- Center for Cardiometabolic Science, University of Louisville School of Medicine, 580 South Preston Street, Delia Baxter Research Building, Room 304C, Louisville, KY 40202, USA
| | - Julia Aebersold
- Micro/Nano Technology Center, University of Louisville, Louisville, KY, USA
| | - Richa A Singhal
- Center for Cardiometabolic Science, University of Louisville School of Medicine, 580 South Preston Street, Delia Baxter Research Building, Room 304C, Louisville, KY 40202, USA
| | - Yibing Nong
- Center for Cardiometabolic Science, University of Louisville School of Medicine, 580 South Preston Street, Delia Baxter Research Building, Room 304C, Louisville, KY 40202, USA
| | - Andrew Leask
- College of Dentistry, University of Saskatchewan, Saskatoon, SK, Canada
| | - Steven P Jones
- Center for Cardiometabolic Science, University of Louisville School of Medicine, 580 South Preston Street, Delia Baxter Research Building, Room 304C, Louisville, KY 40202, USA
| | - Joseph B Moore Iv
- Center for Cardiometabolic Science, University of Louisville School of Medicine, 580 South Preston Street, Delia Baxter Research Building, Room 304C, Louisville, KY 40202, USA.
| |
Collapse
|
4
|
Amponsah-Offeh M, Tual-Chalot S, Stellos K. Repurposing of an antiasthmatic drug may reduce NETosis and myocardial ischaemia/reperfusion injury. Eur Heart J 2024; 45:1681-1683. [PMID: 38666350 PMCID: PMC11089332 DOI: 10.1093/eurheartj/ehae201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/14/2024] Open
Affiliation(s)
- Michael Amponsah-Offeh
- Department of Cardiovascular Research, European Center for Angioscience, Medical Faculty Mannheim, Heidelberg University, Ludolf-Krehl-Straße 13–17, D-68167 Mannheim, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Heidelberg/Mannheim, Mannheim, Germany
| | - Simon Tual-Chalot
- Biosciences Institute, Vascular Biology and Medicine Theme, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Konstantinos Stellos
- Department of Cardiovascular Research, European Center for Angioscience, Medical Faculty Mannheim, Heidelberg University, Ludolf-Krehl-Straße 13–17, D-68167 Mannheim, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Heidelberg/Mannheim, Mannheim, Germany
- Biosciences Institute, Vascular Biology and Medicine Theme, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
- Preventive Cardiology Clinic, Department of Cardiology, University Hospital Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| |
Collapse
|
5
|
Shen C, Fang R, Wang J, Wu N, Wang S, Shu T, Dai J, Feng M, Chen X. Visfatin aggravates transverse aortic constriction-induced cardiac remodelling by enhancing macrophage-mediated oxidative stress in mice. J Cell Mol Med 2023; 27:2562-2571. [PMID: 37584247 PMCID: PMC10468652 DOI: 10.1111/jcmm.17854] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 06/27/2023] [Accepted: 07/10/2023] [Indexed: 08/17/2023] Open
Abstract
Previous studies have reported that visfatin can regulate macrophage polarisation, which has been demonstrated to participate in cardiac remodelling. The aims of this study were to investigate whether visfatin participates in transverse aortic constriction (TAC)-induced cardiac remodelling by regulating macrophage polarisation. First, TAC surgery and angiotensin II (Ang II) infusion were used to establish a mouse cardiac remodelling model, visfatin expression was measured, and the results showed that TAC surgery or Ang II infusion increased visfatin expression in the serum and heart in mice, and phenylephrine or hydrogen peroxide promoted the release of visfatin from macrophages in vitro. All these effects were dose-dependently reduced by superoxide dismutase. Second, visfatin was administered to TAC mice to observe the effects of visfatin on cardiac remodelling. We found that visfatin increased the cross-sectional area of cardiomyocytes, aggravated cardiac fibrosis, exacerbated cardiac dysfunction, further regulated macrophage polarisation and aggravated oxidative stress in TAC mice. Finally, macrophages were depleted in TAC mice to investigate whether macrophages mediate the regulatory effect of visfatin on cardiac remodelling, and the results showed that the aggravating effects of visfatin on oxidative stress and cardiac remodelling were abrogated. Our study suggests that visfatin enhances cardiac remodelling by promoting macrophage polarisation and enhancing oxidative stress. Visfatin may be a potential target for the prevention and treatment of clinical cardiac remodelling.
Collapse
Affiliation(s)
- Caijie Shen
- Department of Cardiovascular MedicineThe First Affliated Hospital of Ningbo University, Key Laboratory of Precision Medicine for Atherosclerotic Diseases of Zhejiang ProvinceNingboChina
| | - Renyuan Fang
- Department of Cardiovascular MedicineThe First Affliated Hospital of Ningbo University, Key Laboratory of Precision Medicine for Atherosclerotic Diseases of Zhejiang ProvinceNingboChina
| | - Jian Wang
- Department of Cardiovascular MedicineThe First Affliated Hospital of Ningbo University, Key Laboratory of Precision Medicine for Atherosclerotic Diseases of Zhejiang ProvinceNingboChina
| | - Nan Wu
- Department of Cardiovascular MedicineThe First Affliated Hospital of Ningbo University, Key Laboratory of Precision Medicine for Atherosclerotic Diseases of Zhejiang ProvinceNingboChina
| | - Shuangsuang Wang
- Department of CardiologyWenling First People's Hospital, The Affiliated Wenling Hospital of Wenzhou Medical UniversityWenzhouChina
| | - Tian Shu
- Zhejiang University School of MedicineHangzhouChina
| | - Jiating Dai
- Health Science Center, Ningbo UniversityNingboChina
| | - Mingjun Feng
- Department of Cardiovascular MedicineThe First Affliated Hospital of Ningbo University, Key Laboratory of Precision Medicine for Atherosclerotic Diseases of Zhejiang ProvinceNingboChina
| | - Xiaomin Chen
- Department of Cardiovascular MedicineThe First Affliated Hospital of Ningbo University, Key Laboratory of Precision Medicine for Atherosclerotic Diseases of Zhejiang ProvinceNingboChina
| |
Collapse
|
6
|
Zelko IN, Dassanayaka S, Malovichko MV, Howard CM, Garrett LF, Uchida S, Brittian KR, Conklin DJ, Jones SP, Srivastava S. Chronic Benzene Exposure Aggravates Pressure Overload-Induced Cardiac Dysfunction. Toxicol Sci 2021; 185:64-76. [PMID: 34718823 DOI: 10.1093/toxsci/kfab125] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Benzene is a ubiquitous environmental pollutant abundant in household products, petrochemicals and cigarette smoke. Benzene is a well-known carcinogen in humans and experimental animals; however, little is known about the cardiovascular toxicity of benzene. Recent population-based studies indicate that benzene exposure is associated with an increased risk for heart failure. Nonetheless, it is unclear whether benzene exposure is sufficient to induce and/or exacerbate heart failure. We examined the effects of benzene (50 ppm, 6 h/day, 5 days/week, 6 weeks) or HEPA-filtered air exposure on transverse aortic constriction (TAC)-induced pressure overload in male C57BL/6J mice. Our data show that benzene exposure had no effect on cardiac function in the Sham group; however, it significantly compromised cardiac function as depicted by a significant decrease in fractional shortening and ejection fraction, as compared with TAC/Air-exposed mice. RNA-seq analysis of the cardiac tissue from the TAC/benzene-exposed mice showed a significant increase in several genes associated with adhesion molecules, cell-cell adhesion, inflammation, and stress response. In particular, neutrophils were implicated in our unbiased analyses. Indeed, immunofluorescence studies showed that TAC/benzene exposure promotes infiltration of CD11b+/S100A8+/myeloperoxidase+-positive neutrophils in the hearts by 3-fold. In vitro, the benzene metabolites, hydroquinone and catechol, induced the expression of P-selectin in cardiac microvascular endothelial cells by 5-fold and increased the adhesion of neutrophils to these endothelial cells by 1.5-2.0-fold. Benzene metabolite-induced adhesion of neutrophils to the endothelial cells was attenuated by anti-P-selectin antibody. Together, these data suggest that benzene exacerbates heart failure by promoting endothelial activation and neutrophil recruitment.
Collapse
Affiliation(s)
- Igor N Zelko
- University of Louisville Superfund Research Center.,Diabetes and Obesity Center.,Envirome Institute.,Department of Medicine, Division of Environmental Medicine, University of Louisville, Louisville, KY 40202
| | - Sujith Dassanayaka
- Diabetes and Obesity Center.,Department of Medicine, Division of Environmental Medicine, University of Louisville, Louisville, KY 40202
| | - Marina V Malovichko
- University of Louisville Superfund Research Center.,Diabetes and Obesity Center.,Envirome Institute.,Department of Medicine, Division of Environmental Medicine, University of Louisville, Louisville, KY 40202
| | - Caitlin M Howard
- Diabetes and Obesity Center.,Envirome Institute.,Department of Medicine, Division of Environmental Medicine, University of Louisville, Louisville, KY 40202
| | - Lauren F Garrett
- Diabetes and Obesity Center.,Envirome Institute.,Department of Medicine, Division of Environmental Medicine, University of Louisville, Louisville, KY 40202
| | - Shizuka Uchida
- Center for RNA Medicine, Department of Clinical Medicine, Aalborg University, Copenhagen SV, Denmark
| | - Kenneth R Brittian
- Diabetes and Obesity Center.,Envirome Institute.,Department of Medicine, Division of Environmental Medicine, University of Louisville, Louisville, KY 40202
| | - Daniel J Conklin
- University of Louisville Superfund Research Center.,Diabetes and Obesity Center.,Envirome Institute.,Department of Medicine, Division of Environmental Medicine, University of Louisville, Louisville, KY 40202
| | - Steven P Jones
- Diabetes and Obesity Center.,Envirome Institute.,Department of Medicine, Division of Environmental Medicine, University of Louisville, Louisville, KY 40202
| | - Sanjay Srivastava
- University of Louisville Superfund Research Center.,Diabetes and Obesity Center.,Envirome Institute.,Department of Medicine, Division of Environmental Medicine, University of Louisville, Louisville, KY 40202
| |
Collapse
|
7
|
Audam TN, Howard CM, Garrett LF, Zheng YW, Bradley JA, Brittian KR, Frank MW, Fulghum KL, Pólos M, Herczeg S, Merkely B, Radovits T, Uchida S, Hill BG, Dassanayaka S, Jackowski S, Jones SP. Cardiac PANK1 deletion exacerbates ventricular dysfunction during pressure overload. Am J Physiol Heart Circ Physiol 2021; 321:H784-H797. [PMID: 34533403 PMCID: PMC8794231 DOI: 10.1152/ajpheart.00411.2021] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 09/03/2021] [Accepted: 09/03/2021] [Indexed: 12/13/2022]
Abstract
Coenzyme A (CoA) is an essential cofactor required for intermediary metabolism. Perturbations in homeostasis of CoA have been implicated in various pathologies; however, whether CoA homeostasis is changed and the extent to which CoA levels contribute to ventricular function and remodeling during pressure overload has not been explored. In this study, we sought to assess changes in CoA biosynthetic pathway during pressure overload and determine the impact of limiting CoA on cardiac function. We limited cardiac CoA levels by deleting the rate-limiting enzyme in CoA biosynthesis, pantothenate kinase 1 (Pank1). We found that constitutive, cardiomyocyte-specific Pank1 deletion (cmPank1-/-) significantly reduced PANK1 mRNA, PANK1 protein, and CoA levels compared with Pank1-sufficient littermates (cmPank1+/+) but exerted no obvious deleterious impact on the mice at baseline. We then subjected both groups of mice to pressure overload-induced heart failure. Interestingly, there was more ventricular dilation in cmPank1-/- during the pressure overload. To explore potential mechanisms contributing to this phenotype, we performed transcriptomic profiling, which suggested a role for Pank1 in regulating fibrotic and metabolic processes during the pressure overload. Indeed, Pank1 deletion exacerbated cardiac fibrosis following pressure overload. Because we were interested in the possibility of early metabolic impacts in response to pressure overload, we performed untargeted metabolomics, which indicated significant changes to metabolites involved in fatty acid and ketone metabolism, among other pathways. Collectively, our study underscores the role of elevated CoA levels in supporting fatty acid and ketone body oxidation, which may be more important than CoA-driven, enzyme-independent acetylation in the failing heart.NEW & NOTEWORTHY Changes in CoA homeostasis have been implicated in a variety of metabolic diseases; however, the extent to which changes in CoA homeostasis impacts remodeling has not been explored. We show that limiting cardiac CoA levels via PANK deletion exacerbated ventricular remodeling during pressure overload. Our results suggest that metabolic alterations, rather than structural alterations, associated with Pank1 deletion may underlie the exacerbated cardiac phenotype during pressure overload.
Collapse
Affiliation(s)
- Timothy N Audam
- Diabetes and Obesity Center, Department of Medicine, University of Louisville, Louisville, Kentucky
| | - Caitlin M Howard
- Diabetes and Obesity Center, Department of Medicine, University of Louisville, Louisville, Kentucky
| | - Lauren F Garrett
- Diabetes and Obesity Center, Department of Medicine, University of Louisville, Louisville, Kentucky
| | - Yi Wei Zheng
- Diabetes and Obesity Center, Department of Medicine, University of Louisville, Louisville, Kentucky
| | - James A Bradley
- Diabetes and Obesity Center, Department of Medicine, University of Louisville, Louisville, Kentucky
| | - Kenneth R Brittian
- Diabetes and Obesity Center, Department of Medicine, University of Louisville, Louisville, Kentucky
| | - Matthew W Frank
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Kyle L Fulghum
- Diabetes and Obesity Center, Department of Medicine, University of Louisville, Louisville, Kentucky
| | - Miklós Pólos
- Heart and Vascular Center, Semmelweis University, Budapest, Hungary
| | - Szilvia Herczeg
- Heart and Vascular Center, Semmelweis University, Budapest, Hungary
| | - Béla Merkely
- Heart and Vascular Center, Semmelweis University, Budapest, Hungary
| | - Tamás Radovits
- Heart and Vascular Center, Semmelweis University, Budapest, Hungary
| | - Shizuka Uchida
- Diabetes and Obesity Center, Department of Medicine, University of Louisville, Louisville, Kentucky
| | - Bradford G Hill
- Diabetes and Obesity Center, Department of Medicine, University of Louisville, Louisville, Kentucky
| | - Sujith Dassanayaka
- Diabetes and Obesity Center, Department of Medicine, University of Louisville, Louisville, Kentucky
| | - Suzanne Jackowski
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Steven P Jones
- Diabetes and Obesity Center, Department of Medicine, University of Louisville, Louisville, Kentucky
| |
Collapse
|
8
|
Alpha-lipoic acid protects against pressure overload-induced heart failure via ALDH2-dependent Nrf1-FUNDC1 signaling. Cell Death Dis 2020; 11:599. [PMID: 32732978 PMCID: PMC7393127 DOI: 10.1038/s41419-020-02805-2] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 07/13/2020] [Indexed: 02/07/2023]
Abstract
Alpha-lipoic acid (α-LA), a well-known antioxidant, was proved to active ALDH2 in nitrate tolerance and diabetic animal model. However, the therapeutic advantage of α-LA for heart failure and related signaling pathway have not been explored. This study was designed to examine the role of α-LA–ALDH2 in heart failure injury and mitochondrial damage. ALDH2 knockout (ALDH2−/−) mice and primary neonatal rat cardiomyocytes (NRCMs) were subjected to assessment of myocardial function and mitochondrial autophagy. Our data demonstrated α-LA significantly reduced the degree of TAC-induced LV hypertrophy and dysfunction in wild-type mice, not in ALDH2−/− mice. In molecular level, α-LA significantly restored ALDH2 activity and expression as well as increased the expression of a novel mitophagy receptor protein FUNDC1 in wild-type TAC mice. Besides, we confirmed that ALDH2 which was activated by α-LA governed the activation of Nrf1–FUNDC1 cascade. Our data suggest that α-LA played a positive role in protecting the heart against adverse effects of chronic pressure overload.
Collapse
|
9
|
Casin KM, Kohr MJ. An emerging perspective on sex differences: Intersecting S-nitrosothiol and aldehyde signaling in the heart. Redox Biol 2020; 31:101441. [PMID: 32007450 PMCID: PMC7212482 DOI: 10.1016/j.redox.2020.101441] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 01/20/2020] [Accepted: 01/22/2020] [Indexed: 12/17/2022] Open
Abstract
Cardiovascular disease is the leading cause of the death for both men and women. Although baseline heart physiology and the response to disease are known to differ by sex, little is known about sex differences in baseline molecular signaling, especially with regard to redox biology. In this review, we describe current research on sex differences in cardiac redox biology with a focus on the regulation of nitric oxide and aldehyde signaling. Furthermore, we argue for a new perspective on cardiovascular sex differences research, one that focuses on baseline redox biology without the elimination or disruption of sex hormones.
Collapse
Affiliation(s)
- Kevin M Casin
- Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, 21205, USA
| | - Mark J Kohr
- Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, 21205, USA.
| |
Collapse
|
10
|
Dassanayaka S, Brittian KR, Jurkovic A, Higgins LA, Audam TN, Long BW, Harrison LT, Militello G, Riggs DW, Chitre MG, Uchida S, Muthusamy S, Gumpert AM, Jones SP. E2f1 deletion attenuates infarct-induced ventricular remodeling without affecting O-GlcNAcylation. Basic Res Cardiol 2019; 114:28. [PMID: 31152247 DOI: 10.1007/s00395-019-0737-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 05/20/2019] [Indexed: 01/05/2023]
Abstract
Several post-translational modifications figure prominently in ventricular remodeling. The beta-O-linkage of N-acetylglucosamine (O-GlcNAc) to proteins has emerged as an important signal in the cardiovascular system. Although there are limited insights about the regulation of the biosynthetic pathway that gives rise to the O-GlcNAc post-translational modification, much remains to be elucidated regarding the enzymes, such as O-GlcNAc transferase (OGT) and O-GlcNAcase (OGA), which regulate the presence/absence of O-GlcNAcylation. Recently, we showed that the transcription factor, E2F1, could negatively regulate OGT and OGA expression in vitro. The present study sought to determine whether E2f1 deletion would improve post-infarct ventricular function by de-repressing expression of OGT and OGA. Male and female mice were subjected to non-reperfused myocardial infarction (MI) and followed for 1 or 4 week. MI significantly increased E2F1 expression. Deletion of E2f1 alone was not sufficient to alter OGT or OGA expression in a naïve setting. Cardiac dysfunction was significantly attenuated at 1-week post-MI in E2f1-ablated mice. During chronic heart failure, E2f1 deletion also attenuated cardiac dysfunction. Despite the improvement in function, OGT and OGA expression was not normalized and protein O-GlcNAcyltion was not changed at 1-week post-MI. OGA expression was significantly upregulated at 4-week post-MI but overall protein O-GlcNAcylation was not changed. As an alternative explanation, we also performed guided transcriptional profiling of predicted targets of E2F1, which indicated potential differences in cardiac metabolism, angiogenesis, and apoptosis. E2f1 ablation increased heart size and preserved remote zone capillary density at 1-week post-MI. During chronic heart failure, cardiomyocytes in the remote zone of E2f1-deleted hearts were larger than wildtype. These data indicate that, overall, E2f1 exerts a deleterious effect on ventricular remodeling. Thus, E2f1 deletion improves ventricular remodeling with limited impact on enzymes regulating O-GlcNAcylation.
Collapse
Affiliation(s)
- Sujith Dassanayaka
- Division of Cardiovascular Medicine, Department of Medicine, Diabetes and Obesity Center, Institute of Molecular Cardiology, University of Louisville, 580 South Preston Street-321F, Delia Baxter Building-321F, Louisville, KY, 40202, USA
| | - Kenneth R Brittian
- Division of Cardiovascular Medicine, Department of Medicine, Diabetes and Obesity Center, Institute of Molecular Cardiology, University of Louisville, 580 South Preston Street-321F, Delia Baxter Building-321F, Louisville, KY, 40202, USA
| | - Andrea Jurkovic
- Division of Cardiovascular Medicine, Department of Medicine, Diabetes and Obesity Center, Institute of Molecular Cardiology, University of Louisville, 580 South Preston Street-321F, Delia Baxter Building-321F, Louisville, KY, 40202, USA
| | - Lauren A Higgins
- Division of Cardiovascular Medicine, Department of Medicine, Diabetes and Obesity Center, Institute of Molecular Cardiology, University of Louisville, 580 South Preston Street-321F, Delia Baxter Building-321F, Louisville, KY, 40202, USA
| | - Timothy N Audam
- Division of Cardiovascular Medicine, Department of Medicine, Diabetes and Obesity Center, Institute of Molecular Cardiology, University of Louisville, 580 South Preston Street-321F, Delia Baxter Building-321F, Louisville, KY, 40202, USA
| | - Bethany W Long
- Division of Cardiovascular Medicine, Department of Medicine, Diabetes and Obesity Center, Institute of Molecular Cardiology, University of Louisville, 580 South Preston Street-321F, Delia Baxter Building-321F, Louisville, KY, 40202, USA
| | - Linda T Harrison
- Division of Cardiovascular Medicine, Department of Medicine, Diabetes and Obesity Center, Institute of Molecular Cardiology, University of Louisville, 580 South Preston Street-321F, Delia Baxter Building-321F, Louisville, KY, 40202, USA
| | - Giuseppe Militello
- Division of Cardiovascular Medicine, Department of Medicine, Cardiovascular Innovation Institute, University of Louisville, Louisville, KY, USA
| | - Daniel W Riggs
- Division of Cardiovascular Medicine, Department of Medicine, Diabetes and Obesity Center, Institute of Molecular Cardiology, University of Louisville, 580 South Preston Street-321F, Delia Baxter Building-321F, Louisville, KY, 40202, USA
| | - Mitali G Chitre
- Division of Cardiovascular Medicine, Department of Medicine, Diabetes and Obesity Center, Institute of Molecular Cardiology, University of Louisville, 580 South Preston Street-321F, Delia Baxter Building-321F, Louisville, KY, 40202, USA
| | - Shizuka Uchida
- Division of Cardiovascular Medicine, Department of Medicine, Cardiovascular Innovation Institute, University of Louisville, Louisville, KY, USA
| | - Senthilkumar Muthusamy
- Division of Cardiovascular Medicine, Department of Medicine, Diabetes and Obesity Center, Institute of Molecular Cardiology, University of Louisville, 580 South Preston Street-321F, Delia Baxter Building-321F, Louisville, KY, 40202, USA
| | - Anna M Gumpert
- Division of Cardiovascular Medicine, Department of Medicine, Diabetes and Obesity Center, Institute of Molecular Cardiology, University of Louisville, 580 South Preston Street-321F, Delia Baxter Building-321F, Louisville, KY, 40202, USA
| | - Steven P Jones
- Division of Cardiovascular Medicine, Department of Medicine, Diabetes and Obesity Center, Institute of Molecular Cardiology, University of Louisville, 580 South Preston Street-321F, Delia Baxter Building-321F, Louisville, KY, 40202, USA.
| |
Collapse
|
11
|
Aldehyde Dehydrogenase 2 (ALDH2) and Aging: Is There a Sensible Link? ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1193:237-253. [DOI: 10.1007/978-981-13-6260-6_15] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
12
|
Targeting ALDH2 in Atherosclerosis: Molecular Mechanisms and Therapeutic Opportunities. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1193:211-220. [PMID: 31368106 DOI: 10.1007/978-981-13-6260-6_12] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Aldehyde dehydrogenase 2 (ALDH2) is an important member of the functional aldehyde dehydrogenases (ALDHs) family in human beings, playing a fundamental role in the detoxification of acetaldehyde and other aldehydes. In recent years, a number of researches have given attention to the association between ALDH2 and atherosclerosis, which provided insights on targeting ALDH2 for therapeutic intervention of atherosclerosis. In this review, these inspiring studies will be discussed, and the clinical implications and concerns will be expounded.
Collapse
|
13
|
Guo J, Kang P, Zhu L, Sun S, Tao M, Zhang H, Tang B. [Mitochondrial aldehyde dehydrogenase 2 protects against high glucose-induced injury in neonatal rat cardiomyocytes by regulating CaN-NFAT3 signaling pathway]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2018; 38:1288-1293. [PMID: 30514674 DOI: 10.12122/j.issn.1673-4254.2018.11.02] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
OBJECTIVE To investigate whether CaN-NFAT3 pathway mediates the protective effects of aldehyde dehydrogenase (ALDH) 2 in high glucose-treated neonatal rat ventricular myocytes. METHODS The ventricular myocytes were isolated from the heart of neonatal (within 3 days) SD rats by enzyme digestion and cultured in the presence of 5-Brdu. After reaching confluence, the cultured ventricular myocytes were identified using immunofluorescence assay for α-SA protein. The cells were then cultured in either normal (5 mmol/L) or high glucose (30 mmol/L) medium in the presence of ALDH2 agonist Alda-1, ALDH 2 inhibitor Daidzin, or Alda-1 and NFAT3 inhibitor (11R-VIVIT). Fluorescent probe and ELISA were used to detect intracellular Ca2+ concentration and CaN content, respectively; ALDH2, CaN and NFAT3 protein expressions in the cells were detected using Western blotting. RESULTS Compared with cells cultured in normal glucose, the cells exposed to high glucose showed a significantly decreased expression of ALDH2 protein (P < 0.05) and increased expressions of CaN (P < 0.05) and NFAT3 proteins with also increased intracellular CaN and Ca2+ concentrations (P < 0.01). Alda-1 treatment significantly lowered Ca2+ concentration (P < 0.05), intracellular CaN content (P < 0.01), and CaN and NFAT3 protein expressions (P < 0.05), and increased ALDH2 protein expression (P < 0.05) in high glucose- exposed cells; Daidzin treatment significantly increased Ca2+ concentration (P < 0.01) and intracellular CaN content (P < 0.05) in the exposed cells. Compared with Alda-1 alone, treatment of the high glucose-exposed cells with both Alda-1 and 11R-VIVIT did not produce significant changes in the expression of ALDH2 protein (P>0.05) but significantly reduced the expression of NFAT3 protein (P < 0.05). CONCLUSIONS Mitochondrial ALDH2 protects neonatal rat cardiomyocytes against high glucose-induced injury possibly by negatively regulating Ca2+-CaN-NFAT3 signaling pathway.
Collapse
Affiliation(s)
- Jianlu Guo
- Department of Cardiology, First Affiliated Hospital of Bengbu Medical College, Bengbu 233004, China
| | - Pinfang Kang
- Department of Cardiology, First Affiliated Hospital of Bengbu Medical College, Bengbu 233004, China
| | - Lei Zhu
- Department of Cardiology, First Affiliated Hospital of Bengbu Medical College, Bengbu 233004, China
| | - Shuo Sun
- Department of Cardiology, First Affiliated Hospital of Bengbu Medical College, Bengbu 233004, China
| | - Min Tao
- Department of Cardiology, Huishan District People's Hospital, Wuxi 214100, China
| | - Heng Zhang
- Department of Cardiology, First Affiliated Hospital of Bengbu Medical College, Bengbu 233004, China
| | - Bi Tang
- Department of Cardiology, First Affiliated Hospital of Bengbu Medical College, Bengbu 233004, China
| |
Collapse
|