1
|
McPeak JE, Segantini M, Marcozzi G, Dona I, Künstner S, Chu A, Kern M, Poncelet M, Driesschaert B, Anders J, Lips K. Operando detection of dissolved oxygen in fluid solution using a submersible rapid scan EPR on a chip dipstick sensor. Sci Rep 2025; 15:9872. [PMID: 40119031 PMCID: PMC11928686 DOI: 10.1038/s41598-025-93591-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Accepted: 03/07/2025] [Indexed: 03/24/2025] Open
Abstract
Electron paramagnetic resonance (EPR) is an accurate and efficient technique to probe unpaired electrons in many applications across materials science, chemistry, and biology. Dynamic processes are investigated using EPR; however, these applications are limited by the use of resonator-based spectrometers such that the entire process must be confined to the resonator. The EPR-on-a-chip (EPRoC) device circumvents this limitation by integrating the entire EPR spectrometer into a single microchip. In this approach, the coil of a voltage-controlled oscillator (VCO) is used as the microwave source and detector simultaneously, operating under a protective coating such that the device may be placed in the sample solution directly. Additionally, improvements in sensitivity via rapid scan EPR (RS-EPR/RS-EPRoC) increase the accessible applications where SNR per measurement time is the fundamental limit. The herein reported device combines a dipstick EPRoC sensor with the enhanced sensitivity of frequency-swept frequency modulated rapid scan to measure triarylmethyl (trityl, Ox071) oxygen-sensitive probes dissolved in aqueous solutions. EPR spectra of Ox071 solutions were recorded using the RS-EPRoC sensor while varying the oxygen concentration of the solution between normal atmosphere and after purging the solution with nitrogen gas. We demonstrate that EPRoC may be employed to monitor dissolved oxygen in fluid solution in an online fashion.
Collapse
Affiliation(s)
- Joseph E McPeak
- Berlin Joint EPR Laboratory and EPR4Energy, Department Spins in Energy Conversion and Quantum Information Science (ASPIN), Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Berlin, Germany.
- Department of Chemistry, Novo Nordisk Foundation Pulse EPR Center, University of Copenhagen, Copenhagen, Denmark.
| | - Michele Segantini
- Berlin Joint EPR Laboratory and EPR4Energy, Department Spins in Energy Conversion and Quantum Information Science (ASPIN), Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Berlin, Germany
| | - Gianluca Marcozzi
- Berlin Joint EPR Laboratory and EPR4Energy, Department Spins in Energy Conversion and Quantum Information Science (ASPIN), Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Berlin, Germany
| | - Irene Dona
- Berlin Joint EPR Laboratory and EPR4Energy, Department Spins in Energy Conversion and Quantum Information Science (ASPIN), Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Berlin, Germany
| | - Silvio Künstner
- Berlin Joint EPR Laboratory and EPR4Energy, Department Spins in Energy Conversion and Quantum Information Science (ASPIN), Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Berlin, Germany
| | - Anh Chu
- Institute of Smart Sensors, Universität Stuttgart, Stuttgart, Germany
| | - Michal Kern
- Institute of Smart Sensors, Universität Stuttgart, Stuttgart, Germany
| | - Martin Poncelet
- Department of Pharmaceutical Sciences, School of Pharmacy, West Virginia University, Morgantown, WV, USA
- In Vivo Multifunctional Magnetic Resonance Center, Robert C. Byrd Health Sciences Center, West Virginia University, Morgantown, WV, USA
| | - Benoit Driesschaert
- Department of Pharmaceutical Sciences, School of Pharmacy, West Virginia University, Morgantown, WV, USA
- In Vivo Multifunctional Magnetic Resonance Center, Robert C. Byrd Health Sciences Center, West Virginia University, Morgantown, WV, USA
| | - Jens Anders
- Institute of Smart Sensors, Universität Stuttgart, Stuttgart, Germany
- Center for Integrated Quantum Science and Technology (IQST), Stuttgart and Ulm, Germany
| | - Klaus Lips
- Berlin Joint EPR Laboratory and EPR4Energy, Department Spins in Energy Conversion and Quantum Information Science (ASPIN), Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Berlin, Germany
- Berlin Joint EPR Laboratory, Fachbereich Physik, Freie Universität Berlin, Berlin, Germany
| |
Collapse
|
2
|
Heydari Z, Gramignoli R, Piryaei A, Zahmatkesh E, Pooyan P, Seydi H, Nussler A, Szkolnicka D, Rashidi H, Najimi M, Hay DC, Vosough M. Standard Protocols for Characterising Primary and In Vitro-Generated Human Hepatocytes. J Cell Mol Med 2025; 29:e70390. [PMID: 39910642 PMCID: PMC11798750 DOI: 10.1111/jcmm.70390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 01/13/2025] [Accepted: 01/17/2025] [Indexed: 02/07/2025] Open
Abstract
Hepatocyte-like cells (HLCs) derived from pluripotent stem cells (PSCs) or direct reprogramming are an unlimited source of human hepatocytes for biomedical applications. HLCs are used to model human diseases, develop precise drugs and establish groundbreaking regenerative cell-based therapies. Primary human hepatocytes are the gold standard for studying human liver biology and pathology. However, their widespread use is limited by their rapid dedifferentiation in vitro, reliance on transplant-rejected donor organs, poor scalability and significant batch-to-batch variations. Therefore, high-quality 'off-the-shelf' HLCs are needed to overcome those limitations. Basic stepwise differentiation protocols have been developed to generate HLCs from PSCs. To evaluate the quality of the in vitro generated products, HLCs have been phenotyped using various methods. This review discusses various biological assays and methods available for the robust evaluation of HLC quality, emphasising the importance of using 24-h cultured primary human hepatocytes (PHHs) as a reference standard for comparison.
Collapse
Affiliation(s)
- Zahra Heydari
- Department of Regenerative Medicine, Cell Science Research CenterRoyan Institute for Stem Cell Biology and Technology, ACECRTehranIran
| | - Roberto Gramignoli
- Division of Pathology, Department of Laboratory MedicineKarolinska InstitutetStockholmSweden
| | - Abbas Piryaei
- Department of Biology and Anatomical Sciences, School of MedicineShahid Beheshti University of Medical SciencesTehranIran
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in MedicineShahid Beheshti University of Medical SciencesTehranIran
| | - Ensieh Zahmatkesh
- Department of Regenerative Medicine, Cell Science Research CenterRoyan Institute for Stem Cell Biology and Technology, ACECRTehranIran
| | - Paria Pooyan
- Department of Regenerative Medicine, Cell Science Research CenterRoyan Institute for Stem Cell Biology and Technology, ACECRTehranIran
| | - Homeyra Seydi
- Department of Regenerative Medicine, Cell Science Research CenterRoyan Institute for Stem Cell Biology and Technology, ACECRTehranIran
| | - Andreas Nussler
- Siegfried Weller Institute for Trauma ResearchUniversity of TübingenTübingenGermany
| | - Dagmara Szkolnicka
- Centre for Regenerative Medicine, Institute for Repair and RegenerationUniversity of EdinburghEdinburghUK
| | - Hassan Rashidi
- Department of Developmental Biology and CancerUCL Great Ormond Street Institute of Child HealthLondonUK
| | - Mustapha Najimi
- Laboratory of Pediatric Hepatology and Cell TherapyInstitute of Experimental and Clinical Research, UCLouvainBrusselsBelgium
| | - David C. Hay
- Centre for Regenerative Medicine, Institute for Repair and RegenerationUniversity of EdinburghEdinburghUK
| | - Massoud Vosough
- Department of Regenerative Medicine, Cell Science Research CenterRoyan Institute for Stem Cell Biology and Technology, ACECRTehranIran
- Experimental Cancer MedicineInstitution for Laboratory Medicine, Karolinska Institute HuddingeHuddingeSweden
| |
Collapse
|
3
|
Vandensande Y, Carbone M, Mathieu B, Gallez B. Mitochondrial dysfunction induced in human hepatic HepG2 cells exposed to the fungicide kresoxim-methyl and to a mixture kresoxim-methyl/boscalid. Redox Rep 2024; 29:2424677. [PMID: 39541499 PMCID: PMC11565682 DOI: 10.1080/13510002.2024.2424677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024] Open
Abstract
The fungicides strobilurins and succinate dehydrogenase inhibitors (SDHIs) are blockers of the electron transport chain (ETC) in fungi. Here, we show that the exposure for 24 h to kresoxym-methyl, a fungicide from the class of strobilurins, alters the mitochondrial respiration in human HepG2 hepatocytes. In addition, we demonstrate an increase in production of mitochondrial superoxide radical anion, a reduction in ATP level, a decrease in the ratio reduced/oxidized glutathione and a decrease in cell viability (assessed by the LDH assay, Presto Blue assay, and Crystal Violet assay). As kresoxym-methyl is associated to boscalid (SDHI) in commercial formulations, we analyzed a potential exacerbation of the induced mitochondrial dysfunction for this combination. For the highest dose at which kresoxym-methyl (5 µM) and boscalid (0.5 µM) did not induce changes in mitochondrial function when used separately, in contrast, when both fungicides were used in combination at the same concentration, we observed a significant alteration of the mitochondrial function of hepatocytes: there was a decrease in oxygen consumption rate, in the ATP level. In addition, the level of mitochondrial superoxide radical anion was increased leading to a decrease in the ratio reduced/oxidized glutathione, and an increase in viability.
Collapse
Affiliation(s)
- Yasmine Vandensande
- Biomedical Magnetic Resonance Research Group, Louvain Drug Research Institute, Brussels, Belgium
| | - Mélina Carbone
- Biomedical Magnetic Resonance Research Group, Louvain Drug Research Institute, Brussels, Belgium
| | - Barbara Mathieu
- Biomedical Magnetic Resonance Research Group, Louvain Drug Research Institute, Brussels, Belgium
| | - Bernard Gallez
- Biomedical Magnetic Resonance Research Group, Louvain Drug Research Institute, Brussels, Belgium
| |
Collapse
|
4
|
Chen S, He T, Chen J, Wen D, Wang C, Huang W, Yang Z, Yang M, Li M, Huang S, Huang Z, Zhu H. Betaine delays age-related muscle loss by mitigating Mss51-induced impairment in mitochondrial respiration via Yin Yang1. J Cachexia Sarcopenia Muscle 2024; 15:2104-2117. [PMID: 39187977 PMCID: PMC11446699 DOI: 10.1002/jcsm.13558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 05/18/2024] [Accepted: 07/05/2024] [Indexed: 08/28/2024] Open
Abstract
BACKGROUND Mitochondrial dysfunction is one of the hallmarks of aging and a leading contributor to sarcopenia. Nutrients are essential for improving mitochondrial function and skeletal muscle health during the aging process. Betaine is a nutrient with potential muscle-preserving properties. However, whether and how betaine could regulate the mitochondria function in aging muscle are poorly understood. We aimed to explore the molecular target and underlying mechanism of betaine in attenuating the age-related mitochondrial dysfunction in skeletal muscle. METHODS Young mice (YOU, 2 months), old mice (OLD, 15 months), and old mice with betaine treatment (BET, 15 months) were fed for 12 weeks. The effects of betaine on muscle mass, strength, function, and subcellular structure of muscle fibres were assessed. RNA sequencing (RNA-seq) was conducted to identify the molecular target of betaine. The impacts of betaine on mitochondrial-related molecules, superoxide accumulation, and oxidative respiration were examined using western blotting (WB), immunofluorescence (IF) and seahorse assay. The underlying mechanism of betaine regulation on the molecular target to maintain mitochondrial function was investigated by luciferase reporter assay, chromatin immunoprecipitation and electrophoretic mobility shift assay. Adenoassociated virus transfection, succinate dehydrogenase staining (SDH), and energy expenditure assessment were performed on 20-month-old mice for validating the mechanism in vivo. RESULTS Betaine intervention demonstrated anti-aging effects on the muscle mass (P = 0.017), strength (P = 0.010), and running distance (P = 0.013). Mitochondrial-related markers (ATP5a, Sdha, and Uqcrc2) were 1.1- to 1.5-fold higher in BET than OLD (all P ≤ 0.036) with less wasted mitochondrial vacuoles accumulating in sarcomere. Bioinformatic analysis from RNA-seq displayed pathways related to mitochondrial respiration activity was higher enriched in BET group (NES = -0.87, FDR = 0.10). The quantitative real time PCR (qRT-PCR) revealed betaine significantly reduced the expression of a novel mitochondrial regulator, Mss51 (-24.9%, P = 0.002). In C2C12 cells, betaine restored the Mss51-mediated suppression in mitochondrial respiration proteins (all P ≤ 0.041), attenuated oxygen consumption impairment, and superoxide accumulation (by 20.7%, P = 0.001). Mechanically, betaine attenuated aging-induced repression in Yy1 mRNA expression (BET vs. OLD: 2.06 vs. 1.02, P = 0.009). Yy1 transcriptionally suppressed Mss51 mRNA expression both in vitro and in vivo. This contributed to the preservation of mitochondrial respiration, improvement for energy expenditure (P = 0.008), and delay of muscle loss during aging process. CONCLUSIONS Altogether, betaine transcriptionally represses Mss51 via Yy1, improving age-related mitochondrial respiration in skeletal muscle. These findings suggest betaine holds promise as a dietary supplement to delay skeletal muscle degeneration and improve age-related mitochondrial diseases.
Collapse
Affiliation(s)
- Si Chen
- Department of Nutrition, School of Public HealthSun Yat‐sen UniversityGuangzhouChina
- School of Public Health, Guangdong Provincial Key Laboratory of Food, Nutrition and HealthSun Yat‐sen UniversityGuangzhouChina
| | - Tongtong He
- Department of Nutrition, School of Public HealthSun Yat‐sen UniversityGuangzhouChina
- School of Public Health, Guangdong Provincial Key Laboratory of Food, Nutrition and HealthSun Yat‐sen UniversityGuangzhouChina
| | - Jiedong Chen
- Department of Nutrition, School of Public HealthSun Yat‐sen UniversityGuangzhouChina
- School of Public Health, Guangdong Provincial Key Laboratory of Food, Nutrition and HealthSun Yat‐sen UniversityGuangzhouChina
| | - Dongsheng Wen
- Department of Hepatobiliary Oncology, State Key Laboratory of Oncology in South China, Sun Yat‐sen University Cancer CenterSun Yat‐sen University Cancer CenterGuangzhouChina
| | - Chen Wang
- Department of Nutrition, School of Public HealthSun Yat‐sen UniversityGuangzhouChina
- School of Public Health, Guangdong Provincial Key Laboratory of Food, Nutrition and HealthSun Yat‐sen UniversityGuangzhouChina
| | - Wenge Huang
- Center of Experimental AnimalsSun Yat‐sen UniversityGuangzhouChina
| | - Zhijun Yang
- Department of Nutrition, School of Public HealthSun Yat‐sen UniversityGuangzhouChina
- School of Public Health, Guangdong Provincial Key Laboratory of Food, Nutrition and HealthSun Yat‐sen UniversityGuangzhouChina
| | - Mengtao Yang
- Department of Nutrition, School of Public HealthSun Yat‐sen UniversityGuangzhouChina
- School of Public Health, Guangdong Provincial Key Laboratory of Food, Nutrition and HealthSun Yat‐sen UniversityGuangzhouChina
| | - Mengchu Li
- Department of Nutrition, School of Public HealthSun Yat‐sen UniversityGuangzhouChina
- School of Public Health, Guangdong Provincial Key Laboratory of Food, Nutrition and HealthSun Yat‐sen UniversityGuangzhouChina
| | - Siyu Huang
- Department of Nutrition, School of Public HealthSun Yat‐sen UniversityGuangzhouChina
- School of Public Health, Guangdong Provincial Key Laboratory of Food, Nutrition and HealthSun Yat‐sen UniversityGuangzhouChina
| | - Zihui Huang
- Department of Nutrition, School of Public HealthSun Yat‐sen UniversityGuangzhouChina
- School of Public Health, Guangdong Provincial Key Laboratory of Food, Nutrition and HealthSun Yat‐sen UniversityGuangzhouChina
| | - Huilian Zhu
- Department of Nutrition, School of Public HealthSun Yat‐sen UniversityGuangzhouChina
- School of Public Health, Guangdong Provincial Key Laboratory of Food, Nutrition and HealthSun Yat‐sen UniversityGuangzhouChina
| |
Collapse
|
5
|
Gallez B, Mathieu B, Sonveaux P. About metformin and its action on the mitochondrial respiratory chain in prostate cancer. Transl Androl Urol 2024; 13:909-914. [PMID: 38855601 PMCID: PMC11157400 DOI: 10.21037/tau-23-602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 03/01/2024] [Indexed: 06/11/2024] Open
Affiliation(s)
- Bernard Gallez
- Biomedical Magnetic Resonance, Louvain Drug Research Institute (LDRI), Université catholique de Louvain (UCLouvain), Brussels, Belgium
| | - Barbara Mathieu
- Biomedical Magnetic Resonance, Louvain Drug Research Institute (LDRI), Université catholique de Louvain (UCLouvain), Brussels, Belgium
| | - Pierre Sonveaux
- Pole of Pharmacology and Therapeutics, Institut de Recherches Expérimentales et Cliniques (IREC), Université catholique de Louvain (UCLouvain), Brussels, Belgium
- Walloon Excellence in Life Sciences and Biotechnology (WELBIO) Research Institute, Wavre, Belgium
| |
Collapse
|
6
|
Carbone M, Mathieu B, Vandensande Y, Gallez B. Impact of Exposure to Pyraclostrobin and to a Pyraclostrobin/Boscalid Mixture on the Mitochondrial Function of Human Hepatocytes. Molecules 2023; 28:7013. [PMID: 37894492 PMCID: PMC10609024 DOI: 10.3390/molecules28207013] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 09/29/2023] [Accepted: 10/08/2023] [Indexed: 10/29/2023] Open
Abstract
Fungicides are widely used in agriculture for crop protection. Succinate dehydrogenase inhibitors (SDHIs) and strobilurins inhibit mitochondria electron transport chain (ETC) in fungi, by blocking complex II and complex III, respectively. Questions regarding their selectivity of action for fungi have been raised in the literature, and we previously showed that boscalid and bixafen (SDHIs) alter the mitochondrial function of human hepatocytes. Here, we analyzed the impact of the exposure of human hepatocytes to pyraclostrobin, a fungicide belonging to the class of strobilurins. Using electron paramagnetic resonance (EPR), we observed a decrease in oxygen consumption rate (OCR) and an increase in mitochondrial superoxide levels after 24 h exposure to 0.5 µM concentration. As a consequence, the content in ATP amount in the cells was reduced, the ratio reduced/oxidized glutathione was decreased, and a decrease in cell viability was observed using three different assays (PrestoBlue, crystal violet, and annexin V assays). In addition, as SDHIs and strobilurins are commonly associated in commercial preparations, we evaluated a potential "cocktail" toxic effect. We selected low concentrations of boscalid (0.5 µM) and pyraclostrobin (0.25 µM) that did not induce a mitochondrial dysfunction in liver cells when used separately. In sharp contrast, when both compounds were used in combination at the same concentration, we observed a decrease in OCR, an increase in mitochondrial superoxide production, a decrease in the ratio reduced/oxidized glutathione, and a decrease in cell viability in three different assays.
Collapse
Affiliation(s)
| | | | | | - Bernard Gallez
- Biomedical Magnetic Resonance Research Group, Louvain Drug Research Institute, Université Catholique de Louvain (UCLouvain), Avenue Mounier 73.08, B-1200 Brussels, Belgium; (M.C.); (B.M.); (Y.V.)
| |
Collapse
|
7
|
d’Hose D, Mathieu B, Mignion L, Hardy M, Ouari O, Jordan BF, Sonveaux P, Gallez B. EPR Investigations to Study the Impact of Mito-Metformin on the Mitochondrial Function of Prostate Cancer Cells. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27185872. [PMID: 36144606 PMCID: PMC9504708 DOI: 10.3390/molecules27185872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 09/04/2022] [Accepted: 09/07/2022] [Indexed: 11/29/2022]
Abstract
Background: Mito-metformin10 (MM10), synthesized by attaching a triphenylphosphonium cationic moiety via a 10-carbon aliphatic side chain to metformin, is a mitochondria-targeted analog of metformin that was recently demonstrated to alter mitochondrial function and proliferation in pancreatic ductal adenocarcinoma. Here, we hypothesized that this compound may decrease the oxygen consumption rate (OCR) in prostate cancer cells, increase the level of mitochondrial ROS, alleviate tumor hypoxia, and radiosensitize tumors. Methods: OCR and mitochondrial superoxide production were assessed by EPR (9 GHz) in vitro in PC-3 and DU-145 prostate cancer cells. Reduced and oxidized glutathione were assessed before and after MM10 exposure. Tumor oxygenation was measured in vivo using 1 GHz EPR oximetry in PC-3 tumor model. Tumors were irradiated at the time of maximal reoxygenation. Results: 24-hours exposure to MM10 significantly decreased the OCR of PC-3 and DU-145 cancer cells. An increase in mitochondrial superoxide levels was observed in PC-3 but not in DU-145 cancer cells, an observation consistent with the differences observed in glutathione levels in both cancer cell lines. In vivo, the tumor oxygenation significantly increased in the PC-3 model (daily injection of 2 mg/kg MM10) 48 and 72 h after initiation of the treatment. Despite the significant effect on tumor hypoxia, MM10 combined to irradiation did not increase the tumor growth delay compared to the irradiation alone. Conclusions: MM10 altered the OCR in prostate cancer cells. The effect of MM10 on the superoxide level was dependent on the antioxidant capacity of cell line. In vivo, MM10 alleviated tumor hypoxia, yet without consequence in terms of response to irradiation.
Collapse
Affiliation(s)
- Donatienne d’Hose
- Biomedical Magnetic Resonance, Louvain Drug Research Institute (LDRI), Université Catholique de Louvain (UCLouvain), 1200 Brussels, Belgium
| | - Barbara Mathieu
- Biomedical Magnetic Resonance, Louvain Drug Research Institute (LDRI), Université Catholique de Louvain (UCLouvain), 1200 Brussels, Belgium
| | - Lionel Mignion
- Biomedical Magnetic Resonance, Louvain Drug Research Institute (LDRI), Université Catholique de Louvain (UCLouvain), 1200 Brussels, Belgium
| | - Micael Hardy
- Institut de Chimie Radicalaire UMR 7273, Aix-Marseille Université/CNRS, 13013 Marseille, France
| | - Olivier Ouari
- Institut de Chimie Radicalaire UMR 7273, Aix-Marseille Université/CNRS, 13013 Marseille, France
| | - Bénédicte F. Jordan
- Biomedical Magnetic Resonance, Louvain Drug Research Institute (LDRI), Université Catholique de Louvain (UCLouvain), 1200 Brussels, Belgium
| | - Pierre Sonveaux
- Pole of Pharmacology and Therapeutics, Institut de Recherches Expérimentales et Cliniques (IREC), Université Catholique de Louvain (UCLouvain), 1200 Brussels, Belgium
- Walloon Excellence in Life Sciences and Biotechnology (WELBIO) Research Institute, 1300 Wavre, Belgium
| | - Bernard Gallez
- Biomedical Magnetic Resonance, Louvain Drug Research Institute (LDRI), Université Catholique de Louvain (UCLouvain), 1200 Brussels, Belgium
- Correspondence:
| |
Collapse
|
8
|
d'Hose D, Gallez B. Measurement of Mitochondrial (Dys)Function in Cellular Systems Using Electron Paramagnetic Resonance (EPR): Oxygen Consumption Rate and Superoxide Production. Methods Mol Biol 2022; 2497:83-95. [PMID: 35771436 DOI: 10.1007/978-1-0716-2309-1_5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
The oxygen consumption rate (OCR) and superoxide production are crucial when assessing mitochondrial function and/or dysfunction. EPR spectroscopy allows the measurement of both components either independently or simultaneously in a same cellular or mitochondrial preparation. OCR determination using EPR oximetry is based on the change in EPR linewidth of a paramagnetic oxygen sensing probe (a perdeuterated nitroxide) in the presence of oxygen consuming cells in a closed system. Superoxide production can be monitored by the oxidation of cyclic hydroxylamines into nitroxides. The contribution of superoxide to the nitroxide formation is deduced from experiments in the presence and in the absence of SOD and PEG-SOD as appropriate controls.
Collapse
Affiliation(s)
- Donatienne d'Hose
- Biomedical Magnetic Resonance, Louvain Drug Research Institute (LDRI), Université catholique de Louvain (UCLouvain), Brussels, Belgium.
| | - Bernard Gallez
- Biomedical Magnetic Resonance, Louvain Drug Research Institute (LDRI), Université catholique de Louvain (UCLouvain), Brussels, Belgium
| |
Collapse
|
9
|
d’Hose D, Isenborghs P, Brusa D, Jordan BF, Gallez B. The Short-Term Exposure to SDHI Fungicides Boscalid and Bixafen Induces a Mitochondrial Dysfunction in Selective Human Cell Lines. Molecules 2021; 26:5842. [PMID: 34641386 PMCID: PMC8510389 DOI: 10.3390/molecules26195842] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 09/23/2021] [Accepted: 09/24/2021] [Indexed: 11/16/2022] Open
Abstract
Fungicides are used to suppress the growth of fungi for crop protection. The most widely used fungicides are succinate dehydrogenase inhibitors (SDHIs) that act by blocking succinate dehydrogenase, the complex II of the mitochondrial electron transport chain. As recent reports suggested that SDHI-fungicides could not be selective for their fungi targets, we tested the mitochondrial function of human cells (Peripheral Blood Mononuclear Cells or PBMCs, HepG2 liver cells, and BJ-fibroblasts) after exposure for a short time to Boscalid and Bixafen, the two most used SDHIs. Electron Paramagnetic Resonance (EPR) spectroscopy was used to assess the oxygen consumption rate (OCR) and the level of mitochondrial superoxide radical. The OCR was significantly decreased in the three cell lines after exposure to both SDHIs. The level of mitochondrial superoxide increased in HepG2 after Boscalid and Bixafen exposure. In BJ-fibroblasts, mitochondrial superoxide was increased after Bixafen exposure, but not after Boscalid. No significant increase in mitochondrial superoxide was observed in PBMCs. Flow cytometry revealed an increase in the number of early apoptotic cells in HepG2 exposed to both SDHIs, but not in PBMCs and BJ-fibroblasts, results consistent with the high level of mitochondrial superoxide found in HepG2 cells after exposure. In conclusion, short-term exposure to Boscalid and Bixafen induces a mitochondrial dysfunction in human cells.
Collapse
Affiliation(s)
- Donatienne d’Hose
- Biomedical Magnetic Resonance, Louvain Drug Research Institute (LDRI), Université catholique de Louvain (UCLouvain), 1200 Brussels, Belgium; (D.d.); (P.I.); (B.F.J.)
| | - Pauline Isenborghs
- Biomedical Magnetic Resonance, Louvain Drug Research Institute (LDRI), Université catholique de Louvain (UCLouvain), 1200 Brussels, Belgium; (D.d.); (P.I.); (B.F.J.)
| | - Davide Brusa
- CytoFlux-Flow Cytometry Platform, Institut de Recherche Expérimentale et Clinique, Université catholique de Louvain (UCLouvain), 1200 Brussels, Belgium;
| | - Bénédicte F. Jordan
- Biomedical Magnetic Resonance, Louvain Drug Research Institute (LDRI), Université catholique de Louvain (UCLouvain), 1200 Brussels, Belgium; (D.d.); (P.I.); (B.F.J.)
| | - Bernard Gallez
- Biomedical Magnetic Resonance, Louvain Drug Research Institute (LDRI), Université catholique de Louvain (UCLouvain), 1200 Brussels, Belgium; (D.d.); (P.I.); (B.F.J.)
| |
Collapse
|
10
|
Cheng D, Xu Q, Wang Y, Li G, Sun W, Ma D, Zhou S, Liu Y, Han L, Ni C. Metformin attenuates silica-induced pulmonary fibrosis via AMPK signaling. J Transl Med 2021; 19:349. [PMID: 34399790 PMCID: PMC8365894 DOI: 10.1186/s12967-021-03036-5] [Citation(s) in RCA: 80] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 08/09/2021] [Indexed: 02/08/2023] Open
Abstract
Background Silicosis is one of the most common occupational pulmonary fibrosis caused by respirable silica-based particle exposure, with no ideal drugs at present. Metformin, a commonly used biguanide antidiabetic agent, could activate AMP-activated protein kinase (AMPK) to exert its pharmacological action. Therefore, we sought to investigate the role of metformin in silica-induced lung fibrosis. Methods The anti-fibrotic role of metformin was assessed in 50 mg/kg silica-induced lung fibrosis model. Silicon dioxide (SiO2)-stimulated lung epithelial cells/macrophages and transforming growth factor-beta 1 (TGF-β1)-induced differentiated lung fibroblasts were used for in vitro models. Results At the concentration of 300 mg/kg in the mouse model, metformin significantly reduced lung inflammation and fibrosis in SiO2-instilled mice at the early and late fibrotic stages. Besides, metformin (range 2–10 mM) reversed SiO2-induced cell toxicity, oxidative stress, and epithelial-mesenchymal transition process in epithelial cells (A549 and HBE), inhibited inflammation response in macrophages (THP-1), and alleviated TGF-β1-stimulated fibroblast activation in lung fibroblasts (MRC-5) via an AMPK-dependent pathway. Conclusions In this study, we identified that metformin might be a potential drug for silicosis treatment. Supplementary Information The online version contains supplementary material available at 10.1186/s12967-021-03036-5.
Collapse
Affiliation(s)
- Demin Cheng
- Department of Occupational Medical and Environmental Health, Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Qi Xu
- Department of Occupational Medical and Environmental Health, Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Yue Wang
- Department of Occupational Medical and Environmental Health, Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Guanru Li
- Department of Occupational Medical and Environmental Health, Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Wenqing Sun
- Department of Occupational Medical and Environmental Health, Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Dongyu Ma
- Department of Occupational Medical and Environmental Health, Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Siyun Zhou
- Department of Occupational Medical and Environmental Health, Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Yi Liu
- Department of Occupational Medical and Environmental Health, Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Lei Han
- Institute of Occupational Disease Prevention, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, 210028, China.
| | - Chunhui Ni
- Department of Occupational Medical and Environmental Health, Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, 211166, China.
| |
Collapse
|