1
|
Bendzunas GN, Byrne DP, Shrestha S, Daly LA, Oswald SO, Katiyar S, Venkat A, Yeung W, Eyers CE, Eyers PA, Kannan N. Redox regulation and dynamic control of brain-selective kinases BRSK1/2 in the AMPK family through cysteine-based mechanisms. eLife 2025; 13:RP92536. [PMID: 40172959 PMCID: PMC11964447 DOI: 10.7554/elife.92536] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2025] Open
Abstract
In eukaryotes, protein kinase signaling is regulated by a diverse array of post-translational modifications, including phosphorylation of Ser/Thr residues and oxidation of cysteine (Cys) residues. While regulation by activation segment phosphorylation of Ser/Thr residues is well understood, relatively little is known about how oxidation of cysteine residues modulate catalysis. In this study, we investigate redox regulation of the AMPK-related brain-selective kinases (BRSK) 1 and 2, and detail how broad catalytic activity is directly regulated through reversible oxidation and reduction of evolutionarily conserved Cys residues within the catalytic domain. We show that redox-dependent control of BRSKs is a dynamic and multilayered process involving oxidative modifications of several Cys residues, including the formation of intramolecular disulfide bonds involving a pair of Cys residues near the catalytic HRD motif and a highly conserved T-loop Cys with a BRSK-specific Cys within an unusual CPE motif at the end of the activation segment. Consistently, mutation of the CPE-Cys increases catalytic activity in vitro and drives phosphorylation of the BRSK substrate Tau in cells. Molecular modeling and molecular dynamics simulations indicate that oxidation of the CPE-Cys destabilizes a conserved salt bridge network critical for allosteric activation. The occurrence of spatially proximal Cys amino acids in diverse Ser/Thr protein kinase families suggests that disulfide-mediated control of catalytic activity may be a prevalent mechanism for regulation within the broader AMPK family.
Collapse
Affiliation(s)
- George N Bendzunas
- Department of Biochemistry and Molecular Biology, University of GeorgiaAthensUnited States
| | - Dominic P Byrne
- Department of Biochemistry, Cell and Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of LiverpoolLiverpoolUnited Kingdom
| | - Safal Shrestha
- Institute of Bioinformatics, University of GeorgiaAthensUnited States
| | - Leonard A Daly
- Department of Biochemistry, Cell and Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of LiverpoolLiverpoolUnited Kingdom
- Centre for Proteome Research, Institute of Systems, Molecular and Integrative Biology, University of LiverpoolLiverpoolUnited Kingdom
| | - Sally O Oswald
- Department of Biochemistry, Cell and Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of LiverpoolLiverpoolUnited Kingdom
- Centre for Proteome Research, Institute of Systems, Molecular and Integrative Biology, University of LiverpoolLiverpoolUnited Kingdom
| | - Samiksha Katiyar
- Department of Biochemistry and Molecular Biology, University of GeorgiaAthensUnited States
| | - Aarya Venkat
- Department of Biochemistry and Molecular Biology, University of GeorgiaAthensUnited States
| | - Wayland Yeung
- Department of Biochemistry and Molecular Biology, University of GeorgiaAthensUnited States
- Institute of Bioinformatics, University of GeorgiaAthensUnited States
| | - Claire E Eyers
- Department of Biochemistry, Cell and Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of LiverpoolLiverpoolUnited Kingdom
- Centre for Proteome Research, Institute of Systems, Molecular and Integrative Biology, University of LiverpoolLiverpoolUnited Kingdom
| | - Patrick A Eyers
- Institute of Bioinformatics, University of GeorgiaAthensUnited States
| | - Natarajan Kannan
- Department of Biochemistry and Molecular Biology, University of GeorgiaAthensUnited States
- Department of Biochemistry, Cell and Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of LiverpoolLiverpoolUnited Kingdom
| |
Collapse
|
2
|
Brett C, Gout I. The two faces of coenzyme A in cellular biology. Free Radic Biol Med 2025; 233:162-173. [PMID: 40107571 DOI: 10.1016/j.freeradbiomed.2025.03.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 03/10/2025] [Accepted: 03/17/2025] [Indexed: 03/22/2025]
Abstract
Coenzyme A (CoA) is an essential cofactor present in all living cells, which plays critical roles in diverse biochemical processes, including cellular metabolism, signal transduction, regulation of gene expression, and the antioxidant response. This review summarizes current knowledge on the role of CoA and its metabolically active thioesters in promoting cellular growth and proliferation (pro-growth) and discusses emerging research on CoA's antioxidant properties that enhance cell survival (pro-survival).
Collapse
Affiliation(s)
- Charlie Brett
- Department of Structural and Molecular Biology, University College London, London, WC1E 6BT, UK
| | - Ivan Gout
- Department of Structural and Molecular Biology, University College London, London, WC1E 6BT, UK.
| |
Collapse
|
3
|
Semelak JA, Gallo M, González Flecha FL, Di Pino S, Pertinhez TA, Zeida A, Gout I, Estrin DA, Trujillo M. Mg 2+ binding to coenzyme A. Arch Biochem Biophys 2025; 763:110202. [PMID: 39536960 DOI: 10.1016/j.abb.2024.110202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 09/16/2024] [Accepted: 10/30/2024] [Indexed: 11/16/2024]
Abstract
Magnesium (Mg2+), the second most abundant intracellular cation, plays a crucial role in cellular functions. In this study, we investigate the interaction between Mg2+ and coenzyme A (CoA), a thiol-containing cofactor central to cellular metabolism also involved in protein modifications. Isothermal titration calorimetry revealed a 1:1 binding stoichiometry between Mg2+ and free CoA under biologically relevant conditions. Association constants of (537 ± 20) M-1 and (312 ± 7) M-1 were determined at 25 °C and pH 7.2 and 7.8, respectively, suggesting that a significant fraction of CoA is likely bound to Mg2+ both in the cytosol and in the mitochondrial matrix. Additionally, the process is entropically-driven, and our results support that the origin of the entropy gain is solvent-related. On the other hand, the combination of 1- and 2-dimensional nuclear magnetic resonance spectroscopy with molecular dynamics simulations and unsupervised learning demonstrate a direct coordination between Mg2+ and the phosphate groups of the 4-phosphopantothenate unit and bound to position 5' of the adenosine ring. Interestingly, the phosphate in position 3' only indirectly contributes to Mg2+ coordination. Finally, we discuss how the binding of Mg2+ to CoA perturbates the chemical environment of different CoA atoms, regardless of their apparent proximity to the coordination site, through the modulation of the CoA conformational landscape. This insight holds implications for understanding the impact on both CoA and Mg2+ functions in physiological and pathological processes.
Collapse
Affiliation(s)
- Jonathan A Semelak
- CONICET-Universidad de Buenos Aires, Instituto de Química-Física de los Materiales, Medio Ambiente y Energía (INQUIMAE), Buenos Aires, Argentina; Facultad de Ciencias Exactas y Naturales, Departamento de Química Inorgánica, Analítica y Química Física, Universidad de Buenos Aires, C1428EHA Buenos Aires, Argentina.
| | - Mariana Gallo
- Laboratory of Biochemistry and Metabolomics, Department of Medicine and Surgery, University of Parma, Italy
| | - F Luis González Flecha
- Laboratorio de Biofísica Molecular, Instituto de Química y Fisicoquímica Biológicas, Universidad de Buenos Aires, CONICET, Buenos Aires, Argentina
| | - Solana Di Pino
- CONICET-Universidad de Buenos Aires, Instituto de Química-Física de los Materiales, Medio Ambiente y Energía (INQUIMAE), Buenos Aires, Argentina; Facultad de Ciencias Exactas y Naturales, Departamento de Química Inorgánica, Analítica y Química Física, Universidad de Buenos Aires, C1428EHA Buenos Aires, Argentina
| | - Thelma A Pertinhez
- Laboratory of Biochemistry and Metabolomics, Department of Medicine and Surgery, University of Parma, Italy
| | - Ari Zeida
- Departamento de Bioquímica, Facultad de Medicina, Universidad de la República, Montevideo, 11800, Uruguay; Centro de Investigaciones Biomédicas (CEINBIO), Universidad de la República, Montevideo, 11800, Uruguay
| | - Ivan Gout
- Department of Structural and Molecular Biology, University College London, London, WC1E 6BT, UK; Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine, 03680, Kyiv, Ukraine
| | - Dario A Estrin
- CONICET-Universidad de Buenos Aires, Instituto de Química-Física de los Materiales, Medio Ambiente y Energía (INQUIMAE), Buenos Aires, Argentina; Facultad de Ciencias Exactas y Naturales, Departamento de Química Inorgánica, Analítica y Química Física, Universidad de Buenos Aires, C1428EHA Buenos Aires, Argentina
| | - Madia Trujillo
- Departamento de Bioquímica, Facultad de Medicina, Universidad de la República, Montevideo, 11800, Uruguay; Centro de Investigaciones Biomédicas (CEINBIO), Universidad de la República, Montevideo, 11800, Uruguay.
| |
Collapse
|
4
|
Malanchuk O, Khoruzhenko A, Kosach V, Bdzhola A, Bidiuk D, Brett C, Gout I, Filonenko V. Immunofluorescent detection of protein CoAlation in mammalian cells under oxidative stress. Biol Open 2024; 13:bio061685. [PMID: 39344817 PMCID: PMC11463958 DOI: 10.1242/bio.061685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 09/04/2024] [Indexed: 10/01/2024] Open
Abstract
Previously, we reported the generation and characterisation of highly specific anti-CoA monoclonal antibodies capable of recognizing CoA in various immunological assays. Utilizing these antibodies in conjunction with mass spectrometry, we identified a wide array of cellular proteins modified by CoA in bacteria and mammalian cells. Furthermore, our findings demonstrated that such modifications could be induced by oxidative or metabolic stress. This study advances the utility of anti-CoA monoclonal antibodies in analysing protein CoAlation, highlighting their effectiveness in immunofluorescent assay. Our data corroborates a significant increase in cellular protein CoAlation induced by oxidative agents. Additionally, we observed that hydrogen-peroxide induced protein CoAlation is predominantly associated with mitochondrial proteins.
Collapse
Affiliation(s)
- Oksana Malanchuk
- Department of Cell Signalling, Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine, Kyiv 03143, Ukraine
- Department of Structural and Molecular Biology, University College London, London WC1E 6BT, UK
| | - Antonina Khoruzhenko
- Department of Cell Signalling, Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine, Kyiv 03143, Ukraine
| | - Viktoriia Kosach
- Department of Cell Signalling, Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine, Kyiv 03143, Ukraine
- Department of Cell Screening, Enamine Ltd., Kyiv 02094, Ukraine
| | - Anna Bdzhola
- Department of Cell Signalling, Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine, Kyiv 03143, Ukraine
| | - Dariy Bidiuk
- Department of General Surgery, Danylo Halytsky Lviv National Medical University, Lviv 79000, Ukraine
| | - Charlie Brett
- Department of Structural and Molecular Biology, University College London, London WC1E 6BT, UK
| | - Ivan Gout
- Department of Cell Signalling, Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine, Kyiv 03143, Ukraine
- Department of Structural and Molecular Biology, University College London, London WC1E 6BT, UK
| | - Valeriy Filonenko
- Department of Cell Signalling, Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine, Kyiv 03143, Ukraine
| |
Collapse
|
5
|
Mu B, Zeng Y, Luo L, Wang K. Oxidative stress-mediated protein sulfenylation in human diseases: Past, present, and future. Redox Biol 2024; 76:103332. [PMID: 39217848 PMCID: PMC11402764 DOI: 10.1016/j.redox.2024.103332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 08/28/2024] [Accepted: 08/28/2024] [Indexed: 09/04/2024] Open
Abstract
Reactive Oxygen Species (ROS) refer to a variety of derivatives of molecular oxygen that play crucial roles in regulating a wide range of physiological and pathological processes. Excessive ROS levels can cause oxidative stress, leading to cellular damage and even cell demise. However, moderately elevated levels of ROS can mediate the oxidative post-translational modifications (oxPTMs) of redox-sensitive proteins, thereby affecting protein functions and regulating various cellular signaling pathways. Among the oxPTMs, ROS-induced reversible protein sulfenylation represents the initial form of cysteine oxidation for sensing redox signaling. In this review, we will summarize the discovery, chemical formation, and detection approaches of protein sulfenylation. In addition, we will highlight recent findings for the roles of protein sulfenylation in various diseases, including thrombotic disorders, diabetes, cardiovascular diseases, neurodegenerative diseases, and cancer.
Collapse
Affiliation(s)
- Baoquan Mu
- West China School of Basic Medical Sciences & Forensic Medicine, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yan Zeng
- West China School of Basic Medical Sciences & Forensic Medicine, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Li Luo
- Center for Reproductive Medicine, Department of Gynecology and Obstetrics, West China Second University Hospital, Sichuan University, Chengdu, 610041, China; Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, 610041, China.
| | - Kui Wang
- West China School of Basic Medical Sciences & Forensic Medicine, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
6
|
Nikhil K, Shah K. The significant others of aurora kinase a in cancer: combination is the key. Biomark Res 2024; 12:109. [PMID: 39334449 PMCID: PMC11438406 DOI: 10.1186/s40364-024-00651-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 09/06/2024] [Indexed: 09/30/2024] Open
Abstract
AURKA is predominantly famous as an essential mitotic kinase. Recent findings have also established its critical role in a plethora of other biological processes including ciliogenesis, mitochondrial dynamics, neuronal outgrowth, DNA replication and cell cycle progression. AURKA overexpression in numerous cancers is strongly associated with poor prognosis and survival. Still no AURKA-targeted drug has been approved yet, partially because of the associated collateral toxicity and partly due to its limited efficacy as a single agent in a wide range of tumors. Mechanistically, AURKA overexpression allows it to phosphorylate numerous pathological substrates promoting highly aggressive oncogenic phenotypes. Our review examines the most recent advances in AURKA regulation and focuses on 33 such direct cancer-specific targets of AURKA and their associated oncogenic signaling cascades. One of the common themes that emerge is that AURKA is often involved in a feedback loop with its substrates, which could be the decisive factor causing its sustained upregulation and hyperactivation in cancer cells, an Achilles heel not exploited before. This dynamic interplay between AURKA and its substrates offers potential opportunities for targeted therapeutic interventions. By targeting these substrates, it may be possible to disrupt this feedback loop to effectively reverse AURKA levels, thereby providing a promising avenue for developing safer AURKA-targeted therapeutics. Additionally, exploring the synergistic effects of AURKA inhibition with its other oncogenic and/or tumor-suppressor targets could provide further opportunities for developing effective combination therapies against AURKA-driven cancers, thereby maximizing its potential as a critical drug target.
Collapse
Affiliation(s)
- Kumar Nikhil
- Department of Chemistry, Purdue University Institute for Cancer Research, 560 Oval Drive, West Lafayette, IN, 47907, USA.
- School of Biotechnology, Kalinga Institute of Industrial Technology, Bhubaneswar, 751024, India.
| | - Kavita Shah
- Department of Chemistry, Purdue University Institute for Cancer Research, 560 Oval Drive, West Lafayette, IN, 47907, USA.
| |
Collapse
|
7
|
Wedman JJ, Sibon OCM, Mastantuono E, Iuso A. Impaired coenzyme A homeostasis in cardiac dysfunction and benefits of boosting coenzyme A production with vitamin B5 and its derivatives in the management of heart failure. J Inherit Metab Dis 2024; 47:885-894. [PMID: 38591231 DOI: 10.1002/jimd.12737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 03/25/2024] [Accepted: 03/27/2024] [Indexed: 04/10/2024]
Abstract
Coenzyme A (CoA) is an essential cofactor required for over a hundred metabolic reactions in the human body. This cofactor is synthesized de novo in our cells from vitamin B5, also known as pantothenic acid, a water-soluble vitamin abundantly present in vegetables and animal-based foods. Neurodegenerative disorders, cancer, and infectious diseases have been linked to defects in de novo CoA biosynthesis or reduced levels of this coenzyme. There is now accumulating evidence that CoA limitation is a critical pathomechanism in cardiac dysfunction too. In the current review, we will summarize our current knowledge on CoA and heart failure, with emphasis on two primary cardiomyopathies, phosphopantothenoylcysteine synthetase and phosphopantothenoylcysteine decarboxylase deficiency disorders biochemically characterized by a decreased level of CoA in patients' samples. Hence, we will discuss the potential benefits of CoA restoration in these diseases and, more generally, in heart failure, by vitamin B5 and its derivatives pantethine and 4'-phosphopantetheine.
Collapse
Affiliation(s)
- J J Wedman
- Department of Biomedical Sciences, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - O C M Sibon
- Department of Biomedical Sciences, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - E Mastantuono
- Regenerative Medicine in Cardiovascular Diseases, First Department of Medicine, Klinikum Rechts der Isar, Technical University of Munich, School of Medicine and Health, Munich, Germany
- First Department of Medicine, Cardiology, Klinikum Rechts der Isar, Technical University of Munich, School of Medicine and Health, Munich, Germany
| | - A Iuso
- Institute of Neurogenomics, Helmholtz Zentrum München, Neuherberg, Germany
- Institute of Human Genetics, Technical University of Munich, School of Medicine and Health, Munich, Germany
| |
Collapse
|
8
|
Malanchuk O, Bdzhola A, Palchevskyi S, Bdzhola V, Chai P, Pardo OE, Seckl MJ, Banerjee A, Peak-Chew SY, Skehel M, Guruprasad L, Zhyvoloup A, Gout I, Filonenko V. Investigating the Regulation of Ribosomal Protein S6 Kinase 1 by CoAlation. Int J Mol Sci 2024; 25:8747. [PMID: 39201434 PMCID: PMC11354579 DOI: 10.3390/ijms25168747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 08/02/2024] [Accepted: 08/08/2024] [Indexed: 09/02/2024] Open
Abstract
Ribosomal protein S6 kinases belong to a family of highly conserved enzymes in eukaryotes that regulate cell growth, proliferation, survival, and the stress response. It is well established that the activation and downstream signalling of p70S6Ks involve multiple phosphorylation events by key regulators of cell growth, survival, and energy metabolism. Here, we report for the first time the covalent modification of p70S6K1 by coenzyme A (CoA) in response to oxidative stress, which regulates its kinase activity. The site of CoA binding (CoAlation) was mapped by mass spectrometry to cysteine 217 (Cys217), located in the kinase activation loop and only one amino acid away from the tripeptide DFG motif, which facilitates ATP-binding. The CoAlation of recombinant p70S6K1 was demonstrated in vitro and was shown to inhibit its kinase activity. Our molecular docking and dynamics analysis revealed the most likely mode for CoA binding to p70S6K1. This mechanism involves the non-covalent binding of the CoA ADP moiety to the p70S6K1 nucleotide-binding pocket, positioning the CoA thiol group in close proximity to form a covalent bond with the surface-exposed Cys217 residue. These findings support a "dual anchor" mechanism for protein kinase inhibition by CoAlation in cellular response to oxidative stress. Furthermore, the inhibition of S6K1 by CoAlation may open new avenues for developing novel inhibitors.
Collapse
Affiliation(s)
- Oksana Malanchuk
- Department of Structural and Molecular Biology, University College London, London WC1E 6BT, UK; (O.M.); (A.Z.)
- Department of Cell Signalling, Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine, 03143 Kyiv, Ukraine; (A.B.); (S.P.); (V.B.)
| | - Anna Bdzhola
- Department of Cell Signalling, Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine, 03143 Kyiv, Ukraine; (A.B.); (S.P.); (V.B.)
| | - Sergii Palchevskyi
- Department of Cell Signalling, Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine, 03143 Kyiv, Ukraine; (A.B.); (S.P.); (V.B.)
| | - Volodymyr Bdzhola
- Department of Cell Signalling, Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine, 03143 Kyiv, Ukraine; (A.B.); (S.P.); (V.B.)
| | - Peng Chai
- Division of Cancer, Imperial College London, Du Cane Road, London W12 0NN, UK; (P.C.); (O.E.P.); (M.J.S.)
| | - Olivier E. Pardo
- Division of Cancer, Imperial College London, Du Cane Road, London W12 0NN, UK; (P.C.); (O.E.P.); (M.J.S.)
| | - Michael J. Seckl
- Division of Cancer, Imperial College London, Du Cane Road, London W12 0NN, UK; (P.C.); (O.E.P.); (M.J.S.)
| | - Adrija Banerjee
- School of Chemistry, University of Hyderabad, Hyderabad 500 046, India; (A.B.); (L.G.)
| | - Sew Yeu Peak-Chew
- Biological Mass Spectrometry & Proteomics Cell Biology, MRC Laboratory of Molecular Biology, Francis Crick Avenue, Trumpington, Cambridge CB2 0QH, UK;
| | - Mark Skehel
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK;
| | - Lalitha Guruprasad
- School of Chemistry, University of Hyderabad, Hyderabad 500 046, India; (A.B.); (L.G.)
| | - Alexander Zhyvoloup
- Department of Structural and Molecular Biology, University College London, London WC1E 6BT, UK; (O.M.); (A.Z.)
| | - Ivan Gout
- Department of Structural and Molecular Biology, University College London, London WC1E 6BT, UK; (O.M.); (A.Z.)
- Department of Cell Signalling, Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine, 03143 Kyiv, Ukraine; (A.B.); (S.P.); (V.B.)
| | - Valeriy Filonenko
- Department of Cell Signalling, Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine, 03143 Kyiv, Ukraine; (A.B.); (S.P.); (V.B.)
| |
Collapse
|
9
|
Chi JT, Lin CC, Lin YT, Chen SY, Setayeshpour Y, Chen Y, Dunn D, Soderblom E, Zhang GF, Filonenko V, Jeong SY, Floyd S, Hayflick S, Gout I. Coenzyme A protects against ferroptosis via CoAlation of thioredoxin reductase 2. RESEARCH SQUARE 2024:rs.3.rs-4522617. [PMID: 38947036 PMCID: PMC11213209 DOI: 10.21203/rs.3.rs-4522617/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
The Cystine-xCT transporter-Glutathione (GSH)-GPX4 axis is the canonical pathway to protect against ferroptosis. While not required for ferroptosis-inducing compounds (FINs) targeting GPX4, FINs targeting the xCT transporter require mitochondria and its lipid peroxidation to trigger ferroptosis. However, the mechanism underlying the difference between these FINs is still unknown. Given that cysteine is also required for coenzyme A (CoA) biosynthesis, here we show that CoA supplementation specifically prevents ferroptosis induced by xCT inhibitors but not GPX4 inhibitors. We find that, auranofin, a thioredoxin reductase inhibitor, abolishes the protective effect of CoA. We also find that CoA availability determines the enzymatic activity of thioredoxin reductase, but not thioredoxin. Importantly, the mitochondrial thioredoxin system, but not the cytosolic thioredoxin system, determines CoA-mediated ferroptosis inhibition. Our data show that the CoA regulates the in vitro enzymatic activity of mitochondrial thioredoxin reductase (TXNRD2) by covalently modifying the thiol group of cysteine (CoAlation) on Cys-483. Replacing Cys-483 with alanine on TXNRD2 abolishes its in vitro enzymatic activity and ability to protect cells from ferroptosis. Targeting xCT to limit cysteine import and, therefore, CoA biosynthesis reduced CoAlation on TXNRD2, an effect that was rescued by CoA supplementation. Furthermore, the fibroblasts from patients with disrupted CoA metabolism demonstrate increased mitochondrial lipid peroxidation. In organotypic brain slice cultures, inhibition of CoA biosynthesis leads to an oxidized thioredoxin system, mitochondrial lipid peroxidation, and loss in cell viability, which were all rescued by ferrostatin-1. These findings identify CoA-mediated post-translation modification to regulate the thioredoxin system as an alternative ferroptosis protection pathway with potential clinical relevance for patients with disrupted CoA metabolism.
Collapse
|
10
|
Barritt SA, DuBois-Coyne SE, Dibble CC. Coenzyme A biosynthesis: mechanisms of regulation, function and disease. Nat Metab 2024; 6:1008-1023. [PMID: 38871981 DOI: 10.1038/s42255-024-01059-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Accepted: 04/30/2024] [Indexed: 06/15/2024]
Abstract
The tricarboxylic acid cycle, nutrient oxidation, histone acetylation and synthesis of lipids, glycans and haem all require the cofactor coenzyme A (CoA). Although the sources and regulation of the acyl groups carried by CoA for these processes are heavily studied, a key underlying question is less often considered: how is production of CoA itself controlled? Here, we discuss the many cellular roles of CoA and the regulatory mechanisms that govern its biosynthesis from cysteine, ATP and the essential nutrient pantothenate (vitamin B5), or from salvaged precursors in mammals. Metabolite feedback and signalling mechanisms involving acetyl-CoA, other acyl-CoAs, acyl-carnitines, MYC, p53, PPARα, PINK1 and insulin- and growth factor-stimulated PI3K-AKT signalling regulate the vitamin B5 transporter SLC5A6/SMVT and CoA biosynthesis enzymes PANK1, PANK2, PANK3, PANK4 and COASY. We also discuss methods for measuring CoA-related metabolites, compounds that target CoA biosynthesis and diseases caused by mutations in pathway enzymes including types of cataracts, cardiomyopathy and neurodegeneration (PKAN and COPAN).
Collapse
Affiliation(s)
- Samuel A Barritt
- Department of Pathology, Cancer Research Institute, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Sarah E DuBois-Coyne
- Department of Medicine, Department of Biological Chemistry and Molecular Pharmacology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Christian C Dibble
- Department of Pathology, Cancer Research Institute, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
11
|
Tossounian MA, Zhao Y, Yu BYK, Markey SA, Malanchuk O, Zhu Y, Cain A, Gout I. Low-molecular-weight thiol transferases in redox regulation and antioxidant defence. Redox Biol 2024; 71:103094. [PMID: 38479221 PMCID: PMC10950700 DOI: 10.1016/j.redox.2024.103094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 02/08/2024] [Accepted: 02/18/2024] [Indexed: 03/24/2024] Open
Abstract
Low-molecular-weight (LMW) thiols are produced in all living cells in different forms and concentrations. Glutathione (GSH), coenzyme A (CoA), bacillithiol (BSH), mycothiol (MSH), ergothioneine (ET) and trypanothione T(SH)2 are the main LMW thiols in eukaryotes and prokaryotes. LMW thiols serve as electron donors for thiol-dependent enzymes in redox-mediated metabolic and signaling processes, protect cellular macromolecules from oxidative and xenobiotic stress, and participate in the reduction of oxidative modifications. The level and function of LMW thiols, their oxidized disulfides and mixed disulfide conjugates in cells and tissues is tightly controlled by dedicated oxidoreductases, such as peroxiredoxins, glutaredoxins, disulfide reductases and LMW thiol transferases. This review provides the first summary of the current knowledge of structural and functional diversity of transferases for LMW thiols, including GSH, BSH, MSH and T(SH)2. Their role in maintaining redox homeostasis in single-cell and multicellular organisms is discussed, focusing in particular on the conjugation of specific thiols to exogenous and endogenous electrophiles, or oxidized protein substrates. Advances in the development of new research tools, analytical methodologies, and genetic models for the analysis of known LMW thiol transferases will expand our knowledge and understanding of their function in cell growth and survival under oxidative stress, nutrient deprivation, and during the detoxification of xenobiotics and harmful metabolites. The antioxidant function of CoA has been recently discovered and the breakthrough in defining the identity and functional characteristics of CoA S-transferase(s) is soon expected.
Collapse
Affiliation(s)
- Maria-Armineh Tossounian
- Department of Structural and Molecular Biology, University College London, London, WC1E 6BT, United Kingdom
| | - Yuhan Zhao
- Department of Structural and Molecular Biology, University College London, London, WC1E 6BT, United Kingdom
| | - Bess Yi Kun Yu
- Department of Structural and Molecular Biology, University College London, London, WC1E 6BT, United Kingdom
| | - Samuel A Markey
- Department of Structural and Molecular Biology, University College London, London, WC1E 6BT, United Kingdom
| | - Oksana Malanchuk
- Department of Structural and Molecular Biology, University College London, London, WC1E 6BT, United Kingdom; Department of Cell Signaling, Institute of Molecular Biology and Genetics, Kyiv, 143, Ukraine
| | - Yuejia Zhu
- Department of Structural and Molecular Biology, University College London, London, WC1E 6BT, United Kingdom
| | - Amanda Cain
- Department of Structural and Molecular Biology, University College London, London, WC1E 6BT, United Kingdom
| | - Ivan Gout
- Department of Structural and Molecular Biology, University College London, London, WC1E 6BT, United Kingdom; Department of Cell Signaling, Institute of Molecular Biology and Genetics, Kyiv, 143, Ukraine.
| |
Collapse
|
12
|
Bendzunas GN, Byrne DP, Shrestha S, Daly LA, Oswald SO, Katiyar S, Venkat A, Yeung W, Eyers CE, Eyers PA, Kannan N. Redox Regulation of Brain Selective Kinases BRSK1/2: Implications for Dynamic Control of the Eukaryotic AMPK family through Cys-based mechanisms. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.10.05.561145. [PMID: 38586025 PMCID: PMC10996518 DOI: 10.1101/2023.10.05.561145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
In eukaryotes, protein kinase signaling is regulated by a diverse array of post-translational modifications (PTMs), including phosphorylation of Ser/Thr residues and oxidation of cysteine (Cys) residues. While regulation by activation segment phosphorylation of Ser/Thr residues is well understood, relatively little is known about how oxidation of cysteine residues modulate catalysis. In this study, we investigate redox regulation of the AMPK-related Brain-selective kinases (BRSK) 1 and 2, and detail how broad catalytic activity is directly regulated through reversible oxidation and reduction of evolutionarily conserved Cys residues within the catalytic domain. We show that redox-dependent control of BRSKs is a dynamic and multilayered process involving oxidative modifications of several Cys residues, including the formation of intramolecular disulfide bonds involving a pair of Cys residues near the catalytic HRD motif and a highly conserved T-Loop Cys with a BRSK-specific Cys within an unusual CPE motif at the end of the activation segment. Consistently, mutation of the CPE-Cys increases catalytic activity in vitro and drives phosphorylation of the BRSK substrate Tau in cells. Molecular modeling and molecular dynamics simulations indicate that oxidation of the CPE-Cys destabilizes a conserved salt bridge network critical for allosteric activation. The occurrence of spatially proximal Cys amino acids in diverse Ser/Thr protein kinase families suggests that disulfide mediated control of catalytic activity may be a prevalent mechanism for regulation within the broader AMPK family.
Collapse
Affiliation(s)
- George N. Bendzunas
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602, USA
| | - Dominic P Byrne
- Department of Biochemistry, Cell and Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 7ZB, UK
| | - Safal Shrestha
- Institute of Bioinformatics, University of Georgia, Athens, GA 30602, USA
| | - Leonard A Daly
- Department of Biochemistry, Cell and Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 7ZB, UK
- Centre for Proteome Research, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 7ZB, UK
| | - Sally O. Oswald
- Department of Biochemistry, Cell and Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 7ZB, UK
- Centre for Proteome Research, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 7ZB, UK
| | - Samiksha Katiyar
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602, USA
| | - Aarya Venkat
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602, USA
| | - Wayland Yeung
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602, USA
- Institute of Bioinformatics, University of Georgia, Athens, GA 30602, USA
| | - Claire E Eyers
- Department of Biochemistry, Cell and Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 7ZB, UK
- Centre for Proteome Research, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 7ZB, UK
| | - Patrick A Eyers
- Institute of Bioinformatics, University of Georgia, Athens, GA 30602, USA
| | - Natarajan Kannan
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602, USA
- Department of Biochemistry, Cell and Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 7ZB, UK
| |
Collapse
|
13
|
Knight H, Abis G, Kaur M, Green HL, Krasemann S, Hartmann K, Lynham S, Clark J, Zhao L, Ruppert C, Weiss A, Schermuly RT, Eaton P, Rudyk O. Cyclin D-CDK4 Disulfide Bond Attenuates Pulmonary Vascular Cell Proliferation. Circ Res 2023; 133:966-988. [PMID: 37955182 PMCID: PMC10699508 DOI: 10.1161/circresaha.122.321836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 10/31/2023] [Accepted: 11/02/2023] [Indexed: 11/14/2023]
Abstract
BACKGROUND Pulmonary hypertension (PH) is a chronic vascular disease characterized, among other abnormalities, by hyperproliferative smooth muscle cells and a perturbed cellular redox and metabolic balance. Oxidants induce cell cycle arrest to halt proliferation; however, little is known about the redox-regulated effector proteins that mediate these processes. Here, we report a novel kinase-inhibitory disulfide bond in cyclin D-CDK4 (cyclin-dependent kinase 4) and investigate its role in cell proliferation and PH. METHODS Oxidative modifications of cyclin D-CDK4 were detected in human pulmonary arterial smooth muscle cells and human pulmonary arterial endothelial cells. Site-directed mutagenesis, tandem mass-spectrometry, cell-based experiments, in vitro kinase activity assays, in silico structural modeling, and a novel redox-dead constitutive knock-in mouse were utilized to investigate the nature and definitively establish the importance of CDK4 cysteine modification in pulmonary vascular cell proliferation. Furthermore, the cyclin D-CDK4 oxidation was assessed in vivo in the pulmonary arteries and isolated human pulmonary arterial smooth muscle cells of patients with pulmonary arterial hypertension and in 3 preclinical models of PH. RESULTS Cyclin D-CDK4 forms a reversible oxidant-induced heterodimeric disulfide dimer between C7/8 and C135, respectively, in cells in vitro and in pulmonary arteries in vivo to inhibit cyclin D-CDK4 kinase activity, decrease Rb (retinoblastoma) protein phosphorylation, and induce cell cycle arrest. Mutation of CDK4 C135 causes a kinase-impaired phenotype, which decreases cell proliferation rate and alleviates disease phenotype in an experimental mouse PH model, suggesting this cysteine is indispensable for cyclin D-CDK4 kinase activity. Pulmonary arteries and human pulmonary arterial smooth muscle cells from patients with pulmonary arterial hypertension display a decreased level of CDK4 disulfide, consistent with CDK4 being hyperactive in human pulmonary arterial hypertension. Furthermore, auranofin treatment, which induces the cyclin D-CDK4 disulfide, attenuates disease severity in experimental PH models by mitigating pulmonary vascular remodeling. CONCLUSIONS A novel disulfide bond in cyclin D-CDK4 acts as a rapid switch to inhibit kinase activity and halt cell proliferation. This oxidative modification forms at a critical cysteine residue, which is unique to CDK4, offering the potential for the design of a selective covalent inhibitor predicted to be beneficial in PH.
Collapse
Affiliation(s)
- Hannah Knight
- School of Cardiovascular and Metabolic Medicine and Sciences, British Heart Foundation Centre of Research Excellence (H.K., M.K., H.L.H.G., J.C., O.R.), King’s College London, United Kingdom
| | - Giancarlo Abis
- Division of Biosciences, Institute of Structural and Molecular Biology, University College London, United Kingdom (G.A.)
| | - Manpreet Kaur
- School of Cardiovascular and Metabolic Medicine and Sciences, British Heart Foundation Centre of Research Excellence (H.K., M.K., H.L.H.G., J.C., O.R.), King’s College London, United Kingdom
| | - Hannah L.H. Green
- School of Cardiovascular and Metabolic Medicine and Sciences, British Heart Foundation Centre of Research Excellence (H.K., M.K., H.L.H.G., J.C., O.R.), King’s College London, United Kingdom
| | - Susanne Krasemann
- Institute of Neuropathology, University Medical Centre Hamburg-Eppendorf, Germany (S.K., K.H.)
| | - Kristin Hartmann
- Institute of Neuropathology, University Medical Centre Hamburg-Eppendorf, Germany (S.K., K.H.)
| | - Steven Lynham
- Proteomics Core Facility, Centre of Excellence for Mass Spectrometry (S.L.), King’s College London, United Kingdom
| | - James Clark
- School of Cardiovascular and Metabolic Medicine and Sciences, British Heart Foundation Centre of Research Excellence (H.K., M.K., H.L.H.G., J.C., O.R.), King’s College London, United Kingdom
| | - Lan Zhao
- National Heart and Lung Institute, Faculty of Medicine, Imperial College London, United Kingdom (L.Z.)
| | - Clemens Ruppert
- Universities of Giessen and Marburg Lung Center Giessen Biobank, Justus-Liebig-University Giessen, Germany (C.R.)
| | - Astrid Weiss
- Department of Internal Medicine, Justus-Liebig-University Giessen, Giessen, Member of the German Center for Lung Research (DZL), Germany (A.W., R.T.S.)
| | - Ralph T. Schermuly
- Department of Internal Medicine, Justus-Liebig-University Giessen, Giessen, Member of the German Center for Lung Research (DZL), Germany (A.W., R.T.S.)
| | - Philip Eaton
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, United Kingdom (P.E.)
| | - Olena Rudyk
- School of Cardiovascular and Metabolic Medicine and Sciences, British Heart Foundation Centre of Research Excellence (H.K., M.K., H.L.H.G., J.C., O.R.), King’s College London, United Kingdom
| |
Collapse
|
14
|
Caputo WL, de Souza MC, Basso CR, Pedrosa VDA, Seiva FRF. Comprehensive Profiling and Therapeutic Insights into Differentially Expressed Genes in Hepatocellular Carcinoma. Cancers (Basel) 2023; 15:5653. [PMID: 38067357 PMCID: PMC10705715 DOI: 10.3390/cancers15235653] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 11/02/2023] [Accepted: 11/04/2023] [Indexed: 02/16/2024] Open
Abstract
Background: Drug repurposing is a strategy that complements the conventional approach of developing new drugs. Hepatocellular carcinoma (HCC) is a highly prevalent type of liver cancer, necessitating an in-depth understanding of the underlying molecular alterations for improved treatment. Methods: We searched for a vast array of microarray experiments in addition to RNA-seq data. Through rigorous filtering processes, we have identified highly representative differentially expressed genes (DEGs) between tumor and non-tumor liver tissues and identified a distinct class of possible new candidate drugs. Results: Functional enrichment analysis revealed distinct biological processes associated with metal ions, including zinc, cadmium, and copper, potentially implicating chronic metal ion exposure in tumorigenesis. Conversely, up-regulated genes are associated with mitotic events and kinase activities, aligning with the relevance of kinases in HCC. To unravel the regulatory networks governing these DEGs, we employed topological analysis methods, identifying 25 hub genes and their regulatory transcription factors. In the pursuit of potential therapeutic options, we explored drug repurposing strategies based on computational approaches, analyzing their potential to reverse the expression patterns of key genes, including AURKA, CCNB1, CDK1, RRM2, and TOP2A. Potential therapeutic chemicals are alvocidib, AT-7519, kenpaullone, PHA-793887, JNJ-7706621, danusertibe, doxorubicin and analogues, mitoxantrone, podofilox, teniposide, and amonafide. Conclusion: This multi-omic study offers a comprehensive view of DEGs in HCC, shedding light on potential therapeutic targets and drug repurposing opportunities.
Collapse
Affiliation(s)
- Wesley Ladeira Caputo
- Post Graduation Program in Experimental Pathology, State University of Londrina (UEL), Londrina 86057-970, PR, Brazil; (W.L.C.); (M.C.d.S.)
| | - Milena Cremer de Souza
- Post Graduation Program in Experimental Pathology, State University of Londrina (UEL), Londrina 86057-970, PR, Brazil; (W.L.C.); (M.C.d.S.)
| | - Caroline Rodrigues Basso
- Department of Chemical and Biological Sciences, Institute of Bioscience, São Paulo State University (UNESP), Botucatu 18610-034, SP, Brazil; (C.R.B.); (V.d.A.P.)
| | - Valber de Albuquerque Pedrosa
- Department of Chemical and Biological Sciences, Institute of Bioscience, São Paulo State University (UNESP), Botucatu 18610-034, SP, Brazil; (C.R.B.); (V.d.A.P.)
| | - Fábio Rodrigues Ferreira Seiva
- Post Graduation Program in Experimental Pathology, State University of Londrina (UEL), Londrina 86057-970, PR, Brazil; (W.L.C.); (M.C.d.S.)
- Department of Chemical and Biological Sciences, Institute of Bioscience, São Paulo State University (UNESP), Botucatu 18610-034, SP, Brazil; (C.R.B.); (V.d.A.P.)
| |
Collapse
|
15
|
Xiao Y, Chen Y, Chen J, Dong J. ASPP2 Is Phosphorylated by CDK1 during Mitosis and Required for Pancreatic Cancer Cell Proliferation. Cancers (Basel) 2023; 15:5424. [PMID: 38001686 PMCID: PMC10670399 DOI: 10.3390/cancers15225424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 11/10/2023] [Accepted: 11/13/2023] [Indexed: 11/26/2023] Open
Abstract
(1) Background: pancreatic cancer is highly lethal. The role of apoptosis-stimulating protein of p53-2 (ASPP2) in this lethal disease remains unclear. This protein belongs to the ASPP family of p53 interacting proteins. Previous studies in this lab used phosphate-binding tag (Phos-tag) sodium dodecyl sulfate (SDS) polyacrylamide gels and identified a motility upshift of the ASPP family of proteins during mitosis. (2) Purpose: this study expands on previous findings to identify the detailed phosphorylation regulation of ASPP2 during mitosis, as well as the function of ASPP2 in pancreatic cancer. (3) Methods: the Phos-tag technique was used to investigate the phosphorylation mechanism of ASPP2 during mitosis. Phospho-specific antibodies were generated to validate the phosphorylation of ASPP2, and ASPP2-inducible expression cell lines were established to determine the role of ASPP2 in pancreatic cancer. RNA sequencing (RNA-Seq) was used to uncover the downstream targets of ASPP2. (4) Results: results demonstrate that ASPP2 is phosphorylated during mitosis by cyclin-dependent kinase 1 (CDK1) at sites S562 and S704. In vitro and in vivo results show that ASPP2 is required for pancreatic cancer growth. Furthermore, the expressions of yes-associated protein (YAP)-related genes are found to be dramatically altered by ASPP2 depletion. Together, these findings reveal the phosphorylation mechanism of ASPP2 during mitosis. Collectively, results strongly indicate that ASPP2 is a potential target for abating tumor cell growth in pancreatic cancer.
Collapse
Affiliation(s)
| | | | | | - Jixin Dong
- Eppley Institute for Research in Cancer and Allied Diseases, Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA; (Y.X.); (Y.C.); (J.C.)
| |
Collapse
|
16
|
Daly LA, Clarke CJ, Po A, Oswald SO, Eyers CE. Considerations for defining +80 Da mass shifts in mass spectrometry-based proteomics: phosphorylation and beyond. Chem Commun (Camb) 2023; 59:11484-11499. [PMID: 37681662 PMCID: PMC10521633 DOI: 10.1039/d3cc02909c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 08/21/2023] [Indexed: 09/09/2023]
Abstract
Post-translational modifications (PTMs) are ubiquitous and key to regulating protein function. Understanding the dynamics of individual PTMs and their biological roles requires robust characterisation. Mass spectrometry (MS) is the method of choice for the identification and quantification of protein modifications. This article focusses on the MS-based analysis of those covalent modifications that induce a mass shift of +80 Da, notably phosphorylation and sulfation, given the challenges associated with their discrimination and pinpointing the sites of modification on a polypeptide chain. Phosphorylation in particular is highly abundant, dynamic and can occur on numerous residues to invoke specific functions, hence robust characterisation is crucial to understanding biological relevance. Showcasing our work in the context of other developments in the field, we highlight approaches for enrichment and site localisation of phosphorylated (canonical and non-canonical) and sulfated peptides, as well as modification analysis in the context of intact proteins (top down proteomics) to explore combinatorial roles. Finally, we discuss the application of native ion-mobility MS to explore the effect of these PTMs on protein structure and ligand binding.
Collapse
Affiliation(s)
- Leonard A Daly
- Centre for Proteome Research, Department of Biochemistry and Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 7ZB, UK.
| | - Christopher J Clarke
- Centre for Proteome Research, Department of Biochemistry and Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 7ZB, UK.
| | - Allen Po
- Centre for Proteome Research, Department of Biochemistry and Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 7ZB, UK.
| | - Sally O Oswald
- Centre for Proteome Research, Department of Biochemistry and Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 7ZB, UK.
| | - Claire E Eyers
- Centre for Proteome Research, Department of Biochemistry and Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 7ZB, UK.
| |
Collapse
|
17
|
Reinhardt R, Leonard TA. A critical evaluation of protein kinase regulation by activation loop autophosphorylation. eLife 2023; 12:e88210. [PMID: 37470698 PMCID: PMC10359097 DOI: 10.7554/elife.88210] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 07/07/2023] [Indexed: 07/21/2023] Open
Abstract
Phosphorylation of proteins is a ubiquitous mechanism of regulating their function, localization, or activity. Protein kinases, enzymes that use ATP to phosphorylate protein substrates are, therefore, powerful signal transducers in eukaryotic cells. The mechanism of phosphoryl-transfer is universally conserved among protein kinases, which necessitates the tight regulation of kinase activity for the orchestration of cellular processes with high spatial and temporal fidelity. In response to a stimulus, many kinases enhance their own activity by autophosphorylating a conserved amino acid in their activation loop, but precisely how this reaction is performed is controversial. Classically, kinases that autophosphorylate their activation loop are thought to perform the reaction in trans, mediated by transient dimerization of their kinase domains. However, motivated by the recently discovered regulation mechanism of activation loop cis-autophosphorylation by a kinase that is autoinhibited in trans, we here review the various mechanisms of autoregulation that have been proposed. We provide a framework for critically evaluating biochemical, kinetic, and structural evidence for protein kinase dimerization and autophosphorylation, and share some thoughts on the implications of these mechanisms within physiological signaling networks.
Collapse
Affiliation(s)
- Ronja Reinhardt
- Max Perutz Labs, Vienna Biocenter Campus (VBC)ViennaAustria
- Medical University of Vienna, Center for Medical BiochemistryViennaAustria
| | - Thomas A Leonard
- Max Perutz Labs, Vienna Biocenter Campus (VBC)ViennaAustria
- Medical University of Vienna, Center for Medical BiochemistryViennaAustria
| |
Collapse
|
18
|
Cheng A, Xu T, You W, Wang T, Zhang D, Guo H, Zhang H, Pan X, Wang Y, Liu L, Zhang K, Shi J, Yao X, Guo J, Yang Z. A mitotic NADPH upsurge promotes chromosome segregation and tumour progression in aneuploid cancer cells. Nat Metab 2023; 5:1141-1158. [PMID: 37349486 DOI: 10.1038/s42255-023-00832-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 05/26/2023] [Indexed: 06/24/2023]
Abstract
Redox metabolites have been observed to fluctuate through the cell cycle in cancer cells, but the functional impacts of such metabolic oscillations remain unknown. Here, we uncover a mitosis-specific nicotinamide adenine dinucleotide phosphate (NADPH) upsurge that is essential for tumour progression. Specifically, NADPH is produced by glucose 6-phosphate dehydrogenase (G6PD) upon mitotic entry, which neutralizes elevated reactive oxygen species (ROS) and prevents ROS-mediated inactivation of mitotic kinases and chromosome missegregation. Mitotic activation of G6PD depends on the phosphorylation of its co-chaperone protein BAG3 at threonine 285, which results in dissociation of inhibitory BAG3. Blocking BAG3T285 phosphorylation induces tumour suppression. A mitotic NADPH upsurge is present in aneuploid cancer cells with high levels of ROS, while nearly unobservable in near-diploid cancer cells. High BAG3T285 phosphorylation is associated with worse prognosis in a cohort of patients with microsatellite-stable colorectal cancer. Our study reveals that aneuploid cancer cells with high levels of ROS depend on a G6PD-mediated NADPH upsurge in mitosis to protect them from ROS-induced chromosome missegregation.
Collapse
Affiliation(s)
- Aoxing Cheng
- MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Department of Digestive Disease, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Tian Xu
- MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Weiyi You
- MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Ting Wang
- MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Dongming Zhang
- The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Huimin Guo
- Center for Biological Technology, Anhui Agricultural University, Hefei, China
| | - Haiyan Zhang
- Core Facility Centre for Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Xin Pan
- National Center of Biomedical Analysis of China, Beijing, China
| | - Yucai Wang
- The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Liu Liu
- Department of General Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Kaiguang Zhang
- Department of Digestive Disease, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Jue Shi
- Center for Quantitative Systems Biology, Department of Physics and Department of Biology, Hong Kong Baptist University, Hong Kong, China
| | - Xuebiao Yao
- MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Jing Guo
- Department of Digestive Disease, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.
| | - Zhenye Yang
- MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.
- Department of Digestive Disease, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.
- The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.
- Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.
| |
Collapse
|
19
|
Tossounian MA, Hristov SD, Semelak JA, Yu BYK, Baczynska M, Zhao Y, Estrin DA, Trujillo M, Filonenko V, Gouge J, Gout I. A Unique Mode of Coenzyme A Binding to the Nucleotide Binding Pocket of Human Metastasis Suppressor NME1. Int J Mol Sci 2023; 24:9359. [PMID: 37298313 PMCID: PMC10253429 DOI: 10.3390/ijms24119359] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Revised: 05/21/2023] [Accepted: 05/24/2023] [Indexed: 06/12/2023] Open
Abstract
Coenzyme A (CoA) is a key cellular metabolite which participates in diverse metabolic pathways, regulation of gene expression and the antioxidant defense mechanism. Human NME1 (hNME1), which is a moonlighting protein, was identified as a major CoA-binding protein. Biochemical studies showed that hNME1 is regulated by CoA through both covalent and non-covalent binding, which leads to a decrease in the hNME1 nucleoside diphosphate kinase (NDPK) activity. In this study, we expanded the knowledge on previous findings by focusing on the non-covalent mode of CoA binding to the hNME1. With X-ray crystallography, we solved the CoA bound structure of hNME1 (hNME1-CoA) and determined the stabilization interactions CoA forms within the nucleotide-binding site of hNME1. A hydrophobic patch stabilizing the CoA adenine ring, while salt bridges and hydrogen bonds stabilizing the phosphate groups of CoA were observed. With molecular dynamics studies, we extended our structural analysis by characterizing the hNME1-CoA structure and elucidating possible orientations of the pantetheine tail, which is absent in the X-ray structure due to its flexibility. Crystallographic studies suggested the involvement of arginine 58 and threonine 94 in mediating specific interactions with CoA. Site-directed mutagenesis and CoA-based affinity purifications showed that arginine 58 mutation to glutamate (R58E) and threonine 94 mutation to aspartate (T94D) prevent hNME1 from binding to CoA. Overall, our results reveal a unique mode by which hNME1 binds CoA, which differs significantly from that of ADP binding: the α- and β-phosphates of CoA are oriented away from the nucleotide-binding site, while 3'-phosphate faces catalytic histidine 118 (H118). The interactions formed by the CoA adenine ring and phosphate groups contribute to the specific mode of CoA binding to hNME1.
Collapse
Affiliation(s)
- Maria-Armineh Tossounian
- Department of Structural and Molecular Biology, University College London, London WC1E 6BT, UK; (S.D.H.); (B.Y.K.Y.); (M.B.); (Y.Z.); (I.G.)
| | - Stefan Denchev Hristov
- Department of Structural and Molecular Biology, University College London, London WC1E 6BT, UK; (S.D.H.); (B.Y.K.Y.); (M.B.); (Y.Z.); (I.G.)
| | - Jonathan Alexis Semelak
- Departmento de Química Inorgánica Analítica y Química Física, Instituto de Química Física de los Materiales, Medioambiente y Energía (INQUIMAE) and Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Ciudad Universitaria, Pab. 2 C1428EHA, Buenos Aires 1865, Argentina; (J.A.S.); (D.A.E.)
| | - Bess Yi Kun Yu
- Department of Structural and Molecular Biology, University College London, London WC1E 6BT, UK; (S.D.H.); (B.Y.K.Y.); (M.B.); (Y.Z.); (I.G.)
| | - Maria Baczynska
- Department of Structural and Molecular Biology, University College London, London WC1E 6BT, UK; (S.D.H.); (B.Y.K.Y.); (M.B.); (Y.Z.); (I.G.)
| | - Yuhan Zhao
- Department of Structural and Molecular Biology, University College London, London WC1E 6BT, UK; (S.D.H.); (B.Y.K.Y.); (M.B.); (Y.Z.); (I.G.)
| | - Dario Ariel Estrin
- Departmento de Química Inorgánica Analítica y Química Física, Instituto de Química Física de los Materiales, Medioambiente y Energía (INQUIMAE) and Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Ciudad Universitaria, Pab. 2 C1428EHA, Buenos Aires 1865, Argentina; (J.A.S.); (D.A.E.)
| | - Madia Trujillo
- Departamento de Bioquímica, Facultad de Medicina, Universidad de la República, Montevideo 11800, Uruguay;
- Centro de Investigaciones Biomédicas (CEINBIO), Universidad de la República, Montevideo 11800, Uruguay
| | - Valeriy Filonenko
- Department of Cell Signaling, Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine, 03680 Kyiv, Ukraine;
| | - Jerome Gouge
- Department of Structural and Molecular Biology, University College London, London WC1E 6BT, UK; (S.D.H.); (B.Y.K.Y.); (M.B.); (Y.Z.); (I.G.)
- Institute of Structural and Molecular Biology, Birkbeck College, University of London, London WC1E 7HX, UK
| | - Ivan Gout
- Department of Structural and Molecular Biology, University College London, London WC1E 6BT, UK; (S.D.H.); (B.Y.K.Y.); (M.B.); (Y.Z.); (I.G.)
- Department of Cell Signaling, Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine, 03680 Kyiv, Ukraine;
| |
Collapse
|
20
|
Zhang B, Zhu C, Chan ASC, Lu G. Discovery of a first-in-class Aurora A covalent inhibitor for the treatment of triple negative breast cancer. Eur J Med Chem 2023; 256:115457. [PMID: 37207533 DOI: 10.1016/j.ejmech.2023.115457] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 05/03/2023] [Accepted: 05/03/2023] [Indexed: 05/21/2023]
Abstract
Aurora kinases, which belong to the serine/threonine protein family, play critical roles in the regulation of the cell cycle and mitotic spindle assembly. They are frequently highly expressed in various types of tumors, and the use of selective Aurora kinase inhibitors has become a potential treatment option for cancer therapy. Despite the development of some reversible Aurora kinase inhibitors, none has been approved for clinical use yet. In this study, we report the discovery of the first-in-class irreversible Aurora A covalent inhibitors that target a cysteine residue at the substrate binding site. These inhibitors were characterized in enzymatic and cellular assays, and 11c exhibited selective inhibition to normal and cancer cells, as well as to Aurora A and B kinases. The covalent binding of 11c to Aurora A was confirmed by SPR, MS, and enzyme kinetic analysis, and Cys290-mediated covalent inhibition was supported through a bottom-up analysis of inhibitor-modified targets. Moreover, Western blotting assays were conducted on cells and tissues, and cellular thermal shift assays (CETSA) were further performed on cells to demonstrate the selectivity to Aurora A kinase. 11c displayed comparable therapeutic efficacy in an MDA-MB-231 xenograft mouse model relative to the positive control ENMD-2076, while requiring only half the dose of ENMD-2076. These results confirmed that 11c may be a promising drug candidate for the treatment of triple negative breast cancer (TNBC). Our work may provide a new perspective on the design of covalent inhibitors of Aurora kinase.
Collapse
Affiliation(s)
- Bin Zhang
- Institute of Medicinal Chemistry, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, PR China
| | - Chengchen Zhu
- Institute of Medicinal Chemistry, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, PR China
| | - Albert S C Chan
- Institute of Medicinal Chemistry, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, PR China
| | - Gui Lu
- Institute of Medicinal Chemistry, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, PR China.
| |
Collapse
|
21
|
Park JG, Jeon H, Shin S, Song C, Lee H, Kim NK, Kim EE, Hwang KY, Lee BJ, Lee IG. Structural basis for CEP192-mediated regulation of centrosomal AURKA. SCIENCE ADVANCES 2023; 9:eadf8582. [PMID: 37083534 PMCID: PMC10121170 DOI: 10.1126/sciadv.adf8582] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Aurora kinase A (AURKA) performs critical functions in mitosis. Thus, the activity and subcellular localization of AURKA are tightly regulated and depend on diverse factors including interactions with the multiple binding cofactors. How these different cofactors regulate AURKA to elicit different levels of activity at distinct subcellular locations and times is poorly understood. Here, we identified a conserved region of CEP192, the major cofactor of AURKA, that mediates the interaction with AURKA. Quantitative binding studies were performed to map the interactions of a conserved helix (Helix-1) within CEP192. The crystal structure of Helix-1 bound to AURKA revealed a distinct binding site that is different from other cofactor proteins such as TPX2. Inhibiting the interaction between Helix-1 and AURKA in cells led to the mitotic defects, demonstrating the importance of the interaction. Collectively, we revealed a structural basis for the CEP192-mediated AURKA regulation at the centrosome, which is distinct from TPX2-mediated regulation on the spindle microtubule.
Collapse
Affiliation(s)
- Jin-Gyeong Park
- Biomedical Research Division, Korea Institute of Science and Technology, Seoul 02792, South Korea
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, South Korea
| | - Hanul Jeon
- Biomedical Research Division, Korea Institute of Science and Technology, Seoul 02792, South Korea
| | - Sangchul Shin
- Technology Support Center, Korea Institute of Science and Technology, Seoul 02792, South Korea
| | - Chiman Song
- Biomedical Research Division, Korea Institute of Science and Technology, Seoul 02792, South Korea
- Department of Biological Chemistry, University of Science and Technology, Daejeon 34113, South Korea
| | - Hyomin Lee
- Department of Biological Chemistry, University of Science and Technology, Daejeon 34113, South Korea
- Chemical Kinomics Research Center, Korea Institute of Science and Technology, Seoul 02792, South Korea
| | - Nak-Kyoon Kim
- Advanced Analysis Center, Korea Institute of Science and Technology, Seoul 02792, South Korea
| | - Eunice EunKyeong Kim
- Biomedical Research Division, Korea Institute of Science and Technology, Seoul 02792, South Korea
| | - Kwang Yeon Hwang
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, South Korea
| | - Bong-Jin Lee
- The Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, South Korea
| | - In-Gyun Lee
- Biomedical Research Division, Korea Institute of Science and Technology, Seoul 02792, South Korea
- Department of Biological Chemistry, University of Science and Technology, Daejeon 34113, South Korea
- Corresponding author.
| |
Collapse
|
22
|
Tossounian MA, Baczynska M, Dalton W, Peak-Chew SY, Undzenas K, Korza G, Filonenko V, Skehel M, Setlow P, Gout I. Bacillus subtilis YtpP and Thioredoxin A Are New Players in the Coenzyme-A-Mediated Defense Mechanism against Cellular Stress. Antioxidants (Basel) 2023; 12:antiox12040938. [PMID: 37107313 PMCID: PMC10136147 DOI: 10.3390/antiox12040938] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 04/06/2023] [Accepted: 04/12/2023] [Indexed: 04/29/2023] Open
Abstract
Coenzyme A (CoA) is an important cellular metabolite that is critical for metabolic processes and the regulation of gene expression. Recent discovery of the antioxidant function of CoA has highlighted its protective role that leads to the formation of a mixed disulfide bond with protein cysteines, which is termed protein CoAlation. To date, more than 2000 CoAlated bacterial and mammalian proteins have been identified in cellular responses to oxidative stress, with the majority being involved in metabolic pathways (60%). Studies have shown that protein CoAlation is a widespread post-translational modification which modulates the activity and conformation of the modified proteins. The induction of protein CoAlation by oxidative stress was found to be rapidly reversed after the removal of oxidizing agents from the medium of cultured cells. In this study, we developed an enzyme-linked immunosorbent assay (ELISA)-based deCoAlation assay to detect deCoAlation activity from Bacillus subtilis and Bacillus megaterium lysates. We then used a combination of ELISA-based assay and purification strategies to show that deCoAlation is an enzyme-driven mechanism. Using mass-spectrometry and deCoAlation assays, we identified B. subtilis YtpP (thioredoxin-like protein) and thioredoxin A (TrxA) as enzymes that can remove CoA from different substrates. With mutagenesis studies, we identified YtpP and TrxA catalytic cysteine residues and proposed a possible deCoAlation mechanism for CoAlated methionine sulfoxide reducatse A (MsrA) and peroxiredoxin 5 (PRDX5) proteins, which results in the release of both CoA and the reduced form of MsrA or PRDX5. Overall, this paper reveals the deCoAlation activity of YtpP and TrxA and opens doors to future studies on the CoA-mediated redox regulation of CoAlated proteins under various cellular stress conditions.
Collapse
Affiliation(s)
| | - Maria Baczynska
- Department of Structural and Molecular Biology, University College London, London WC1E 6BT, UK
| | - William Dalton
- Department of Structural and Molecular Biology, University College London, London WC1E 6BT, UK
| | - Sew Yeu Peak-Chew
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Cambridge CB2 0QH, UK
| | - Kipras Undzenas
- Department of Structural and Molecular Biology, University College London, London WC1E 6BT, UK
| | - George Korza
- Department of Molecular Biology and Biophysics, UConn Health, Farmington, CT 06030, USA
| | - Valeriy Filonenko
- Department of Cell Signaling, Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine, 03680 Kyiv, Ukraine
| | - Mark Skehel
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Peter Setlow
- Department of Molecular Biology and Biophysics, UConn Health, Farmington, CT 06030, USA
| | - Ivan Gout
- Department of Structural and Molecular Biology, University College London, London WC1E 6BT, UK
- Department of Cell Signaling, Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine, 03680 Kyiv, Ukraine
| |
Collapse
|
23
|
Zheng D, Li J, Yan H, Zhang G, Li W, Chu E, Wei N. Emerging roles of Aurora-A kinase in cancer therapy resistance. Acta Pharm Sin B 2023. [PMID: 37521867 PMCID: PMC10372834 DOI: 10.1016/j.apsb.2023.03.013] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023] Open
Abstract
Aurora kinase A (Aurora-A), a serine/threonine kinase, plays a pivotal role in various cellular processes, including mitotic entry, centrosome maturation and spindle formation. Overexpression or gene-amplification/mutation of Aurora-A kinase occurs in different types of cancer, including lung cancer, colorectal cancer, and breast cancer. Alteration of Aurora-A impacts multiple cancer hallmarks, especially, immortalization, energy metabolism, immune escape and cell death resistance which are involved in cancer progression and resistance. This review highlights the most recent advances in the oncogenic roles and related multiple cancer hallmarks of Aurora-A kinase-driving cancer therapy resistance, including chemoresistance (taxanes, cisplatin, cyclophosphamide), targeted therapy resistance (osimertinib, imatinib, sorafenib, etc.), endocrine therapy resistance (tamoxifen, fulvestrant) and radioresistance. Specifically, the mechanisms of Aurora-A kinase promote acquired resistance through modulating DNA damage repair, feedback activation bypass pathways, resistance to apoptosis, necroptosis and autophagy, metastasis, and stemness. Noticeably, our review also summarizes the promising synthetic lethality strategy for Aurora-A inhibitors in RB1, ARID1A and MYC gene mutation tumors, and potential synergistic strategy for mTOR, PAK1, MDM2, MEK inhibitors or PD-L1 antibodies combined with targeting Aurora-A kinase. In addition, we discuss the design and development of the novel class of Aurora-A inhibitors in precision medicine for cancer treatment.
Collapse
|
24
|
Lee IG, Lee BJ. Aurora Kinase A Regulation by Cysteine Oxidative Modification. Antioxidants (Basel) 2023; 12:antiox12020531. [PMID: 36830089 PMCID: PMC9952272 DOI: 10.3390/antiox12020531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 02/13/2023] [Accepted: 02/14/2023] [Indexed: 02/22/2023] Open
Abstract
Aurora kinase A (AURKA), which is a member of serine/threonine kinase family, plays a critical role in regulating mitosis. AURKA has drawn much attention as its dysregulation is critically associated with various cancers, leading to the development of AURKA inhibitors, a new class of anticancer drugs. As the spatiotemporal activity of AURKA critically depends on diverse intra- and inter-molecular factors, including its interaction with various protein cofactors and post-translational modifications, each of these pathways should be exploited for the development of a novel class of AURKA inhibitors other than ATP-competitive inhibitors. Several lines of evidence have recently shown that redox-active molecules can modify the cysteine residues located on the kinase domain of AURKA, thereby regulating its activity. In this review, we present the current understanding of how oxidative modifications of cysteine residues of AURKA, induced by redox-active molecules, structurally and functionally regulate AURKA and discuss their implications in the discovery of novel AURKA inhibitors.
Collapse
Affiliation(s)
- In-Gyun Lee
- Biomedical Research Division, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
| | - Bong-Jin Lee
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
- Correspondence:
| |
Collapse
|
25
|
Abdelbaki A, Ascanelli C, Okoye CN, Akman HB, Janson G, Min M, Marcozzi C, Hagting A, Grant R, De Luca M, Asteriti IA, Guarguaglini G, Paiardini A, Lindon C. Revisiting degron motifs in human AURKA required for its targeting by APC/C FZR1. Life Sci Alliance 2023; 6:6/2/e202201372. [PMID: 36450448 PMCID: PMC9713472 DOI: 10.26508/lsa.202201372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 11/17/2022] [Accepted: 11/18/2022] [Indexed: 12/02/2022] Open
Abstract
Mitotic kinase Aurora A (AURKA) diverges from other kinases in its multiple active conformations that may explain its interphase roles and the limited efficacy of drugs targeting the kinase pocket. Regulation of AURKA activity by the cell is critically dependent on destruction mediated by the anaphase-promoting complex (APC/CFZR1) during mitotic exit and G1 phase and requires an atypical N-terminal degron in AURKA called the "A-box" in addition to a reported canonical D-box degron in the C-terminus. Here, we find that the reported C-terminal D-box of AURKA does not act as a degron and instead mediates essential structural features of the protein. In living cells, the N-terminal intrinsically disordered region of AURKA containing the A-box is sufficient to confer FZR1-dependent mitotic degradation. Both in silico and in cellulo assays predict the QRVL short linear interacting motif of the A-box to be a phospho-regulated D-box. We propose that degradation of full-length AURKA also depends on an intact C-terminal domain because of critical conformational parameters permissive for both activity and mitotic degradation of AURKA.
Collapse
Affiliation(s)
- Ahmed Abdelbaki
- Department of Pharmacology, University of Cambridge, Cambridge, UK
| | | | - Cynthia N Okoye
- Department of Pharmacology, University of Cambridge, Cambridge, UK
| | - H Begum Akman
- Department of Pharmacology, University of Cambridge, Cambridge, UK
| | - Giacomo Janson
- Department of Biochemical Sciences, Sapienza University of Rome, Rome, Italy
| | - Mingwei Min
- Department of Pharmacology, University of Cambridge, Cambridge, UK
| | - Chiara Marcozzi
- Department of Pharmacology, University of Cambridge, Cambridge, UK
| | - Anja Hagting
- Department of Pharmacology, University of Cambridge, Cambridge, UK
| | - Rhys Grant
- Department of Pharmacology, University of Cambridge, Cambridge, UK
| | - Maria De Luca
- Department of Pharmacology, University of Cambridge, Cambridge, UK
| | - Italia Anna Asteriti
- Institute of Molecular Biology and Pathology, National Research Council of Italy, c/o Sapienza University of Rome, Rome, Italy
| | - Giulia Guarguaglini
- Institute of Molecular Biology and Pathology, National Research Council of Italy, c/o Sapienza University of Rome, Rome, Italy
| | | | - Catherine Lindon
- Department of Pharmacology, University of Cambridge, Cambridge, UK
| |
Collapse
|
26
|
Filonenko V, Gout I. Discovery and functional characterisation of protein CoAlation and the antioxidant function of coenzyme A. BBA ADVANCES 2023; 3:100075. [PMID: 37082257 PMCID: PMC10074942 DOI: 10.1016/j.bbadva.2023.100075] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 01/09/2023] [Accepted: 01/11/2023] [Indexed: 01/15/2023] Open
Abstract
Coenzyme A (CoA) is an essential cofactor in all living cells which plays critical role in cellular metabolism, the regulation of gene expression and the biosynthesis of major cellular constituents. Recently, CoA was found to function as a major antioxidant in both prokaryotic and eukaryotic cells. This unconventional function of CoA is mediated by a novel post-translational modification, termed protein CoAlation. This review will highlight the history of this discovery, current knowledge, and future directions on studying molecular mechanisms of protein CoAlation and whether the antioxidant function of CoA is associated with pathologies, such as neurodegeneration and cancer.
Collapse
Affiliation(s)
- Valeriy Filonenko
- Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine, Kyiv 03680, Ukraine
- Corresponding authors.
| | - Ivan Gout
- Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine, Kyiv 03680, Ukraine
- Department of Structural and Molecular Biology, University College London, London WC1E 6BT, United Kingdom
- Corresponding authors.
| |
Collapse
|
27
|
Singh M, Haque MA, Tikhomirov AS, Shchekotikhin AE, Das U, Kaur P. Computational and Biophysical Characterization of Heterocyclic Derivatives of Anthraquinone against Human Aurora Kinase A. ACS OMEGA 2022; 7:39603-39618. [PMID: 36385832 PMCID: PMC9647706 DOI: 10.1021/acsomega.2c00740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 10/07/2022] [Indexed: 06/16/2023]
Abstract
Human Aurora kinase A (AurA) has recently garnered the attention of researchers worldwide as a promising effective mitotic drug target for its involvement in cancer and related inflammatory anomalies. This study has explored the binding affinity of newly identified heteroarene-fused anthraquinone derivatives against AurA. Molecular docking analyses showed that all the heteroanthraquinone compounds bind to AurA with different affinities. Molecular dynamics simulation studies revealed that the compounds maintained relatively stable binding modes in the active site pocket while inducing minimal conformational changes in the AurA structure, interacting with key residues through several noncovalent interactions, including hydrogen bonds. Fluorescence spectroscopy and biolayer interferometry binding assays with synthesized compounds against recombinantly expressed AurA further verified their binding efficacy. Naphthoisatine 3 proved to be the best binder, with compounds anthraimidazole 5 and anthrathiophene 2 showing comparable results. Overall, this study indicates decent binding of heterocyclic derivatives of anthraquinone with the target AurA, which can further be assessed by performing enzymatic assays and cellular studies. The studies also highlight the applicability of the heteroarene-fused anthraquinone scaffold to construct selective and potent inhibitors of Aurora kinases after necessary structural modifications for the development of new anticancer drugs.
Collapse
Affiliation(s)
- Mandeep Singh
- Department
of Biophysics, All India Institute of Medical
Sciences, New Delhi, Delhi110029, India
| | - Md. Anzarul Haque
- Department
of Biophysics, All India Institute of Medical
Sciences, New Delhi, Delhi110029, India
| | | | | | - Uddipan Das
- Department
of Biophysics, All India Institute of Medical
Sciences, New Delhi, Delhi110029, India
| | - Punit Kaur
- Department
of Biophysics, All India Institute of Medical
Sciences, New Delhi, Delhi110029, India
| |
Collapse
|
28
|
Francois L, Boskovic P, Knerr J, He W, Sigismondo G, Schwan C, More TH, Schlotter M, Conway ME, Krijgsveld J, Hiller K, Grosse R, Lichter P, Radlwimmer B. BCAT1 redox function maintains mitotic fidelity. Cell Rep 2022; 41:111524. [PMID: 36260995 DOI: 10.1016/j.celrep.2022.111524] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Revised: 08/15/2022] [Accepted: 09/26/2022] [Indexed: 11/16/2022] Open
Abstract
The metabolic enzyme branched-chain amino acid transaminase 1 (BCAT1) drives cell proliferation in aggressive cancers such as glioblastoma. Here, we show that BCAT1 localizes to mitotic structures and has a non-metabolic function as a mitotic regulator. Furthermore, BCAT1 is required for chromosome segregation in cancer and induced pluripotent stem cells and tumor growth in human cerebral organoid and mouse syngraft models. Applying gene knockout and rescue strategies, we show that the BCAT1 CXXC redox motif is crucial for controlling cysteine sulfenylation specifically in mitotic cells, promoting Aurora kinase B localization to centromeres, and securing accurate chromosome segregation. These findings offer an explanation for the well-established role of BCAT1 in promoting cancer cell proliferation. In summary, our data establish BCAT1 as a component of the mitotic apparatus that safeguards mitotic fidelity through a moonlighting redox functionality.
Collapse
Affiliation(s)
- Liliana Francois
- Division of Molecular Genetics, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Pavle Boskovic
- Division of Molecular Genetics, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; Faculty of Biosciences, Heidelberg University, 69120 Heidelberg, Germany
| | - Julian Knerr
- Institute of Pharmacology, University of Freiburg, 79102 Freiburg, Germany
| | - Wei He
- Integrated Center of Systems Biology (BRICS), Technische Universität Braunschweig, and Computational Biology of Infection Research, Helmholtz Centre for Infection Research, Braunschweig, 38092 Braunschweig, Germany
| | - Gianluca Sigismondo
- Division of Proteomics of Stem Cells and Cancer, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Carsten Schwan
- Institute of Pharmacology, University of Freiburg, 79102 Freiburg, Germany
| | - Tushar H More
- Integrated Center of Systems Biology (BRICS), Technische Universität Braunschweig, and Computational Biology of Infection Research, Helmholtz Centre for Infection Research, Braunschweig, 38092 Braunschweig, Germany
| | - Magdalena Schlotter
- Division of Molecular Genetics, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Myra E Conway
- College of Science and Engineering, University of Derby, Derby DE22 1GB, UK
| | - Jeroen Krijgsveld
- Division of Proteomics of Stem Cells and Cancer, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Karsten Hiller
- Integrated Center of Systems Biology (BRICS), Technische Universität Braunschweig, and Computational Biology of Infection Research, Helmholtz Centre for Infection Research, Braunschweig, 38092 Braunschweig, Germany
| | - Robert Grosse
- Institute of Pharmacology, University of Freiburg, 79102 Freiburg, Germany
| | - Peter Lichter
- Division of Molecular Genetics, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Bernhard Radlwimmer
- Division of Molecular Genetics, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany.
| |
Collapse
|
29
|
Tossounian MA, Baczynska M, Dalton W, Newell C, Ma Y, Das S, Semelak JA, Estrin DA, Filonenko V, Trujillo M, Peak-Chew SY, Skehel M, Fraternali F, Orengo C, Gout I. Profiling the Site of Protein CoAlation and Coenzyme A Stabilization Interactions. Antioxidants (Basel) 2022; 11:antiox11071362. [PMID: 35883853 PMCID: PMC9312308 DOI: 10.3390/antiox11071362] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 06/26/2022] [Accepted: 06/26/2022] [Indexed: 11/30/2022] Open
Abstract
Coenzyme A (CoA) is a key cellular metabolite known for its diverse functions in metabolism and regulation of gene expression. CoA was recently shown to play an important antioxidant role under various cellular stress conditions by forming a disulfide bond with proteins, termed CoAlation. Using anti-CoA antibodies and liquid chromatography tandem mass spectrometry (LC-MS/MS) methodologies, CoAlated proteins were identified from various organisms/tissues/cell-lines under stress conditions. In this study, we integrated currently known CoAlated proteins into mammalian and bacterial datasets (CoAlomes), resulting in a total of 2093 CoAlated proteins (2862 CoAlation sites). Functional classification of these proteins showed that CoAlation is widespread among proteins involved in cellular metabolism, stress response and protein synthesis. Using 35 published CoAlated protein structures, we studied the stabilization interactions of each CoA segment (adenosine diphosphate (ADP) moiety and pantetheine tail) within the microenvironment of the modified cysteines. Alternating polar-non-polar residues, positively charged residues and hydrophobic interactions mainly stabilize the pantetheine tail, phosphate groups and the ADP moiety, respectively. A flexible nature of CoA is observed in examined structures, allowing it to adapt its conformation through interactions with residues surrounding the CoAlation site. Based on these findings, we propose three modes of CoA binding to proteins. Overall, this study summarizes currently available knowledge on CoAlated proteins, their functional distribution and CoA-protein stabilization interactions.
Collapse
Affiliation(s)
- Maria-Armineh Tossounian
- Department of Structural and Molecular Biology, University College London, London WC1E 6BT, UK; (M.-A.T.); (M.B.); (W.D.); (C.N.); (Y.M.); (S.D.); (C.O.)
| | - Maria Baczynska
- Department of Structural and Molecular Biology, University College London, London WC1E 6BT, UK; (M.-A.T.); (M.B.); (W.D.); (C.N.); (Y.M.); (S.D.); (C.O.)
| | - William Dalton
- Department of Structural and Molecular Biology, University College London, London WC1E 6BT, UK; (M.-A.T.); (M.B.); (W.D.); (C.N.); (Y.M.); (S.D.); (C.O.)
| | - Charlie Newell
- Department of Structural and Molecular Biology, University College London, London WC1E 6BT, UK; (M.-A.T.); (M.B.); (W.D.); (C.N.); (Y.M.); (S.D.); (C.O.)
| | - Yilin Ma
- Department of Structural and Molecular Biology, University College London, London WC1E 6BT, UK; (M.-A.T.); (M.B.); (W.D.); (C.N.); (Y.M.); (S.D.); (C.O.)
| | - Sayoni Das
- Department of Structural and Molecular Biology, University College London, London WC1E 6BT, UK; (M.-A.T.); (M.B.); (W.D.); (C.N.); (Y.M.); (S.D.); (C.O.)
| | - Jonathan Alexis Semelak
- Departmento de Química Inorgánica Analítica y Química Física, INQUIMAE-CONICET, Universidad de Buenos Aires, Buenos Aires C1428EHA, Argentina; (J.A.S.); (D.A.E.)
| | - Dario Ariel Estrin
- Departmento de Química Inorgánica Analítica y Química Física, INQUIMAE-CONICET, Universidad de Buenos Aires, Buenos Aires C1428EHA, Argentina; (J.A.S.); (D.A.E.)
| | - Valeriy Filonenko
- Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine, 03680 Kyiv, Ukraine;
| | - Madia Trujillo
- Departamento de Bioquímica, Facultad de Medicina, Universidad de la República, Montevideo 11800, Uruguay;
- Centro de Investigaciones Biomédicas (CEINBIO), Universidad de la República, Montevideo 11800, Uruguay
| | - Sew Yeu Peak-Chew
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Cambridge CB2 0QH, UK;
| | - Mark Skehel
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK;
| | - Franca Fraternali
- Randall Centre for Cell and Molecular Biophysics, King’s College London, London WC2R 2LS, UK;
| | - Christine Orengo
- Department of Structural and Molecular Biology, University College London, London WC1E 6BT, UK; (M.-A.T.); (M.B.); (W.D.); (C.N.); (Y.M.); (S.D.); (C.O.)
| | - Ivan Gout
- Department of Structural and Molecular Biology, University College London, London WC1E 6BT, UK; (M.-A.T.); (M.B.); (W.D.); (C.N.); (Y.M.); (S.D.); (C.O.)
- Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine, 03680 Kyiv, Ukraine;
- Correspondence:
| |
Collapse
|
30
|
Harris JA, Fairweather E, Byrne DP, Eyers PA. Analysis of human Tribbles 2 (TRIB2) pseudokinase. Methods Enzymol 2022; 667:79-99. [PMID: 35525562 DOI: 10.1016/bs.mie.2022.03.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Human Tribbles 2 (TRIB2) is a cancer-associated pseudokinase with a broad human protein interactome, including the well-studied AKT, C/EBPα and MAPK modules. Several lines of evidence indicate that human TRIB2 promotes cell survival and drug-resistance in solid tumors and blood cancers and is therefore of interest as a potential therapeutic target, although its physiological functions remain relatively poorly understood. The unique TRIB2 pseudokinase domain lacks the canonical 'DFG' motif, and subsequently possesses very low affinity for ATP in both the presence and absence of metal ions. However, TRIB2 also contains a unique cysteine-rich αC-helix, which interacts with a conserved peptide motif in its own carboxyl-terminal tail. This regulatory flanking region drives regulated interactions with distinct E3 ubiquitin ligases that serve to control the stability and turnover of TRIB2 client proteins. TRIB2 is also a low-affinity target of several known small-molecule protein kinase inhibitors, which were originally identified using purified recombinant TRIB2 proteins and a thermal shift assay. In this chapter, we discuss laboratory-based procedures for purification, stabilization and analysis of human TRIB2, including screening procedures that can be used for the identification of both reversible and covalent small molecule ligands.
Collapse
Affiliation(s)
- John A Harris
- Department of Biochemistry and Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| | - Emma Fairweather
- Department of Biochemistry and Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| | - Dominic P Byrne
- Department of Biochemistry and Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| | - Patrick A Eyers
- Department of Biochemistry and Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, United Kingdom.
| |
Collapse
|
31
|
Miller KJ, Asim M. Unravelling the Role of Kinases That Underpin Androgen Signalling in Prostate Cancer. Cells 2022; 11:cells11060952. [PMID: 35326402 PMCID: PMC8946764 DOI: 10.3390/cells11060952] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 03/08/2022] [Accepted: 03/09/2022] [Indexed: 02/07/2023] Open
Abstract
The androgen receptor (AR) signalling pathway is the key driver in most prostate cancers (PCa), and is underpinned by several kinases both upstream and downstream of the AR. Many popular therapies for PCa that target the AR directly, however, have been circumvented by AR mutation, such as androgen receptor variants. Some upstream kinases promote AR signalling, including those which phosphorylate the AR and others that are AR-regulated, and androgen regulated kinase that can also form feed-forward activation circuits to promotes AR function. All of these kinases represent potentially druggable targets for PCa. There has generally been a divide in reviews reporting on pathways upstream of the AR and those reporting on AR-regulated genes despite the overlap that constitutes the promotion of AR signalling and PCa progression. In this review, we aim to elucidate which kinases—both upstream and AR-regulated—may be therapeutic targets and require future investigation and ongoing trials in developing kinase inhibitors for PCa.
Collapse
|
32
|
Tomlinson L, Batchelor M, Sarsby J, Byrne DP, Brownridge PJ, Bayliss R, Eyers PA, Eyers CE. Exploring the Conformational Landscape and Stability of Aurora A Using Ion-Mobility Mass Spectrometry and Molecular Modeling. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2022; 33:420-435. [PMID: 35099954 PMCID: PMC9007459 DOI: 10.1021/jasms.1c00271] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 01/19/2022] [Accepted: 01/19/2022] [Indexed: 05/06/2023]
Abstract
Protein kinase inhibitors are highly effective in treating diseases driven by aberrant kinase signaling and as chemical tools to help dissect the cellular roles of kinase signaling complexes. Evaluating the effects of binding of small molecule inhibitors on kinase conformational dynamics can assist in understanding both inhibition and resistance mechanisms. Using gas-phase ion-mobility mass spectrometry (IM-MS), we characterize changes in the conformational landscape and stability of the protein kinase Aurora A (Aur A) driven by binding of the physiological activator TPX2 or small molecule inhibition. Aided by molecular modeling, we establish three major conformations, the relative abundances of which were dependent on the Aur A activation status: one highly populated compact conformer similar to that observed in most crystal structures, a second highly populated conformer possessing a more open structure infrequently found in crystal structures, and an additional low-abundance conformer not currently represented in the protein databank. Notably, inhibitor binding induces more compact configurations of Aur A, as adopted by the unbound enzyme, with both IM-MS and modeling revealing inhibitor-mediated stabilization of active Aur A.
Collapse
Affiliation(s)
- Lauren
J. Tomlinson
- Centre
for Proteome Research, Department of Biochemistry & Systems Biology,
Institute of Systems, Molecular & Integrative Biology, University of Liverpool, Crown Street, Liverpool L69 7ZB, U.K.
- Department
of Biochemistry & Systems Biology, Institute of Systems, Molecular
& Integrative Biology, University of
Liverpool, Crown Street, Liverpool L69 7ZB, U.K.
| | - Matthew Batchelor
- Astbury
Centre for Structural Molecular Biology, School of Molecular and Cellular
Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, U.K.
| | - Joscelyn Sarsby
- Centre
for Proteome Research, Department of Biochemistry & Systems Biology,
Institute of Systems, Molecular & Integrative Biology, University of Liverpool, Crown Street, Liverpool L69 7ZB, U.K.
| | - Dominic P. Byrne
- Department
of Biochemistry & Systems Biology, Institute of Systems, Molecular
& Integrative Biology, University of
Liverpool, Crown Street, Liverpool L69 7ZB, U.K.
| | - Philip J. Brownridge
- Centre
for Proteome Research, Department of Biochemistry & Systems Biology,
Institute of Systems, Molecular & Integrative Biology, University of Liverpool, Crown Street, Liverpool L69 7ZB, U.K.
| | - Richard Bayliss
- Astbury
Centre for Structural Molecular Biology, School of Molecular and Cellular
Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, U.K.
| | - Patrick A. Eyers
- Department
of Biochemistry & Systems Biology, Institute of Systems, Molecular
& Integrative Biology, University of
Liverpool, Crown Street, Liverpool L69 7ZB, U.K.
| | - Claire E. Eyers
- Centre
for Proteome Research, Department of Biochemistry & Systems Biology,
Institute of Systems, Molecular & Integrative Biology, University of Liverpool, Crown Street, Liverpool L69 7ZB, U.K.
- Department
of Biochemistry & Systems Biology, Institute of Systems, Molecular
& Integrative Biology, University of
Liverpool, Crown Street, Liverpool L69 7ZB, U.K.
| |
Collapse
|
33
|
O’Boyle B, Shrestha S, Kochut K, Eyers PA, Kannan N. Computational tools and resources for pseudokinase research. Methods Enzymol 2022; 667:403-426. [PMID: 35525549 PMCID: PMC9733567 DOI: 10.1016/bs.mie.2022.03.040] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Pseudokinases regulate diverse cellular processes associated with normal cellular functions and disease. They are defined bioinformatically based on the absence of one or more catalytic residues that are required for canonical protein kinase functions. The ability to define pseudokinases based on primary sequence comparison has enabled the systematic mapping and cataloging of pseudokinase orthologs across the tree of life. While these sequences contain critical information regarding pseudokinase evolution and functional specialization, extracting this information and generating testable hypotheses based on integrative mining of sequence and structural data requires specialized computational tools and resources. In this chapter, we review recent advances in the development and application of open-source tools and resources for pseudokinase research. Specifically, we describe the application of an interactive data analytics framework, KinView, for visualizing the patterns of conservation and variation in the catalytic domain motifs of pseudokinases and evolutionarily related canonical kinases using a consistent set of curated alignments organized based on the widely used kinome evolutionary hierarchy. We also demonstrate the application of an integrated Protein Kinase Ontology (ProKinO) and an interactive viewer, ProtVista, for mapping and analyzing primary sequence motifs and annotations in the context of 3D structures and AlphaFold2 models. We provide examples and protocols for generating testable hypotheses on pseudokinase functions both for bench biologists and advanced users.
Collapse
Affiliation(s)
- Brady O’Boyle
- Department of Biochemistry & Molecular Biology, University of Georgia, Athens, GA 30602, USA
| | - Safal Shrestha
- Institute of Bioinformatics, University of Georgia, Athens, GA 30602, USA
| | - Krzysztof Kochut
- Department of Computer Science, University of Georgia, Athens, GA 30602, USA
| | - Patrick A Eyers
- Department of Biochemistry and Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, UK
| | - Natarajan Kannan
- Department of Biochemistry & Molecular Biology, University of Georgia, Athens, GA 30602, USA,Institute of Bioinformatics, University of Georgia, Athens, GA 30602, USA,Corresponding author:
| |
Collapse
|
34
|
Raab M, Matthess Y, Raab CA, Gutfreund N, Dötsch V, Becker S, Sanhaji M, Strebhardt K. A dimerization-dependent mechanism regulates enzymatic activation and nuclear entry of PLK1. Oncogene 2022; 41:372-386. [PMID: 34759346 PMCID: PMC8755526 DOI: 10.1038/s41388-021-02094-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 10/18/2021] [Accepted: 10/22/2021] [Indexed: 12/29/2022]
Abstract
Polo-like kinase 1 (PLK1) is a crucial regulator of cell cycle progression. It is established that the activation of PLK1 depends on the coordinated action of Aurora-A and Bora. Nevertheless, very little is known about the spatiotemporal regulation of PLK1 during G2, specifically, the mechanisms that keep cytoplasmic PLK1 inactive until shortly before mitosis onset. Here, we describe PLK1 dimerization as a new mechanism that controls PLK1 activation. During the early G2 phase, Bora supports transient PLK1 dimerization, thus fine-tuning the timely regulated activation of PLK1 and modulating its nuclear entry. At late G2, the phosphorylation of T210 by Aurora-A triggers dimer dissociation and generates active PLK1 monomers that support entry into mitosis. Interfering with this critical PLK1 dimer/monomer switch prevents the association of PLK1 with importins, limiting its nuclear shuttling, and causes nuclear PLK1 mislocalization during the G2-M transition. Our results suggest a novel conformational space for the design of a new generation of PLK1 inhibitors.
Collapse
Affiliation(s)
- Monika Raab
- Department of Gynecology, Medical School, Goethe University, Frankfurt, Germany
| | - Yves Matthess
- Department of Gynecology, Medical School, Goethe University, Frankfurt, Germany
| | - Christopher A Raab
- Department of Gynecology, Medical School, Goethe University, Frankfurt, Germany
| | - Niklas Gutfreund
- Institute of Biophysical Chemistry and Center for Biomolecular Magnetic Resonance, Goethe University, Max-von-Laue Str. 9, 60438, Frankfurt am Main, Germany
| | - Volker Dötsch
- Institute of Biophysical Chemistry and Center for Biomolecular Magnetic Resonance, Goethe University, Max-von-Laue Str. 9, 60438, Frankfurt am Main, Germany
| | - Sven Becker
- Department of Gynecology, Medical School, Goethe University, Frankfurt, Germany
| | - Mourad Sanhaji
- Department of Gynecology, Medical School, Goethe University, Frankfurt, Germany.
| | - Klaus Strebhardt
- Department of Gynecology, Medical School, Goethe University, Frankfurt, Germany.
- German Cancer Consortium (DKTK) / German Cancer Research Center, Heidelberg, Germany.
| |
Collapse
|
35
|
PHA-680626 Is an Effective Inhibitor of the Interaction between Aurora-A and N-Myc. Int J Mol Sci 2021; 22:ijms222313122. [PMID: 34884931 PMCID: PMC8658095 DOI: 10.3390/ijms222313122] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 11/26/2021] [Accepted: 12/01/2021] [Indexed: 11/17/2022] Open
Abstract
Neuroblastoma is a severe childhood disease, accounting for ~10% of all infant cancers. The amplification of the MYCN gene, coding for the N-Myc transcription factor, is an essential marker correlated with tumor progression and poor prognosis. In neuroblastoma cells, the mitotic kinase Aurora-A (AURKA), also frequently overexpressed in cancer, prevents N-Myc degradation by directly binding to a highly conserved N-Myc region. As a result, elevated levels of N-Myc are observed. During recent years, it has been demonstrated that some ATP competitive inhibitors of AURKA also cause essential conformational changes in the structure of the activation loop of the kinase that prevents N-Myc binding, thus impairing the formation of the AURKA/N-Myc complex. In this study, starting from a screening of crystal structures of AURKA in complexes with known inhibitors, we identified additional compounds affecting the conformation of the kinase activation loop. We assessed the ability of such compounds to disrupt the interaction between AURKA and N-Myc in vitro, using Surface Plasmon Resonance competition assays, and in tumor cell lines overexpressing MYCN, by performing Proximity Ligation Assays. Finally, their effects on N-Myc cellular levels and cell viability were investigated. Our results identify PHA-680626 as an amphosteric inhibitor both in vitro and in MYCN overexpressing cell lines, thus expanding the repertoire of known conformational disrupting inhibitors of the AURKA/N-Myc complex and confirming that altering the conformation of the activation loop of AURKA with a small molecule is an effective strategy to destabilize the AURKA/N-Myc interaction in neuroblastoma cancer cells.
Collapse
|
36
|
Lashley T, Tossounian MA, Costello Heaven N, Wallworth S, Peak-Chew S, Bradshaw A, Cooper JM, de Silva R, Srai SK, Malanchuk O, Filonenko V, Koopman MB, Rüdiger SGD, Skehel M, Gout I. Extensive Anti-CoA Immunostaining in Alzheimer's Disease and Covalent Modification of Tau by a Key Cellular Metabolite Coenzyme A. Front Cell Neurosci 2021; 15:739425. [PMID: 34720880 PMCID: PMC8554225 DOI: 10.3389/fncel.2021.739425] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Accepted: 09/17/2021] [Indexed: 11/13/2022] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder, accounting for at least two-thirds of dementia cases. A combination of genetic, epigenetic and environmental triggers is widely accepted to be responsible for the onset and development of AD. Accumulating evidence shows that oxidative stress and dysregulation of energy metabolism play an important role in AD pathogenesis, leading to neuronal dysfunction and death. Redox-induced protein modifications have been reported in the brain of AD patients, indicating excessive oxidative damage. Coenzyme A (CoA) is essential for diverse metabolic pathways, regulation of gene expression and biosynthesis of neurotransmitters. Dysregulation of CoA biosynthesis in animal models and inborn mutations in human genes involved in the CoA biosynthetic pathway have been associated with neurodegeneration. Recent studies have uncovered the antioxidant function of CoA, involving covalent protein modification by this cofactor (CoAlation) in cellular response to oxidative or metabolic stress. Protein CoAlation has been shown to both modulate the activity of modified proteins and protect cysteine residues from irreversible overoxidation. In this study, immunohistochemistry analysis with highly specific anti-CoA monoclonal antibody was used to reveal protein CoAlation across numerous neurodegenerative diseases, which appeared particularly frequent in AD. Furthermore, protein CoAlation consistently co-localized with tau-positive neurofibrillary tangles, underpinning one of the key pathological hallmarks of AD. Double immunihistochemical staining with tau and CoA antibodies in AD brain tissue revealed co-localization of the two immunoreactive signals. Further, recombinant 2N3R and 2N4R tau isoforms were found to be CoAlated in vitro and the site of CoAlation mapped by mass spectrometry to conserved cysteine 322, located in the microtubule binding region. We also report the reversible H2O2-induced dimerization of recombinant 2N3R, which is inhibited by CoAlation. Moreover, CoAlation of transiently expressed 2N4R tau was observed in diamide-treated HEK293/Pank1β cells. Taken together, this study demonstrates for the first time extensive anti-CoA immunoreactivity in AD brain samples, which occurs in structures resembling neurofibrillary tangles and neuropil threads. Covalent modification of recombinant tau at cysteine 322 suggests that CoAlation may play an important role in protecting redox-sensitive tau cysteine from irreversible overoxidation and may modulate its acetyltransferase activity and functional interactions.
Collapse
Affiliation(s)
- Tammaryn Lashley
- Queen Square Brain Bank, UCL Queen Square Institute of Neurology, London, United Kingdom
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, United Kingdom
| | - Maria-Armineh Tossounian
- Department of Structural and Molecular Biology, University College London, London, United Kingdom
| | - Neve Costello Heaven
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, United Kingdom
- Department of Structural and Molecular Biology, University College London, London, United Kingdom
| | - Samantha Wallworth
- Department of Structural and Molecular Biology, University College London, London, United Kingdom
| | - Sew Peak-Chew
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Cambridge, United Kingdom
| | - Aaron Bradshaw
- Department of Molecular Neuroscience, Faculty of Brain Sciences, Royal Free Campus, London, United Kingdom
| | - J. Mark Cooper
- Department of Molecular Neuroscience, Faculty of Brain Sciences, Royal Free Campus, London, United Kingdom
| | - Rohan de Silva
- Reta Lila Weston Institute of Neurological Studies, University College London, London, United Kingdom
| | - Surjit Kaila Srai
- Department of Structural and Molecular Biology, University College London, London, United Kingdom
| | - Oksana Malanchuk
- Department of Cell Signaling, Institute of Molecular Biology and Genetics, Kyiv, Ukraine
| | - Valeriy Filonenko
- Department of Cell Signaling, Institute of Molecular Biology and Genetics, Kyiv, Ukraine
| | - Margreet B. Koopman
- Cellular Protein Chemistry, Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, Netherlands
- Science for Life, Utrecht University, Utrecht, Netherlands
| | - Stefan G. D. Rüdiger
- Cellular Protein Chemistry, Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, Netherlands
- Science for Life, Utrecht University, Utrecht, Netherlands
| | - Mark Skehel
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Cambridge, United Kingdom
| | - Ivan Gout
- Department of Structural and Molecular Biology, University College London, London, United Kingdom
- Department of Cell Signaling, Institute of Molecular Biology and Genetics, Kyiv, Ukraine
| |
Collapse
|
37
|
Prasher P, Sharma M. Medicinal chemistry of pyrophosphate mimics: A mini review. Drug Dev Res 2021; 83:3-15. [PMID: 34506652 DOI: 10.1002/ddr.21877] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 08/20/2021] [Accepted: 08/24/2021] [Indexed: 12/21/2022]
Abstract
The pyrophosphate mimicking groups offer rational modification of the pyrophosphate-bearing natural substrates of the overexpressed enzymes that cause the onset of disease progression. Mainly, the modified substrate interacts differently with the enzyme active site eventually causing its deactivation, or provides the therapeutically active products at the completion of the catalytic cycle that contribute toward the inhibition of the target enzyme. Many of the pyrophosphate mimic-containing molecules serve as competitive or allosteric inhibitors of the target enzyme to achieve the desirable properties for the mitigation of the target enzyme's pathophysiology. This review presents an epigrammatic overview of the pyrophosphate mimics in medicinal chemistry.
Collapse
Affiliation(s)
- Parteek Prasher
- UGC Sponsored Centre for Advanced Studies, Department of Chemistry, Guru Nanak Dev University, Amritsar, India.,Department of Chemistry, University of Petroleum & Energy Studies, Dehradun, India
| | - Mousmee Sharma
- UGC Sponsored Centre for Advanced Studies, Department of Chemistry, Guru Nanak Dev University, Amritsar, India.,Department of Chemistry, Uttaranchal University, Dehradun, India
| |
Collapse
|
38
|
Abstract
Aurora A is a serine/threonine kinase essential for mitotic entry and spindle assembly. Recent molecular studies have revealed the existence of multiple, distinct mechanisms of Aurora A activation, each occurring at specific subcellular locations, optimized for cellular context, and primed by signaling events including phosphorylation and oxidation.
Collapse
Affiliation(s)
- Nicolas Tavernier
- Programme équipe Labellisée Ligue Contre le Cancer - Université de Paris, Centre National de la Recherche Scientifique, Institut Jacques Monod, Paris, France
| | - Frank Sicheri
- Centre for Systems Biology, Lunenfeld Tanenbaum Research Institute, Sinai Health System, Toronto, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
- Department of Biochemistry, University of Toronto, Toronto, ON, Canada
| | - Lionel Pintard
- Programme équipe Labellisée Ligue Contre le Cancer - Université de Paris, Centre National de la Recherche Scientifique, Institut Jacques Monod, Paris, France
| |
Collapse
|
39
|
Lambhate S, Bhattacharjee D, Jain N. APC/C CDH1 ubiquitinates IDH2 contributing to ROS increase in mitosis. Cell Signal 2021; 86:110087. [PMID: 34271087 DOI: 10.1016/j.cellsig.2021.110087] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 07/08/2021] [Accepted: 07/09/2021] [Indexed: 11/15/2022]
Abstract
NADPH is a cofactor used by reactive oxygen species (ROS) scavenging enzymes to block ROS produced in cells. Recently, it was shown that in cancer cells, ROS progressively increases in tune to cell cycle leading to a peak in mitosis. Loss of IDH2 is known to cause severe oxidative stress in cell and mouse models as ROS increases in mitochondria. Therefore, we hypothesized that IDH2, a major NADPH-producing enzyme in mitochondria is ubiquitinated for ROS to increase in mitosis. To test this hypothesis, in cancer cells we examined IDH2 ubiquitination in mitosis and measured the ROS produced. We found that IDH2 is ubiquitinated in mitosis and on inhibiting anaphase-promoting complex/Cyclosome (APC/C) IDH2 was stabilized. Further, we observed that overexpressing APC/C coactivator CDH1 decreased IDH2, whereas depleting CDH1 decreased IDH2 ubiquitination. To understand the link between IDH2 ubiquitination and ROS produced in mitosis, we show that overexpressing mitochondria-targeted-IDH1 decreased ROS by increasing NADPH in IDH2 ubiquitinated cells. We conclude that APC/C CDH1 ubiquitinates IDH2, a major NADPH-producing enzyme in mitochondria contributing to ROS increase in mitosis. Based on our results, we suggest that mitosis can be a therapeutic window in mutant IDH2-linked pathologies.
Collapse
Affiliation(s)
- Surbhi Lambhate
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Uppal Road, Hyderabad 500007, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Debanjan Bhattacharjee
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Uppal Road, Hyderabad 500007, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Nishant Jain
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Uppal Road, Hyderabad 500007, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
40
|
Yu B, Lin Q, Huang C, Zhang B, Wang Y, Jiang Q, Zhang C, Yi J. SUMO proteases SENP3 and SENP5 spatiotemporally regulate the kinase activity of Aurora A. J Cell Sci 2021; 134:jcs249771. [PMID: 34313310 DOI: 10.1242/jcs.249771] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 05/24/2021] [Indexed: 01/14/2023] Open
Abstract
Precise chromosome segregation is mediated by a well-assembled mitotic spindle, which requires balance of the kinase activity of Aurora A (AurA, also known as AURKA). However, how this kinase activity is regulated remains largely unclear. Here, using in vivo and in vitro assays, we report that conjugation of SUMO2 with AurA at K258 in early mitosis promotes the kinase activity of AurA and facilitates the binding with its activator Bora. Knockdown of the SUMO proteases SENP3 and SENP5 disrupts the deSUMOylation of AurA, leading to increased kinase activity and abnormalities in spindle assembly and chromosome segregation, which could be rescued by suppressing the kinase activity of AurA. Collectively, these results demonstrate that SENP3 and SENP5 deSUMOylate AurA to render spatiotemporal control on its kinase activity in mitosis. This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Bin Yu
- Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Department of Biochemistry and Molecular Cell Biology, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai 200025, China
- The Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, College of Life Sciences, Peking University, Beijing 100871, China
| | - Qiaoyu Lin
- The Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, College of Life Sciences, Peking University, Beijing 100871, China
| | - Chao Huang
- Medical School, Kunming University of Science and Technology, Kunming 650091, China
| | - Boyan Zhang
- The Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, College of Life Sciences, Peking University, Beijing 100871, China
| | - Ying Wang
- Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Department of Biochemistry and Molecular Cell Biology, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai 200025, China
| | - Qing Jiang
- The Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, College of Life Sciences, Peking University, Beijing 100871, China
| | - Chuanmao Zhang
- The Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, College of Life Sciences, Peking University, Beijing 100871, China
| | - Jing Yi
- Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Department of Biochemistry and Molecular Cell Biology, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai 200025, China
| |
Collapse
|
41
|
Baković J, Yu BYK, Silva D, Baczynska M, Peak-Chew SY, Switzer A, Burchell L, Wigneshweraraj S, Vandanashree M, Gopal B, Filonenko V, Skehel M, Gout I. Redox Regulation of the Quorum-sensing Transcription Factor AgrA by Coenzyme A. Antioxidants (Basel) 2021; 10:antiox10060841. [PMID: 34070323 PMCID: PMC8228455 DOI: 10.3390/antiox10060841] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 05/21/2021] [Accepted: 05/21/2021] [Indexed: 12/23/2022] Open
Abstract
Staphylococcus aureus (S. aureus) is an aggressive opportunistic pathogen of prominent virulence and antibiotic resistance. These characteristics are due in part to the accessory gene regulator (agr) quorum-sensing system, which allows for the rapid adaptation of S. aureus to environmental changes and thus promotes virulence and the development of pathogenesis. AgrA is the agr system response regulator that binds to the P2 and P3 promoters and upregulates agr expression. In this study, we reveal that S. aureus AgrA is modified by covalent binding of CoA (CoAlation) in response to oxidative or metabolic stress. The sites of CoAlation were mapped by liquid chromatography tandem mass spectrometry (LC-MS/MS) and revealed that oxidation-sensing Cys199 is modified by CoA. Surface plasmon resonance (SPR) analysis showed an inhibitory effect of CoAlation on the DNA-binding activity, as CoAlated AgrA had significantly lower affinity towards the P2 and P3 promoters than non-CoAlated AgrA. Overall, this study provides novel insights into the mode of transcriptional regulation in S. aureus and further elucidates the link between the quorum-sensing and oxidation-sensing roles of the agr system.
Collapse
Affiliation(s)
- Jovana Baković
- Department of Structural and Molecular Biology, University College London, London WC1E 6BT, UK; (J.B.); (B.Y.K.Y.); (D.S.); (M.B.)
| | - Bess Yi Kun Yu
- Department of Structural and Molecular Biology, University College London, London WC1E 6BT, UK; (J.B.); (B.Y.K.Y.); (D.S.); (M.B.)
| | - Daniel Silva
- Department of Structural and Molecular Biology, University College London, London WC1E 6BT, UK; (J.B.); (B.Y.K.Y.); (D.S.); (M.B.)
| | - Maria Baczynska
- Department of Structural and Molecular Biology, University College London, London WC1E 6BT, UK; (J.B.); (B.Y.K.Y.); (D.S.); (M.B.)
| | - Sew Yeu Peak-Chew
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Cambridge CB2 0QH, UK; (S.Y.P.-C.); (M.S.)
| | - Amy Switzer
- Section of Microbiology, Faculty of Medicine and MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London SW7 2AZ, UK; (A.S.); (L.B.); (S.W.)
| | - Lynn Burchell
- Section of Microbiology, Faculty of Medicine and MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London SW7 2AZ, UK; (A.S.); (L.B.); (S.W.)
| | - Sivaramesh Wigneshweraraj
- Section of Microbiology, Faculty of Medicine and MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London SW7 2AZ, UK; (A.S.); (L.B.); (S.W.)
| | | | - Balasubramanian Gopal
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore 560012, India; (M.V.); (B.G.)
| | - Valeriy Filonenko
- Department of Cell Signaling, Institute of Molecular Biology and Genetics, 143 Kyiv, Ukraine;
| | - Mark Skehel
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Cambridge CB2 0QH, UK; (S.Y.P.-C.); (M.S.)
| | - Ivan Gout
- Department of Structural and Molecular Biology, University College London, London WC1E 6BT, UK; (J.B.); (B.Y.K.Y.); (D.S.); (M.B.)
- Department of Cell Signaling, Institute of Molecular Biology and Genetics, 143 Kyiv, Ukraine;
- Correspondence: ; Tel.: +0044-2076794482; Fax: +0044-2076797193
| |
Collapse
|
42
|
Yu BYK, Tossounian MA, Hristov SD, Lawrence R, Arora P, Tsuchiya Y, Peak-Chew SY, Filonenko V, Oxenford S, Angell R, Gouge J, Skehel M, Gout I. Regulation of metastasis suppressor NME1 by a key metabolic cofactor coenzyme A. Redox Biol 2021; 44:101978. [PMID: 33903070 PMCID: PMC8212152 DOI: 10.1016/j.redox.2021.101978] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 03/28/2021] [Accepted: 04/13/2021] [Indexed: 02/08/2023] Open
Abstract
The metastasis suppressor protein NME1 is an evolutionarily conserved and multifunctional enzyme that plays an important role in suppressing the invasion and metastasis of tumour cells. The nucleoside diphosphate kinase (NDPK) activity of NME1 is well recognized in balancing the intracellular pools of nucleotide diphosphates and triphosphates to regulate cytoskeletal rearrangement and cell motility, endocytosis, intracellular trafficking, and metastasis. In addition, NME1 was found to function as a protein-histidine kinase, 3′-5′ exonuclease and geranyl/farnesyl pyrophosphate kinase. These diverse cellular functions are regulated at the level of expression, post-translational modifications, and regulatory interactions. The NDPK activity of NME1 has been shown to be inhibited in vitro and in vivo under oxidative stress, and the inhibitory effect mediated via redox-sensitive cysteine residues. In this study, affinity purification followed by mass spectrometric analysis revealed NME1 to be a major coenzyme A (CoA) binding protein in cultured cells and rat tissues. NME1 is also found covalently modified by CoA (CoAlation) at Cys109 in the CoAlome analysis of HEK293/Pank1β cells treated with the disulfide-stress inducer, diamide. Further analysis showed that recombinant NME1 is efficiently CoAlated in vitro and in cellular response to oxidising agents and metabolic stress. In vitro CoAlation of recombinant wild type NME1, but not the C109A mutant, results in the inhibition of its NDPK activity. Moreover, CoA also functions as a competitive inhibitor of the NME1 NDPK activity by binding non-covalently to the nucleotide binding site. Taken together, our data reveal metastasis suppressor protein NME1 as a novel binding partner of the key metabolic regulator CoA, which inhibits its nucleoside diphosphate kinase activity via non-covalent and covalent interactions. NME1 is a major CoA-binding protein. CoA can bind NME1 through covalent and non-covalent interactions. NME1 CoAlation is induced by oxidative and metabolic stress in mammalian cells. CoA inhibits the NDPK activity of NME1 in vitro.
Collapse
Affiliation(s)
- Bess Yi Kun Yu
- Department of Structural and Molecular Biology, University College London, London, WC1E 6BT, United Kingdom
| | - Maria-Armineh Tossounian
- Department of Structural and Molecular Biology, University College London, London, WC1E 6BT, United Kingdom
| | - Stefan Denchev Hristov
- Department of Structural and Molecular Biology, University College London, London, WC1E 6BT, United Kingdom
| | - Ryan Lawrence
- Department of Structural and Molecular Biology, University College London, London, WC1E 6BT, United Kingdom
| | - Pallavi Arora
- Department of Structural and Molecular Biology, University College London, London, WC1E 6BT, United Kingdom
| | - Yugo Tsuchiya
- Department of Structural and Molecular Biology, University College London, London, WC1E 6BT, United Kingdom
| | - Sew Yeu Peak-Chew
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Cambridge, CB2 0QH, United Kingdom
| | - Valeriy Filonenko
- Department of Cell Signaling, Institute of Molecular Biology and Genetics, Kyiv, 143, Ukraine
| | - Sally Oxenford
- School of Pharmacy, University College London, London, WC1N 1AX, United Kingdom
| | - Richard Angell
- School of Pharmacy, University College London, London, WC1N 1AX, United Kingdom
| | - Jerome Gouge
- Institute of Structural and Molecular Biology, Birkbeck College, London, WC1E 7HX, United Kingdom
| | - Mark Skehel
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Cambridge, CB2 0QH, United Kingdom
| | - Ivan Gout
- Department of Structural and Molecular Biology, University College London, London, WC1E 6BT, United Kingdom; Department of Cell Signaling, Institute of Molecular Biology and Genetics, Kyiv, 143, Ukraine.
| |
Collapse
|
43
|
Baković J, López Martínez D, Nikolaou S, Yu BYK, Tossounian MA, Tsuchiya Y, Thrasivoulou C, Filonenko V, Gout I. Regulation of the CoA Biosynthetic Complex Assembly in Mammalian Cells. Int J Mol Sci 2021; 22:ijms22031131. [PMID: 33498827 PMCID: PMC7865483 DOI: 10.3390/ijms22031131] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Revised: 01/20/2021] [Accepted: 01/21/2021] [Indexed: 12/14/2022] Open
Abstract
Coenzyme A (CoA) is an essential cofactor present in all living cells. Under physiological conditions, CoA mainly functions to generate metabolically active CoA thioesters, which are indispensable for cellular metabolism, the regulation of gene expression, and the biosynthesis of neurotransmitters. When cells are exposed to oxidative or metabolic stress, CoA acts as an important cellular antioxidant that protects protein thiols from overoxidation, and this function is mediated by protein CoAlation. CoA and its derivatives are strictly maintained at levels controlled by nutrients, hormones, metabolites, and cellular stresses. Dysregulation of their biosynthesis and homeostasis has deleterious consequences and has been noted in a range of pathological conditions, including cancer, diabetes, Reye’s syndrome, cardiac hypertrophy, and neurodegeneration. The biochemistry of CoA biosynthesis, which involves five enzymatic steps, has been extensively studied. However, the existence of a CoA biosynthetic complex and the mode of its regulation in mammalian cells are unknown. In this study, we report the assembly of all five enzymes that drive CoA biosynthesis, in HEK293/Pank1β and A549 cells, using the in situ proximity ligation assay. Furthermore, we show that the association of CoA biosynthetic enzymes is strongly upregulated in response to serum starvation and oxidative stress, whereas insulin and growth factor signaling downregulate their assembly.
Collapse
Affiliation(s)
- Jovana Baković
- Department of Structural and Molecular Biology, University College London, London WC1E 6BT, UK; (J.B.); (D.L.M.); (S.N.); (B.Y.K.Y.); (M.-A.T.); (Y.T.)
| | - David López Martínez
- Department of Structural and Molecular Biology, University College London, London WC1E 6BT, UK; (J.B.); (D.L.M.); (S.N.); (B.Y.K.Y.); (M.-A.T.); (Y.T.)
| | - Savvas Nikolaou
- Department of Structural and Molecular Biology, University College London, London WC1E 6BT, UK; (J.B.); (D.L.M.); (S.N.); (B.Y.K.Y.); (M.-A.T.); (Y.T.)
| | - Bess Yi Kun Yu
- Department of Structural and Molecular Biology, University College London, London WC1E 6BT, UK; (J.B.); (D.L.M.); (S.N.); (B.Y.K.Y.); (M.-A.T.); (Y.T.)
| | - Maria-Armineh Tossounian
- Department of Structural and Molecular Biology, University College London, London WC1E 6BT, UK; (J.B.); (D.L.M.); (S.N.); (B.Y.K.Y.); (M.-A.T.); (Y.T.)
| | - Yugo Tsuchiya
- Department of Structural and Molecular Biology, University College London, London WC1E 6BT, UK; (J.B.); (D.L.M.); (S.N.); (B.Y.K.Y.); (M.-A.T.); (Y.T.)
| | - Christopher Thrasivoulou
- Research Department of Cell and Developmental Biology, The Centre for Cell and Molecular Dynamics, University College London, London WC1E 6BT, UK;
| | - Valeriy Filonenko
- Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine, 03680 Kyiv, Ukraine;
| | - Ivan Gout
- Department of Structural and Molecular Biology, University College London, London WC1E 6BT, UK; (J.B.); (D.L.M.); (S.N.); (B.Y.K.Y.); (M.-A.T.); (Y.T.)
- Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine, 03680 Kyiv, Ukraine;
- Correspondence:
| |
Collapse
|
44
|
Coenzyme A levels influence protein acetylation, CoAlation and 4'-phosphopantetheinylation: Expanding the impact of a metabolic nexus molecule. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2021; 1868:118965. [PMID: 33450307 DOI: 10.1016/j.bbamcr.2021.118965] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Revised: 12/31/2020] [Accepted: 01/11/2021] [Indexed: 12/17/2022]
Abstract
Coenzyme A (CoA) is a key molecule in cellular metabolism including the tricarboxylic acid cycle, fatty acid synthesis, amino acid synthesis and lipid metabolism. Moreover, CoA is required for biological processes like protein post-translational modifications (PTMs) including acylation. CoA levels affect the amount of histone acetylation and thereby modulate gene expression. A direct influence of CoA levels on other PTMs, like CoAlation and 4'-phosphopantetheinylation has been relatively less addressed and will be discussed here. Increased CoA levels are associated with increased CoAlation, whereas decreased 4'-phosphopantetheinylation is observed under circumstances of decreased CoA levels. We discuss how these two PTMs can positively or negatively influence target proteins depending on CoA levels. This review highlights the impact of CoA levels on post-translational modifications, their counteractive interplay and the far-reaching consequences thereof.
Collapse
|
45
|
Zhyvoloup A, Yu BYK, Baković J, Davis-Lunn M, Tossounian MA, Thomas N, Tsuchiya Y, Peak-Chew SY, Wigneshweraraj S, Filonenko V, Skehel M, Setlow P, Gout I. Analysis of disulphide bond linkage between CoA and protein cysteine thiols during sporulation and in spores of Bacillus species. FEMS Microbiol Lett 2020; 367:fnaa174. [PMID: 33206970 PMCID: PMC8127865 DOI: 10.1093/femsle/fnaa174] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 10/24/2020] [Indexed: 12/17/2022] Open
Abstract
Spores of Bacillus species have novel properties, which allow them to lie dormant for years and then germinate under favourable conditions. In the current work, the role of a key metabolic integrator, coenzyme A (CoA), in redox regulation of growing cells and during spore formation in Bacillus megaterium and Bacillus subtilis is studied. Exposing these growing cells to oxidising agents or carbon deprivation resulted in extensive covalent protein modification by CoA (termed protein CoAlation), through disulphide bond formation between the CoA thiol group and a protein cysteine. Significant protein CoAlation was observed during sporulation of B. megaterium, and increased largely in parallel with loss of metabolism in spores. Mass spectrometric analysis identified four CoAlated proteins in B. subtilis spores as well as one CoAlated protein in growing B. megaterium cells. All five of these proteins have been identified as moderately abundant in spores. Based on these findings and published studies, protein CoAlation might be involved in facilitating establishment of spores' metabolic dormancy, and/or protecting sensitive sulfhydryl groups of spore enzymes.
Collapse
Affiliation(s)
- Alexander Zhyvoloup
- Department of Structural and Molecular Biology, University College London, Gower St., London WC1E 6BT, UK
| | - Bess Yi Kun Yu
- Department of Structural and Molecular Biology, University College London, Gower St., London WC1E 6BT, UK
| | - Jovana Baković
- Department of Structural and Molecular Biology, University College London, Gower St., London WC1E 6BT, UK
| | - Mathew Davis-Lunn
- Department of Structural and Molecular Biology, University College London, Gower St., London WC1E 6BT, UK
| | - Maria-Armineh Tossounian
- Department of Structural and Molecular Biology, University College London, Gower St., London WC1E 6BT, UK
| | - Naam Thomas
- Department of Structural and Molecular Biology, University College London, Gower St., London WC1E 6BT, UK
| | - Yugo Tsuchiya
- Department of Structural and Molecular Biology, University College London, Gower St., London WC1E 6BT, UK
| | - Sew Yeu Peak-Chew
- Biological Mass Spectrometry & Proteomics Cell Biology, MRC Laboratory of Molecular Biology, Francis Crick Avenue, Trumpington, Cambridge CB2 0QH, UK
| | - Sivaramesh Wigneshweraraj
- Section of Microbiology, Faculty of Medicine and MRC Centre for Molecular Bacteriology and Infection, Imperial College London, Flowers Building, Imperial College Road, London SW7 2AZ, UK
| | - Valeriy Filonenko
- Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine, 150 Zabolotnogo St., Kyiv 03680, Ukraine
| | - Mark Skehel
- Biological Mass Spectrometry & Proteomics Cell Biology, MRC Laboratory of Molecular Biology, Francis Crick Avenue, Trumpington, Cambridge CB2 0QH, UK
| | - Peter Setlow
- Department of Molecular Biology and Biophysics, UConn Health, 263 Farmington Avenue, Farmington, CT 06030-3305, USA
| | - Ivan Gout
- Department of Structural and Molecular Biology, University College London, Gower St., London WC1E 6BT, UK
- Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine, 150 Zabolotnogo St., Kyiv 03680, Ukraine
| |
Collapse
|
46
|
Czumaj A, Szrok-Jurga S, Hebanowska A, Turyn J, Swierczynski J, Sledzinski T, Stelmanska E. The Pathophysiological Role of CoA. Int J Mol Sci 2020; 21:ijms21239057. [PMID: 33260564 PMCID: PMC7731229 DOI: 10.3390/ijms21239057] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 11/21/2020] [Accepted: 11/25/2020] [Indexed: 12/11/2022] Open
Abstract
The importance of coenzyme A (CoA) as a carrier of acyl residues in cell metabolism is well understood. Coenzyme A participates in more than 100 different catabolic and anabolic reactions, including those involved in the metabolism of lipids, carbohydrates, proteins, ethanol, bile acids, and xenobiotics. However, much less is known about the importance of the concentration of this cofactor in various cell compartments and the role of altered CoA concentration in various pathologies. Despite continuous research on these issues, the molecular mechanisms in the regulation of the intracellular level of CoA under pathological conditions are still not well understood. This review summarizes the current knowledge of (a) CoA subcellular concentrations; (b) the roles of CoA synthesis and degradation processes; and (c) protein modification by reversible CoA binding to proteins (CoAlation). Particular attention is paid to (a) the roles of changes in the level of CoA under pathological conditions, such as in neurodegenerative diseases, cancer, myopathies, and infectious diseases; and (b) the beneficial effect of CoA and pantethine (which like CoA is finally converted to Pan and cysteamine), used at pharmacological doses for the treatment of hyperlipidemia.
Collapse
Affiliation(s)
- Aleksandra Czumaj
- Department of Pharmaceutical Biochemistry, Faculty of Pharmacy, Medical University of Gdansk, 80-211 Gdańsk, Poland;
| | - Sylwia Szrok-Jurga
- Department of Biochemistry, Faculty of Medicine, Medical University of Gdansk, 80-211 Gdansk, Poland; (S.S.-J.); (A.H.); (J.T.)
| | - Areta Hebanowska
- Department of Biochemistry, Faculty of Medicine, Medical University of Gdansk, 80-211 Gdansk, Poland; (S.S.-J.); (A.H.); (J.T.)
| | - Jacek Turyn
- Department of Biochemistry, Faculty of Medicine, Medical University of Gdansk, 80-211 Gdansk, Poland; (S.S.-J.); (A.H.); (J.T.)
| | - Julian Swierczynski
- State School of Higher Vocational Education in Koszalin, 75-582 Koszalin, Poland;
| | - Tomasz Sledzinski
- Department of Pharmaceutical Biochemistry, Faculty of Pharmacy, Medical University of Gdansk, 80-211 Gdańsk, Poland;
- Correspondence: (T.S.); (E.S.); Tel.: +48-(0)-583-491-479 (T.S.)
| | - Ewa Stelmanska
- Department of Biochemistry, Faculty of Medicine, Medical University of Gdansk, 80-211 Gdansk, Poland; (S.S.-J.); (A.H.); (J.T.)
- Correspondence: (T.S.); (E.S.); Tel.: +48-(0)-583-491-479 (T.S.)
| |
Collapse
|
47
|
Lim DC, Joukov V, Yaffe MB. Are redox changes a critical switch for mitotic progression? Mol Cell Oncol 2020; 7:1832419. [PMID: 33235921 PMCID: PMC7670999 DOI: 10.1080/23723556.2020.1832419] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 09/28/2020] [Accepted: 09/30/2020] [Indexed: 06/11/2023]
Abstract
Cell-cycle dependent redox changes result in increased protein oxidation in mitotic cells. We show that oxidative modifications of a conserved cysteine residue within Aurora A kinase (AURKA) can promote its activation during mitosis. Targeting redox-sensitive cysteine residues within AURKA may lead to the development of novel anti-cancer agents with improved clinical efficacy.
Collapse
Affiliation(s)
- Daniel C. Lim
- MIT Center for Precision Cancer Medicine, Koch Institute for Integrative Cancer Research, and Departments of Biological Engineering and Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Vladimir Joukov
- Department of Molecular Oncology, N. N. Petrov National Medical Research Center of Oncology, Saint Petersburg, 197758, Russian Federation
| | - Michael B. Yaffe
- MIT Center for Precision Cancer Medicine, Koch Institute for Integrative Cancer Research, and Departments of Biological Engineering and Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
- Divisions of Acute Care Surgery, Trauma, and Surgical Critical Care, and Surgical Oncology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
48
|
Adhikari B, Bozilovic J, Diebold M, Schwarz JD, Hofstetter J, Schröder M, Wanior M, Narain A, Vogt M, Dudvarski Stankovic N, Baluapuri A, Schönemann L, Eing L, Bhandare P, Kuster B, Schlosser A, Heinzlmeir S, Sotriffer C, Knapp S, Wolf E. PROTAC-mediated degradation reveals a non-catalytic function of AURORA-A kinase. Nat Chem Biol 2020; 16:1179-1188. [PMID: 32989298 PMCID: PMC7610535 DOI: 10.1038/s41589-020-00652-y] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Accepted: 08/14/2020] [Indexed: 12/11/2022]
Abstract
The mitotic kinase AURORA-A is essential for cell cycle progression and is considered a priority cancer target. While the catalytic activity of AURORA-A is essential for its mitotic function, recent reports indicate an additional non-catalytic function, which is difficult to target by conventional small molecules. We therefore developed a series of chemical degraders (PROTACs) by connecting a clinical kinase inhibitor of AURORA-A to E3 ligase-binding molecules (e.g. thalidomide). One degrader induced rapid, durable and highly specific degradation of AURORA-A. In addition ,we found that the degrader complex was stabilized by cooperative binding between AURORA-A and CEREBLON. Degrader-mediated AURORA-A depletion caused an S-phase defect, which is not the cell cycle effect observed upon kinase inhibition, supporting an important non-catalytic function of AURORA-A during DNA replication. AURORA-A degradation induced rampant apoptosis in cancer cell lines, and thus represents a versatile starting point for developing new therapeutics to counter AURORA-A function in cancer.
Collapse
Affiliation(s)
- Bikash Adhikari
- Cancer Systems Biology Group, Theodor Boveri Institute, University of Würzburg, Würzburg, Germany
| | - Jelena Bozilovic
- Institut für Pharmazeutische Chemie und Structural Genomics Consortium, Goethe-Universität Frankfurt, Frankfurt am Main, Germany.,German Cancer Consortium (DKTK)/German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Mathias Diebold
- Institut für Pharmazie und Lebensmittelchemie, University of Würzburg, Würzburg, Germany
| | - Jessica Denise Schwarz
- Cancer Systems Biology Group, Theodor Boveri Institute, University of Würzburg, Würzburg, Germany
| | - Julia Hofstetter
- Cancer Systems Biology Group, Theodor Boveri Institute, University of Würzburg, Würzburg, Germany
| | - Martin Schröder
- Institut für Pharmazeutische Chemie und Structural Genomics Consortium, Goethe-Universität Frankfurt, Frankfurt am Main, Germany
| | - Marek Wanior
- Institut für Pharmazeutische Chemie und Structural Genomics Consortium, Goethe-Universität Frankfurt, Frankfurt am Main, Germany
| | - Ashwin Narain
- Cancer Systems Biology Group, Theodor Boveri Institute, University of Würzburg, Würzburg, Germany
| | - Markus Vogt
- Cancer Systems Biology Group, Theodor Boveri Institute, University of Würzburg, Würzburg, Germany
| | | | - Apoorva Baluapuri
- Cancer Systems Biology Group, Theodor Boveri Institute, University of Würzburg, Würzburg, Germany
| | - Lars Schönemann
- Rudolf Virchow Center - Center for Integrative and Translational Bioimaging, University of Würzburg, Würzburg, Germany
| | - Lorenz Eing
- Cancer Systems Biology Group, Theodor Boveri Institute, University of Würzburg, Würzburg, Germany
| | - Pranjali Bhandare
- Cancer Systems Biology Group, Theodor Boveri Institute, University of Würzburg, Würzburg, Germany
| | - Bernhard Kuster
- German Cancer Consortium (DKTK)/German Cancer Research Center (DKFZ), Heidelberg, Germany.,Chair of Proteomics and Bioanalytics, Technical University of Munich, Freising, Germany.,Bavarian Biomolecular Mass Spectrometry Center (BayBioMS), Technical University of Munich, Freising, Germany
| | - Andreas Schlosser
- Rudolf Virchow Center - Center for Integrative and Translational Bioimaging, University of Würzburg, Würzburg, Germany
| | - Stephanie Heinzlmeir
- Chair of Proteomics and Bioanalytics, Technical University of Munich, Freising, Germany
| | - Christoph Sotriffer
- Institut für Pharmazie und Lebensmittelchemie, University of Würzburg, Würzburg, Germany
| | - Stefan Knapp
- Institut für Pharmazeutische Chemie und Structural Genomics Consortium, Goethe-Universität Frankfurt, Frankfurt am Main, Germany. .,German Cancer Consortium (DKTK)/German Cancer Research Center (DKFZ), Heidelberg, Germany.
| | - Elmar Wolf
- Cancer Systems Biology Group, Theodor Boveri Institute, University of Würzburg, Würzburg, Germany.
| |
Collapse
|
49
|
Bellany F, Tsuchiya Y, Tran TM, Chan AWE, Allan H, Gout I, Tabor AB. Design and synthesis of Coenzyme A analogues as Aurora kinase A inhibitors: An exploration of the roles of the pyrophosphate and pantetheine moieties. Bioorg Med Chem 2020; 28:115740. [PMID: 33007553 DOI: 10.1016/j.bmc.2020.115740] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 08/25/2020] [Accepted: 08/27/2020] [Indexed: 12/15/2022]
Abstract
Coenzyme A (CoA) is a highly selective inhibitor of the mitotic regulatory enzyme Aurora A kinase, with a novel mode of action. Herein we report the design and synthesis of analogues of CoA as inhibitors of Aurora A kinase. We have designed and synthesised modified CoA structures as potential inhibitors, combining dicarbonyl mimics of the pyrophosphate group with a conserved adenosine headgroup and different length pantetheine-based tail groups. An analogue with a -SH group at the end of the pantotheinate tail showed the best IC50, probably due to the formation of a covalent bond with Aurora A kinase Cys290.
Collapse
Affiliation(s)
- Fiona Bellany
- Department of Chemistry, UCL, Christopher Ingold Building, 20, Gordon Street, London WC1H 0AJ, UK
| | - Yugo Tsuchiya
- Department of Structural and Molecular Biology, UCL, Gower Street, London WC1E 6BT, UK
| | - Trang M Tran
- Department of Chemistry, UCL, Christopher Ingold Building, 20, Gordon Street, London WC1H 0AJ, UK
| | - A W Edith Chan
- Wolfson Institute for Biomedical Research, University College London, London WC1E 6BT, UK
| | - Helen Allan
- Department of Chemistry, UCL, Christopher Ingold Building, 20, Gordon Street, London WC1H 0AJ, UK
| | - Ivan Gout
- Department of Structural and Molecular Biology, UCL, Gower Street, London WC1E 6BT, UK
| | - Alethea B Tabor
- Department of Chemistry, UCL, Christopher Ingold Building, 20, Gordon Street, London WC1H 0AJ, UK.
| |
Collapse
|
50
|
Lim DC, Joukov V, Rettenmaier TJ, Kumagai A, Dunphy WG, Wells JA, Yaffe MB. Redox priming promotes Aurora A activation during mitosis. Sci Signal 2020; 13:eabb6707. [PMID: 32694171 PMCID: PMC8514121 DOI: 10.1126/scisignal.abb6707] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Cell cycle-dependent redox changes can mediate transient covalent modifications of cysteine thiols to modulate the activities of regulatory kinases and phosphatases. Our previously reported finding that protein cysteine oxidation is increased during mitosis relative to other cell cycle phases suggests that redox modifications could play prominent roles in regulating mitotic processes. The Aurora family of kinases and their downstream targets are key components of the cellular machinery that ensures the proper execution of mitosis and the accurate segregation of chromosomes to daughter cells. In this study, x-ray crystal structures of the Aurora A kinase domain delineate redox-sensitive cysteine residues that, upon covalent modification, can allosterically regulate kinase activity and oligomerization state. We showed in both Xenopus laevis egg extracts and mammalian cells that a conserved cysteine residue within the Aurora A activation loop is crucial for Aurora A activation by autophosphorylation. We further showed that covalent disulfide adducts of this residue promote autophosphorylation of the Aurora A kinase domain. These findings reveal a potential mechanistic link between Aurora A activation and changes in the intracellular redox state during mitosis and provide insights into how novel small-molecule inhibitors may be developed to target specific subpopulations of Aurora A.
Collapse
Affiliation(s)
- Daniel C Lim
- MIT Center for Precision Cancer Medicine, Koch Institute for Integrative Cancer Research, and Departments of Biological Engineering and Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| | - Vladimir Joukov
- N. N. Petrov National Medical Research Center of Oncology, Saint Petersburg 197758, Russian Federation
| | - T Justin Rettenmaier
- Jnana Therapeutics, Boston, MA 02210, USA
- Departments of Pharmaceutical Chemistry and Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA 94158, USA
| | - Akiko Kumagai
- The Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - William G Dunphy
- The Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - James A Wells
- Departments of Pharmaceutical Chemistry and Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA 94158, USA
| | - Michael B Yaffe
- MIT Center for Precision Cancer Medicine, Koch Institute for Integrative Cancer Research, and Departments of Biological Engineering and Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
- Divisions of Acute Care Surgery, Trauma, and Surgical Critical Care, and Surgical Oncology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| |
Collapse
|