1
|
DeMartino AW, Poudel L, Dent MR, Chen X, Xu Q, Gladwin BS, Tejero J, Basu S, Alipour E, Jiang Y, Rose JJ, Gladwin MT, Kim-Shapiro DB. Thiol-catalyzed formation of NO-ferroheme regulates intravascular NO signaling. Nat Chem Biol 2023; 19:1256-1266. [PMID: 37710075 PMCID: PMC10897909 DOI: 10.1038/s41589-023-01413-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 07/27/2023] [Indexed: 09/16/2023]
Abstract
Nitric oxide (NO) is an endogenously produced signaling molecule that regulates blood flow and platelet activation. However, intracellular and intravascular diffusion of NO are limited by scavenging reactions with several hemoproteins, raising questions as to how free NO can signal in hemoprotein-rich environments. We explore the hypothesis that NO can be stabilized as a labile ferrous heme-nitrosyl complex (Fe2+-NO, NO-ferroheme). We observe a reaction between NO, labile ferric heme (Fe3+) and reduced thiols to yield NO-ferroheme and a thiyl radical. This thiol-catalyzed reductive nitrosylation occurs when heme is solubilized in lipophilic environments such as red blood cell membranes or bound to serum albumin. The resulting NO-ferroheme resists oxidative inactivation, is soluble in cell membranes and is transported intravascularly by albumin to promote potent vasodilation. We therefore provide an alternative route for NO delivery from erythrocytes and blood via transfer of NO-ferroheme and activation of apo-soluble guanylyl cyclase.
Collapse
Affiliation(s)
- Anthony W DeMartino
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Laxman Poudel
- Department of Physics, Wake Forest University, Winston-Salem, NC, USA
| | - Matthew R Dent
- Heart, Lung, Blood, and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Xiukai Chen
- Heart, Lung, Blood, and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Qinzi Xu
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Brendan S Gladwin
- Heart, Lung, Blood, and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Jesús Tejero
- Heart, Lung, Blood, and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, USA
- Division of Pulmonary, Allergy, and Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Swati Basu
- Department of Physics, Wake Forest University, Winston-Salem, NC, USA
- Translational Science Center, Wake Forest University, Winston-Salem, NC, USA
| | - Elmira Alipour
- Department of Physics, Wake Forest University, Winston-Salem, NC, USA
| | - Yiyang Jiang
- Department of Physics, Wake Forest University, Winston-Salem, NC, USA
| | - Jason J Rose
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Mark T Gladwin
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA.
| | - Daniel B Kim-Shapiro
- Department of Physics, Wake Forest University, Winston-Salem, NC, USA.
- Translational Science Center, Wake Forest University, Winston-Salem, NC, USA.
| |
Collapse
|
2
|
DeMartino AW, Poudel L, Dent MR, Chen X, Xu Q, Gladwin BS, Tejero J, Basu S, Alipour E, Jiang Y, Rose JJ, Gladwin MT, Kim-Shapiro DB. Thiol catalyzed formation of NO-ferroheme regulates canonical intravascular NO signaling. RESEARCH SQUARE 2023:rs.3.rs-2402224. [PMID: 36711928 PMCID: PMC9882697 DOI: 10.21203/rs.3.rs-2402224/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Nitric oxide (NO) is an endogenously produced physiological signaling molecule that regulates blood flow and platelet activation. However, both the intracellular and intravascular diffusion of NO is severely limited by scavenging reactions with hemoglobin, myoglobin, and other hemoproteins, raising unanswered questions as to how free NO can signal in hemoprotein-rich environments, like blood and cardiomyocytes. We explored the hypothesis that NO could be stabilized as a ferrous heme-nitrosyl complex (Fe 2+ -NO, NO-ferroheme) either in solution within membranes or bound to albumin. Unexpectedly, we observed a rapid reaction of NO with free ferric heme (Fe 3+ ) and a reduced thiol under physiological conditions to yield NO-ferroheme and a thiyl radical. This thiol-catalyzed reductive nitrosylation reaction occurs readily when the hemin is solubilized in lipophilic environments, such as red blood cell membranes, or bound to serum albumin. NO-ferroheme albumin is stable, even in the presence of excess oxyhemoglobin, and potently inhibits platelet activation. NO-ferroheme-albumin administered intravenously to mice dose-dependently vasodilates at low- to mid-nanomolar concentrations. In conclusion, we report the fastest rate of reductive nitrosylation observed to date to generate a NO-ferroheme molecule that resists oxidative inactivation, is soluble in cell membranes, and is transported intravascularly by albumin to promote potent vasodilation.
Collapse
Affiliation(s)
- Anthony W. DeMartino
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Laxman Poudel
- Department of Physics, Wake Forest University, Winston-Salem, NC 27109, USA
| | - Matthew R. Dent
- Heart, Lung, Blood, and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Xiukai Chen
- Heart, Lung, Blood, and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Qinzi Xu
- Heart, Lung, Blood, and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Brendan S. Gladwin
- Heart, Lung, Blood, and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Jesús Tejero
- Heart, Lung, Blood, and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA 15261, USA
- Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15260, USA
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, USA
| | - Swati Basu
- Department of Physics, Wake Forest University, Winston-Salem, NC 27109, USA
- Translational Science Center, Wake Forest University, Winston-Salem, NC 27109, USA
| | - Elmira Alipour
- Department of Physics, Wake Forest University, Winston-Salem, NC 27109, USA
| | - Yiyang Jiang
- Department of Physics, Wake Forest University, Winston-Salem, NC 27109, USA
| | - Jason J. Rose
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Mark T. Gladwin
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Daniel B. Kim-Shapiro
- Department of Physics, Wake Forest University, Winston-Salem, NC 27109, USA
- Translational Science Center, Wake Forest University, Winston-Salem, NC 27109, USA
| |
Collapse
|
3
|
Keszler A, Lindemer B, Broeckel G, Weihrauch D, Gao Y, Lohr NL. In Vivo Characterization of a Red Light-Activated Vasodilation: A Photobiomodulation Study. Front Physiol 2022; 13:880158. [PMID: 35586710 PMCID: PMC9108481 DOI: 10.3389/fphys.2022.880158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 04/06/2022] [Indexed: 12/04/2022] Open
Abstract
Nitric oxide dependent vasodilation is an effective mechanism for restoring blood flow to ischemic tissues. Previously, we established an ex vivo murine model whereby red light (670 nm) facilitates vasodilation via an endothelium derived vasoactive species which contains a functional group that can be reduced to nitric oxide. In the present study we investigated this vasodilator in vivo by measuring blood flow with Laser Doppler Perfusion imaging in mice. The vasodilatory nitric oxide precursor was analyzed in plasma and muscle with triiodide-dependent chemiluminescence. First, a 5–10 min irradiation of a 3 cm2 area in the hind limb at 670 nm (50 mW/cm2) produced optimal vasodilation. The nitric oxide precursor in the irradiated quadriceps tissue decreased significantly from 123 ± 18 pmol/g tissue by both intensity and duration of light treatment to an average of 90 ± 17 pmol/g tissue, while stayed steady (137 ± 21 pmol/g tissue) in unexposed control hindlimb. Second, the blood flow remained elevated 30 min after termination of the light exposure. The nitric oxide precursor content significantly increased by 50% by irradiation then depleted in plasma, while remained stable in the hindlimb muscle. Third, to mimic human peripheral artery disease, an ameroid constrictor was inserted on the proximal femoral artery of mice and caused a significant reduction of flow. Repeated light treatment for 14 days achieved steady and significant increase of perfusion in the constricted limb. Our results strongly support 670 nm light can regulate dilation of conduit vessel by releasing a vasoactive nitric oxide precursor species and may offer a simple home-based therapy in the future to individuals with impaired blood flow in the leg.
Collapse
Affiliation(s)
- Agnes Keszler
- Departments of Medicine- Division of Cardiovascular Medicine, Milwaukee, WI, United States
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Brian Lindemer
- Departments of Medicine- Division of Cardiovascular Medicine, Milwaukee, WI, United States
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Grant Broeckel
- Departments of Medicine- Division of Cardiovascular Medicine, Milwaukee, WI, United States
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Dorothee Weihrauch
- Departments of Medicine- Division of Cardiovascular Medicine, Milwaukee, WI, United States
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI, United States
- Departments of Plastic Surgery, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Yan Gao
- Institute for Health and Equity- Division of Biostatistics, Milwaukee, WI, United States
| | - Nicole L. Lohr
- Departments of Medicine- Division of Cardiovascular Medicine, Milwaukee, WI, United States
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI, United States
- Clement J Zablocki VA Medical Center, Milwaukee, WI, United States
- *Correspondence: Nicole L. Lohr,
| |
Collapse
|
4
|
Keller TCS, Lechauve C, Keller AS, Brooks S, Weiss MJ, Columbus L, Ackerman H, Cortese-Krott MM, Isakson BE. The role of globins in cardiovascular physiology. Physiol Rev 2022; 102:859-892. [PMID: 34486392 PMCID: PMC8799389 DOI: 10.1152/physrev.00037.2020] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 08/25/2021] [Accepted: 08/27/2021] [Indexed: 12/11/2022] Open
Abstract
Globin proteins exist in every cell type of the vasculature, from erythrocytes to endothelial cells, vascular smooth muscle cells, and peripheral nerve cells. Many globin subtypes are also expressed in muscle tissues (including cardiac and skeletal muscle), in other organ-specific cell types, and in cells of the central nervous system (CNS). The ability of each of these globins to interact with molecular oxygen (O2) and nitric oxide (NO) is preserved across these contexts. Endothelial α-globin is an example of extraerythrocytic globin expression. Other globins, including myoglobin, cytoglobin, and neuroglobin, are observed in other vascular tissues. Myoglobin is observed primarily in skeletal muscle and smooth muscle cells surrounding the aorta or other large arteries. Cytoglobin is found in vascular smooth muscle but can also be expressed in nonvascular cell types, especially in oxidative stress conditions after ischemic insult. Neuroglobin was first observed in neuronal cells, and its expression appears to be restricted mainly to the CNS and the peripheral nervous system. Brain and CNS neurons expressing neuroglobin are positioned close to many arteries within the brain parenchyma and can control smooth muscle contraction and thus tissue perfusion and vascular reactivity. Overall, reactions between NO and globin heme iron contribute to vascular homeostasis by regulating vasodilatory NO signals and scavenging reactive species in cells of the mammalian vascular system. Here, we discuss how globin proteins affect vascular physiology, with a focus on NO biology, and offer perspectives for future study of these functions.
Collapse
Affiliation(s)
- T C Stevenson Keller
- Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, Virginia
- Department of Molecular Physiology and Biophysics, University of Virginia School of Medicine, Charlottesville, Virginia
| | - Christophe Lechauve
- Department of Hematology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Alexander S Keller
- Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, Virginia
- Department of Pharmacology, University of Virginia School of Medicine, Charlottesville, Virginia
| | - Steven Brooks
- Physiology Unit, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, Rockville, Maryland
| | - Mitchell J Weiss
- Department of Hematology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Linda Columbus
- Department of Chemistry, University of Virginia, Charlottesville, Virginia
| | - Hans Ackerman
- Physiology Unit, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, Rockville, Maryland
| | - Miriam M Cortese-Krott
- Myocardial Infarction Research Laboratory, Department of Cardiology, Pulmonology, and Angiology, Medical Faculty, Heinrich Heine University of Düsseldorf, Düsseldorf, Germany
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Brant E Isakson
- Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, Virginia
- Department of Molecular Physiology and Biophysics, University of Virginia School of Medicine, Charlottesville, Virginia
| |
Collapse
|
5
|
Walski T, Grzeszczuk-Kuć K, Gałecka K, Trochanowska-Pauk N, Bohara R, Czerski A, Szułdrzyński K, Królikowski W, Detyna J, Komorowska M. Near-infrared photobiomodulation of blood reversibly inhibits platelet reactivity and reduces hemolysis. Sci Rep 2022; 12:4042. [PMID: 35260751 PMCID: PMC8904845 DOI: 10.1038/s41598-022-08053-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 03/01/2022] [Indexed: 12/31/2022] Open
Abstract
Photobiomodulation (PBM) in the red/near-infrared (R/NIR) spectral range has become widely recognized due to its anti-inflammatory and cytoprotective potential. We aimed to assess the effects of blood PBM on platelets function and hemolysis in an in vitro setting. Porcine blood samples were separated into four aliquots for this study, one of which served as a control, while the other three were subjected to three different NIR PBM dosages. The platelet count and functions and the plasma free haemoglobin and osmotic fragility of red blood cells were measured during the experiment. The control group had a considerable drop in platelet number, but the NIR exposed samples had more minimal and strictly dose-dependent alterations. These modifications were consistent with ADP and collagen-induced platelet aggregation. Furthermore, red blood cells that had received PBM were more resistant to osmotic stress and less prone to hemolysis, as seen by a slightly lower quantity of plasma free hemoglobin. Here we showed under well-controlled in vitro conditions that PBM reversibly inhibits platelet activation in a dose-dependent manner and reduces hemolysis.
Collapse
Affiliation(s)
- Tomasz Walski
- Department of Biomedical Engineering, Faculty of Fundamental Problems of Technology, Wrocław University of Science and Technology, Wrocław, Poland.
| | - Karolina Grzeszczuk-Kuć
- Department of Biomedical Engineering, Faculty of Fundamental Problems of Technology, Wrocław University of Science and Technology, Wrocław, Poland
| | - Katarzyna Gałecka
- Department of Biomedical Engineering, Faculty of Fundamental Problems of Technology, Wrocław University of Science and Technology, Wrocław, Poland
| | - Natalia Trochanowska-Pauk
- Department of Biomedical Engineering, Faculty of Fundamental Problems of Technology, Wrocław University of Science and Technology, Wrocław, Poland
| | - Raghvendra Bohara
- CÚRAM, SFI Research Centre for Medical Devices, National University of Ireland, Galway, Ireland
| | - Albert Czerski
- Division of Pathophysiology, Department of Immunology, Pathophysiology and Veterinary Prevention, Wrocław University of Environmental and Life Sciences, Wrocław, Poland
| | - Konstanty Szułdrzyński
- Department of Anaesthesiology and Intensive Care, Central Clinical Hospital of the Ministry of Interior and Administration in Warsaw, Warsaw, Poland
| | - Wiesław Królikowski
- 2nd Department of Medicine, Intensive Care Unit, Medical College, Jagiellonian University, Kraków, Poland
| | - Jerzy Detyna
- Department of Mechanics, Materials and Biomedical Engineering, Faculty of Mechanical Engineering, Wrocław University of Science and Technology, Wrocław, Poland
| | - Małgorzata Komorowska
- Department of Biomedical Engineering, Faculty of Fundamental Problems of Technology, Wrocław University of Science and Technology, Wrocław, Poland
| |
Collapse
|
6
|
Mahdi A, Cortese-Krott MM, Kelm M, Li N, Pernow J. Novel perspectives on redox signaling in red blood cells and platelets in cardiovascular disease. Free Radic Biol Med 2021; 168:95-109. [PMID: 33789125 DOI: 10.1016/j.freeradbiomed.2021.03.020] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 03/01/2021] [Accepted: 03/07/2021] [Indexed: 12/13/2022]
Abstract
The fundamental physiology of circulating red blood cells (RBCs) and platelets involving regulation of oxygen transport and hemostasis, respectively, are well-described in the literature. Their abundance in the circulation and their interaction with the vascular wall and each other have attracted the attention of other putative physiological and pathophysiological effects of these cells. RBCs and platelets are both important regulators of redox balance harboring powerful pro-oxidant and anti-oxidant (enzymatic and non-enzymatic) capacities. They are also involved in the regulation of vascular tone mainly via export of nitric oxide bioactivity and adenosine triphosphate. Of further importance are emerging observations that these cells undergo functional alterations when exposed to risk factors for cardiovascular disease and during developed cardiometabolic diseases. Under these conditions, the RBCs and platelets contribute to increased oxidative stress by their formation of reactive species including superoxide anion radical, hydrogen peroxide and peroxynitrite. These alterations trigger key changes in the vascular wall characterized by enhanced oxidative stress, reduced nitric oxide bioavailability and endothelial dysfunction. Additional pathophysiological effects are triggered in the heart resulting in increased susceptibility to ischemia-reperfusion injury with impairment in cardiac function. Pharmacological interventions aiming at restoring circulating cell function has been shown to exert marked beneficial effects on cardiovascular function. In this review, we summarize the current knowledge of RBC and platelet biology with special focus on redox biology, their roles in the development of cardiovascular disease and potential therapeutic strategies targeting RBC and platelet dysfunction. Finally, the complex and scarcely understood interaction between RBCs and platelets is discussed.
Collapse
Affiliation(s)
- Ali Mahdi
- Department of Medicine, Division of Cardiology, Karolinska Institutet, Stockholm, Sweden
| | - Miriam M Cortese-Krott
- Department of Cardiology, Pulmonology and Angiology Medical Faculty, Heinrich Heine University of Düsseldorf, Düsseldorf, Germany; Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Malte Kelm
- Department of Cardiology, Pulmonology and Angiology Medical Faculty, Heinrich Heine University of Düsseldorf, Düsseldorf, Germany
| | - Nailin Li
- Department of Medicine, Division of Cardiovascular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - John Pernow
- Department of Medicine, Division of Cardiology, Karolinska Institutet, Stockholm, Sweden; Department of Cardiology, Heart and Vascular Division, Karolinska University Hospital, Stockholm, Sweden.
| |
Collapse
|
7
|
Wajih N, Alipour E, Rigal F, Zhu J, Perlegas A, Caudell DL, Kim-Shapiro D. Effects of nitrite and far-red light on coagulation. Nitric Oxide 2021; 107:11-18. [PMID: 33271226 PMCID: PMC7855911 DOI: 10.1016/j.niox.2020.11.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 10/18/2020] [Accepted: 11/26/2020] [Indexed: 01/14/2023]
Abstract
Nitric oxide, NO, has been explored as a therapeutic agent to treat thrombosis. In particular, NO has potential in treating mechanical device-associated thrombosis due to its ability to reduce platelet activation and due to the central role of platelet activation and adhesion in device thrombosis. Nitrite is a unique NO donor that reduces platelet activation in that it's activity requires the presence of red blood cells whereas NO activity of other NO donors is blunted by red blood cells. Interestingly, we have previously shown that red blood cell mediated inhibition of platelet activation by adenosine diphosophate (ADP) is dramatically enhanced by illumination with far-red light that is likely due to photolysis of red cell surface bound NO congeners. We now report the effects of nitrite, far-red light, and their combination on several measure of blood coagulation using a variety of agonists. We employed turbidity assays in platelet rich plasma, platelet activation using flow cytometry analysis of a fluorescently labeled antibody to the activated platelet fibrinogen binding site, multiplate impedance-based platelet aggregometry, and assessment of platelet adhesion to collagen coated flow-through microslides. In all cases, the combination of far-red light and nitrite treatment decreased measures of coagulation, but in some cases mono-treatment with nitrite or light alone had no effect. Perhaps most relevant to device thrombosis, we observed that platelet adhesions was inhibited by the combination of nitrite and light treatment while nitrite alone and far-red light alone trended to decrease adhesion, but the results were mixed. These results support the potential of combined far-red light and nitrite treatment for preventing thrombosis in extra-corporeal or shallow-tissue depth devices where the far-red light can penetrate. Such a combined treatment could be advantageous due to the localized treatment afforded by far-red light illumination with minimal systemic effects. Given the role of thrombosis in COVID 19, application to treatment of patients infected with SARS Cov-2 might also be considered.
Collapse
Affiliation(s)
- Nadeem Wajih
- Department of Physics, Wake Forest University, Winston-Salem, NC, 27109, United States; Translational Science Center, Wake Forest University, Winston-Salem, NC, 27109, United States.
| | - Elmira Alipour
- Department of Physics, Wake Forest University, Winston-Salem, NC, 27109, United States.
| | - Fernando Rigal
- Department of Physics, Wake Forest University, Winston-Salem, NC, 27109, United States.
| | - Jiqing Zhu
- Department of Physics, Wake Forest University, Winston-Salem, NC, 27109, United States.
| | - Andreas Perlegas
- Department of Physics, Wake Forest University, Winston-Salem, NC, 27109, United States
| | - David L Caudell
- Department of Pathology,-Section on Comparative Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, 27157, United States.
| | - Daniel Kim-Shapiro
- Department of Physics, Wake Forest University, Winston-Salem, NC, 27109, United States; Translational Science Center, Wake Forest University, Winston-Salem, NC, 27109, United States.
| |
Collapse
|
8
|
Impaired Fibrinolysis in Patients with Isolated Aortic Stenosis is Associated with Enhanced Oxidative Stress. J Clin Med 2020; 9:jcm9062002. [PMID: 32630544 PMCID: PMC7355626 DOI: 10.3390/jcm9062002] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 06/18/2020] [Accepted: 06/23/2020] [Indexed: 11/17/2022] Open
Abstract
Aortic stenosis (AS) has been associated with impaired fibrinolysis and increased oxidative stress. This study aimed to investigate whether oxidative stress could alter fibrin clot properties in AS. We studied 173 non-diabetic patients, aged 51–79 years, with isolated AS. We measured plasma protein carbonylation (PC) and thiobarbituric acid reactive substances (TBARS), along with plasma clot permeability (Ks), thrombin generation, and fibrinolytic efficiency, which were evaluated by two assays: clot lysis time (CLT) and lysis time (Lys50). Coagulation factors and fibrinolytic proteins were also determined. Plasma PC showed an association with AS severity, reflected by the aortic valve area and the mean and maximum aortic gradients. Plasma PC was positively correlated with CLT, Lys50, plasminogen activator inhibitor-1 (PAI-1), and tissue factor (TF) antigens. TBARS were positively correlated with maximum aortic gradient, Lys50, and TF antigen. Regression analysis showed that PC predicted prolonged CLT (>104 min; odds ratio (OR) 6.41, 95% confidence interval (CI) 2.58–17.83, p < 0.001) and Lys50 (>565 s; OR 5.83, 95% CI 2.23–15.21, p < 0.001). Multivariate regression analysis showed that mean aortic gradient, PC, α2-antiplasmin, PAI-1, and triglycerides were predictors of prolonged CLT, while PC, α2-antiplasmin, and fibrinogen were predictors of Lys50. Our findings suggest that elevated oxidative stress contributes to impaired fibrinolysis in AS and is associated with AS severity.
Collapse
|
9
|
Wang L, Sparacino-Watkins CE, Wang J, Wajih N, Varano P, Xu Q, Cecco E, Tejero J, Soleimani M, Kim-Shapiro DB, Gladwin MT. Carbonic anhydrase II does not regulate nitrite-dependent nitric oxide formation and vasodilation. Br J Pharmacol 2019; 177:898-911. [PMID: 31658361 DOI: 10.1111/bph.14887] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Revised: 09/16/2019] [Accepted: 09/17/2019] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND AND PURPOSE Although it has been reported that bovine carbonic anhydrase CAII is capable of generating NO from nitrite, the function and mechanism of CAII in nitrite-dependent NO formation and vascular responses remain controversial. We tested the hypothesis that CAII catalyses NO formation from nitrite and contributes to nitrite-dependent inhibition of platelet activation and vasodilation. EXPERIMENT APPROACH The role of CAII in enzymatic NO generation was investigated by measuring NO formation from the reaction of isolated human and bovine CAII with nitrite using NO photolysis-chemiluminescence. A CAII-deficient mouse model was used to determine the role of CAII in red blood cell mediated nitrite reduction and vasodilation. KEY RESULTS We found that the commercially available purified bovine CAII exhibited limited and non-enzymatic NO-generating reactivity in the presence of nitrite with or without addition of the CA inhibitor dorzolamide; the NO formation was eliminated with purification of the enzyme. There was no significant detectable NO production from the reaction of nitrite with recombinant human CAII. Using a CAII-deficient mouse model, there were no measurable changes in nitrite-dependent vasodilation in isolated aorta rings and in vivo in CAII-/- , CAII+/- , and wild-type mice. Moreover, deletion of the CAII gene in mice did not block nitrite reduction by red blood cells and the nitrite-NO-dependent inhibition of platelet activation. CONCLUSION AND IMPLICATIONS These studies suggest that human, bovine and mouse CAII are not responsible for nitrite-dependent NO formation in red blood cells, aorta, or the systemic circulation.
Collapse
Affiliation(s)
- Ling Wang
- Pittsburgh Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, Pennsylvania.,Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Courtney E Sparacino-Watkins
- Pittsburgh Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, Pennsylvania.,Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Jun Wang
- Hubei University of Technology, Wuhan, P. R. China
| | - Nadeem Wajih
- Department of Physics, Wake Forest University, Winston-Salem, North Carolina
| | - Paul Varano
- Pittsburgh Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Qinzi Xu
- Pittsburgh Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Eric Cecco
- Pittsburgh Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Jesús Tejero
- Pittsburgh Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, Pennsylvania.,Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | | | - Daniel B Kim-Shapiro
- Department of Physics, Wake Forest University, Winston-Salem, North Carolina.,Translational Science Center, Wake Forest University, Winston-Salem, North Carolina
| | - Mark T Gladwin
- Pittsburgh Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, Pennsylvania.,Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| |
Collapse
|
10
|
Premont RT, Reynolds JD, Zhang R, Stamler JS. Role of Nitric Oxide Carried by Hemoglobin in Cardiovascular Physiology: Developments on a Three-Gas Respiratory Cycle. Circ Res 2019; 126:129-158. [PMID: 31590598 DOI: 10.1161/circresaha.119.315626] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
A continuous supply of oxygen is essential for the survival of multicellular organisms. The understanding of how this supply is regulated in the microvasculature has evolved from viewing erythrocytes (red blood cells [RBCs]) as passive carriers of oxygen to recognizing the complex interplay between Hb (hemoglobin) and oxygen, carbon dioxide, and nitric oxide-the three-gas respiratory cycle-that insures adequate oxygen and nutrient delivery to meet local metabolic demand. In this context, it is blood flow and not blood oxygen content that is the main driver of tissue oxygenation by RBCs. Herein, we review the lines of experimentation that led to this understanding of RBC function; from the foundational understanding of allosteric regulation of oxygen binding in Hb in the stereochemical model of Perutz, to blood flow autoregulation (hypoxic vasodilation governing oxygen delivery) observed by Guyton, to current understanding that centers on S-nitrosylation of Hb (ie, S-nitrosohemoglobin; SNO-Hb) as a purveyor of oxygen-dependent vasodilatory activity. Notably, hypoxic vasodilation is recapitulated by native S-nitrosothiol (SNO)-replete RBCs and by SNO-Hb itself, whereby SNO is released from Hb and RBCs during deoxygenation, in proportion to the degree of Hb deoxygenation, to regulate vessels directly. In addition, we discuss how dysregulation of this system through genetic mutation in Hb or through disease is a common factor in oxygenation pathologies resulting from microcirculatory impairment, including sickle cell disease, ischemic heart disease, and heart failure. We then conclude by identifying potential therapeutic interventions to correct deficits in RBC-mediated vasodilation to improve oxygen delivery-steps toward effective microvasculature-targeted therapies. To the extent that diseases of the heart, lungs, and blood are associated with impaired tissue oxygenation, the development of new therapies based on the three-gas respiratory system have the potential to improve the well-being of millions of patients.
Collapse
Affiliation(s)
- Richard T Premont
- From the Institute for Transformative Molecular Medicine (R.T.P., J.D.R., R.Z., J.S.S.), Case Western Reserve University School of Medicine, OH.,Harrington Discovery Institute (R.T.P., J.D.R., J.S.S.), University Hospitals Cleveland Medical Center, OH
| | - James D Reynolds
- From the Institute for Transformative Molecular Medicine (R.T.P., J.D.R., R.Z., J.S.S.), Case Western Reserve University School of Medicine, OH.,Department of Anesthesiology and Perioperative Medicine (J.D.R.), Case Western Reserve University School of Medicine, OH.,Harrington Discovery Institute (R.T.P., J.D.R., J.S.S.), University Hospitals Cleveland Medical Center, OH
| | - Rongli Zhang
- From the Institute for Transformative Molecular Medicine (R.T.P., J.D.R., R.Z., J.S.S.), Case Western Reserve University School of Medicine, OH.,Department of Medicine, Cardiovascular Research Institute (R.Z., J.S.S.), Case Western Reserve University School of Medicine, OH
| | - Jonathan S Stamler
- From the Institute for Transformative Molecular Medicine (R.T.P., J.D.R., R.Z., J.S.S.), Case Western Reserve University School of Medicine, OH.,Department of Medicine, Cardiovascular Research Institute (R.Z., J.S.S.), Case Western Reserve University School of Medicine, OH.,Harrington Discovery Institute (R.T.P., J.D.R., J.S.S.), University Hospitals Cleveland Medical Center, OH
| |
Collapse
|