1
|
Smimmo M, Casale V, D'Andrea D, Bello I, Iaccarino N, Romano F, Brancaleone V, Panza E, d'Emmanuele di Villa Bianca R, Katsouda A, Mitidieri E, Antoniadou I, Papapetropoulos A, Maione F, Castaldo S, Friuli M, Romano A, Gaetani S, Sorrentino R, Randazzo A, Cirino G, Bucci M, Filipovic M, Vellecco V. Defective protein persulfidation is involved in obesity associated skeletal muscle dysfunction: role of SIRT-1. Redox Biol 2025; 83:103645. [PMID: 40318302 PMCID: PMC12124727 DOI: 10.1016/j.redox.2025.103645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2025] [Revised: 04/16/2025] [Accepted: 04/17/2025] [Indexed: 05/07/2025] Open
Abstract
Ectopic fat deposition in skeletal muscle (SKM) due to obesity leads to biochemical and morphological alterations that deteriorate SKM quality and performance. Here, we show that impaired MPST-derived hydrogen sulfide (H2S) signaling contributes to obesity-related SKM dysfunction. Muscle tissues from obese db/db mice exhibit reduced MPST expression, correlating with decreased protein persulfidation and muscle performance in vivo. Mpst-/- mice show similar deficits as db/db mice, confirming the role of MPST. H2S supplementation improves locomotor activity in db/db mice and restores protein persulfidation, including SIRT-1. Myotubes placed in an "obese environment" display a downregulation of MPST, coupled with a reduced SIRT-1 persulfidation leading to an inflammatory state. Exogenous H2S exerts beneficial effects recovering SIRT-1 persulfidation/activity. Finally, muscle biopsies from obese individuals show reduced MPST expression, underscoring the translational relevance to human SKM health. Our study unveils a crucial role for MPST-derived H2S in obesity-associated SKM dysfunction via SIRT-1 persulfidation, highlighting the importance of the MPST/H2S pathway in maintaining healthy SKM function.
Collapse
Affiliation(s)
- M Smimmo
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Naples, Italy
| | - V Casale
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Naples, Italy
| | - D D'Andrea
- School of Molecular Biosciences, University of Glasgow, UK; Leibniz-Institut für Analytische Wissenschaften - ISAS - e.V. Dortmund, Germany
| | - I Bello
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Naples, Italy
| | - N Iaccarino
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Naples, Italy
| | - F Romano
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Naples, Italy
| | - V Brancaleone
- Department of Science, University of Potenza, Basilicata, Italy
| | - E Panza
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Naples, Italy
| | | | - A Katsouda
- Clinical, Experimental Surgery and Translational Research Center, Biomedical Research Foundation of the Academy of Athens, Athens, Greece; Laboratory of Pharmacology, Faculty of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece
| | - E Mitidieri
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Naples, Italy
| | - I Antoniadou
- Clinical, Experimental Surgery and Translational Research Center, Biomedical Research Foundation of the Academy of Athens, Athens, Greece; Laboratory of Pharmacology, Faculty of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece
| | - A Papapetropoulos
- Clinical, Experimental Surgery and Translational Research Center, Biomedical Research Foundation of the Academy of Athens, Athens, Greece; Laboratory of Pharmacology, Faculty of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece
| | - F Maione
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Naples, Italy
| | - S Castaldo
- U.O.C. Ricerca Formazione & Cooperazione Internazionale, A.O.R.N." Antonio Cardarelli", Naples, Italy
| | - M Friuli
- Department of Physiology and Pharmacology 'V. Erspamer', Sapienza University of Rome, Rome, Italy
| | - A Romano
- Department of Physiology and Pharmacology 'V. Erspamer', Sapienza University of Rome, Rome, Italy
| | - S Gaetani
- Department of Physiology and Pharmacology 'V. Erspamer', Sapienza University of Rome, Rome, Italy
| | - R Sorrentino
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Naples, Italy
| | - A Randazzo
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Naples, Italy
| | - G Cirino
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Naples, Italy
| | - M Bucci
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Naples, Italy.
| | - M Filipovic
- School of Molecular Biosciences, University of Glasgow, UK; Leibniz-Institut für Analytische Wissenschaften - ISAS - e.V. Dortmund, Germany
| | - V Vellecco
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Naples, Italy
| |
Collapse
|
2
|
Giovarelli M, Zecchini S, Casati SR, Lociuro L, Gjana O, Mollica L, Pisanu E, Mbissam HD, Cappellari O, De Santis C, Arcari A, Bigot A, Clerici G, Catalani E, Del Quondam S, Andolfo A, Braccia C, Cattaneo MG, Banfi C, Brunetti D, Mocciaro E, De Luca A, Clementi E, Cervia D, Perrotta C, De Palma C. The SIRT1 activator SRT2104 exerts exercise mimetic effects and promotes Duchenne muscular dystrophy recovery. Cell Death Dis 2025; 16:259. [PMID: 40195304 PMCID: PMC11977210 DOI: 10.1038/s41419-025-07595-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 03/12/2025] [Accepted: 03/24/2025] [Indexed: 04/09/2025]
Abstract
Duchenne muscular dystrophy (DMD) is a devastating genetic disorder, whose management is still a major challenge, despite progress in genetic and pharmacological disease-modifying treatments have been made. Mitochondrial dysfunctions contribute to DMD, however, there are no effective mitochondrial therapies for DMD. SIRT1 is a NAD+-dependent deacetylase that controls several key processes and whose impairment is involved in determining mitochondrial dysfunction in DMD. In addition to well-known resveratrol, other potent selective activators of SIRT1 exist, with better pharmacokinetics properties and a safer profile. Among these, SRT2104 is the most promising and advanced in clinical studies. Here we unveil the beneficial effects of SRT2104 in flies, mice, and patient-derived myoblasts as different models of DMD, demonstrating an anti-inflammatory, anti-fibrotic, and pro-regenerative action of the drug. We elucidate, by molecular dynamics simulations, that a conformational selection mechanism is responsible for the activation of SIRT1. Further, the impact of SRT2104 in reshaping muscle proteome and acetylome profiles has been investigated, highlighting effects that mimic those induced by exercise. Overall, our data suggest SRT2104 as a possible therapeutic candidate to successfully counteract DMD progression.
Collapse
Affiliation(s)
- Matteo Giovarelli
- Department of Biomedical and Clinical Sciences (DIBIC), Università degli Studi di Milano, Milan, Italy
| | - Silvia Zecchini
- Department of Biomedical and Clinical Sciences (DIBIC), Università degli Studi di Milano, Milan, Italy
| | - Silvia Rosanna Casati
- Department of Biomedical and Clinical Sciences (DIBIC), Università degli Studi di Milano, Milan, Italy
- Department of Medical Biotechnology and Translational Medicine (BioMeTra), Università degli Studi di Milano; Segrate, Milan, Italy
| | - Laura Lociuro
- Department of Medical Biotechnology and Translational Medicine (BioMeTra), Università degli Studi di Milano; Segrate, Milan, Italy
| | - Oriola Gjana
- Department of Medical Biotechnology and Translational Medicine (BioMeTra), Università degli Studi di Milano; Segrate, Milan, Italy
| | - Luca Mollica
- Department of Medical Biotechnology and Translational Medicine (BioMeTra), Università degli Studi di Milano; Segrate, Milan, Italy
| | - Elena Pisanu
- Department of Medical Biotechnology and Translational Medicine (BioMeTra), Università degli Studi di Milano; Segrate, Milan, Italy
| | - Harcel Djaya Mbissam
- Department of Biomedical and Clinical Sciences (DIBIC), Università degli Studi di Milano, Milan, Italy
| | - Ornella Cappellari
- Department of Pharmacy - Drug Sciences, University of Bari Aldo Moro, Bari, Italy
| | - Chiara De Santis
- Department of Pharmacy - Drug Sciences, University of Bari Aldo Moro, Bari, Italy
| | - Alessandro Arcari
- Department of Biomedical and Clinical Sciences (DIBIC), Università degli Studi di Milano, Milan, Italy
| | - Anne Bigot
- Sorbonne Université, Inserm, Institut de Myologie, Centre de Recherche en Myologie, Paris, France
| | | | - Elisabetta Catalani
- Department for Innovation in Biological, Agro-Food and Forest Systems (DIBAF), Università degli Studi della Tuscia, Viterbo, Italy
| | - Simona Del Quondam
- Department for Innovation in Biological, Agro-Food and Forest Systems (DIBAF), Università degli Studi della Tuscia, Viterbo, Italy
| | - Annapaola Andolfo
- ProMeFa, Proteomics and Metabolomics Facility, Center for Omics Sciences, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Clarissa Braccia
- ProMeFa, Proteomics and Metabolomics Facility, Center for Omics Sciences, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Maria Grazia Cattaneo
- Department of Medical Biotechnology and Translational Medicine (BioMeTra), Università degli Studi di Milano; Segrate, Milan, Italy
| | - Cristina Banfi
- Unit of Functional Proteomics, Metabolomics and Network Analysis, Centro Cardiologico Monzino IRCCS, Milan, Italy
| | - Dario Brunetti
- Unità di Genetica Medica e Neurogenetica, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milano, Italy
- Dipartimento di Scienze Cliniche e di Comunità, Dipartimento di Eccellenza 2023-2027, Università degli Studi di Milano, Milan, Italy
| | - Emanuele Mocciaro
- Department of Biomedical and Clinical Sciences (DIBIC), Università degli Studi di Milano, Milan, Italy
| | - Annamaria De Luca
- Department of Pharmacy - Drug Sciences, University of Bari Aldo Moro, Bari, Italy
| | - Emilio Clementi
- Department of Biomedical and Clinical Sciences (DIBIC), Università degli Studi di Milano, Milan, Italy
| | - Davide Cervia
- Department for Innovation in Biological, Agro-Food and Forest Systems (DIBAF), Università degli Studi della Tuscia, Viterbo, Italy
| | - Cristiana Perrotta
- Department of Biomedical and Clinical Sciences (DIBIC), Università degli Studi di Milano, Milan, Italy
| | - Clara De Palma
- Department of Medical Biotechnology and Translational Medicine (BioMeTra), Università degli Studi di Milano; Segrate, Milan, Italy.
| |
Collapse
|
3
|
Johnson EE, Ervasti JM. Stress exposure in the mdx mouse model of Duchenne muscular dystrophy provokes a widespread metabolic response. FEBS J 2025. [PMID: 39985215 DOI: 10.1111/febs.70029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 12/13/2024] [Accepted: 02/07/2025] [Indexed: 02/24/2025]
Abstract
Duchenne muscular dystrophy is a severe neuromuscular wasting disease that is caused by a primary defect in dystrophin protein and involves organism-wide comorbidities such as cardiomyopathy, metabolic and mitochondrial dysfunction, and nonprogressive cognitive impairments. Physiological stress exposure in the mdx mouse model of Duchenne muscular dystrophy results in phenotypic abnormalities that include locomotor inactivity, hypotension, and increased morbidity. Severe and lethal stress susceptibility in mdx mice corresponds to metabolic dysfunction in several coordinated metabolic pathways within dystrophin-deficient skeletal muscle, as well as prolonged elevation in mdx plasma corticosterone levels that extends beyond the wild-type (WT) stress response. Here, we performed a targeted mass spectrometry-based plasma metabolomics screen focused on biological stress pathways in healthy and dystrophin-deficient mdx mice exposed to mild scruff stress. One-third of the stress-relevant metabolites interrogated displayed significant elevation or depletion in mdx plasma after scruff stress and were restored to WT levels by skeletal muscle-specific dystrophin expression. The metabolic pathways of mdx mice altered by scruff stress are associated with regulation of the hypothalamic-pituitary-adrenal axis, locomotor tone, neurocognitive function, redox metabolism, cellular bioenergetics, and protein catabolism. Our data suggest that a mild stress triggers an exaggerated, multi-system metabolic response in mdx mice.
Collapse
Affiliation(s)
- Erynn E Johnson
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota Twin Cities, Minneapolis, MN, USA
| | - James M Ervasti
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota Twin Cities, Minneapolis, MN, USA
| |
Collapse
|
4
|
Nghiem PP, Rutledge AM, Tehas K, Kaderli C, Poling M, Arnim S, Dernov V, van Sas C, Mackey ML, Have GAMT, Engelen MPKJ, Deutz NEP. Beta-hydroxy-beta-methylbutyrate (HMB) improves daily activity and whole-body protein metabolism in Duchenne muscular dystrophy dogs: a pilot study. Sci Rep 2025; 15:4026. [PMID: 39894866 PMCID: PMC11788438 DOI: 10.1038/s41598-025-88651-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 01/29/2025] [Indexed: 02/04/2025] Open
Abstract
Duchenne muscular dystrophy (DMD) is a severe neuromuscular disease due to loss of dystrophin, leading to progressive muscle wasting and physical inactivity. In this pilot study, we studied the effect of daily supplementation of the anabolic substrate beta-hydroxy-beta-methylbutyrate (HMB) on whole body protein and amino acid kinetics using novel isotope methods and daily activity in a canine model of DMD. Six DMD dogs were administered 3 g daily of HMB or placebo for 28 days according to a randomized, placebo-controlled, double-blinded crossover design. We measured pre- and post-intervention daily activity, biochemistry markers, and whole-body amino acid kinetics. We tracked daily activity with an activity monitoring device and measured plasma creatine kinase and standard clinical biochemistry panels to monitor muscle and organ function. To calculate whole body and intracellular amino acid production, we administered in the postabsorptive state an IV stable isotope solution containing 20 amino acid tracers. We collected blood before and six times after until two hours post tracer pulse administration and measured amino acid enrichments and concentrations by LC-MS/MS, subsequently followed by (non) compartmental modeling of the decay enrichment curves. Results were expressed as mean with 95% CI. Whole body production, plasma concentrations, and intra-/extracellular compartmental analyses of various amino acids were attenuated in HMB-dosed DMD dogs. Specifically, the plasma concentration of hydroxyproline (marker of collagen breakdown) was significantly higher in the placebo group compared to the HMB group. The intra- and extracellular pool sizes and flux between the two compartments of hydroxyproline was reduced in HMB treated dogs. DMD dogs treated with HMB as compared to placebo had a respective 40% increase in exertional (play) (951 [827, 1075] versus 569 [491, 647]; p < 0.0001) and 10.5% increase in non-exertional (active) activity (15,366 [14742, 15990] versus 13,806 [13148,14466]; p = 0.0016). In addition, a 6% reduction was found in rest time after HMB supplementation compared to placebo (23,857 [23,130, 24,584], versus 25,363 [24500, 26225]; p = 0.0122). Creatine kinase was not statistically different between groups. We did not observe any adverse clinical or biochemical-related effects of HMB dosing. Daily HMB supplementation in DMD dogs can safely and positively influence protein and amino acid metabolism and improve overall daily activity.
Collapse
Affiliation(s)
- Peter P Nghiem
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX, 77843-4458, USA.
| | - Alexis M Rutledge
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX, 77843-4458, USA
| | - Kyle Tehas
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX, 77843-4458, USA
| | - Corine Kaderli
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX, 77843-4458, USA
| | - Meredith Poling
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX, 77843-4458, USA
| | - Sidney Arnim
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX, 77843-4458, USA
| | - Vitaliy Dernov
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX, 77843-4458, USA
| | - Celine van Sas
- Center for Translational Research in Aging and Longevity, Texas A&M University, College Station, TX, 77843, USA
| | - Macie L Mackey
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX, 77843-4458, USA
| | - Gabriella A M Ten Have
- Center for Translational Research in Aging and Longevity, Texas A&M University, College Station, TX, 77843, USA
| | - Mariëlle P K J Engelen
- Center for Translational Research in Aging and Longevity, Texas A&M University, College Station, TX, 77843, USA
| | - Nicolaas E P Deutz
- Center for Translational Research in Aging and Longevity, Texas A&M University, College Station, TX, 77843, USA
| |
Collapse
|
5
|
Southern WM, Johnson EE, Fasbender EK, Fallon KS, Cavazos CL, Lowe DA, Rodney GG, Ervasti JM. Impaired hydrogen sulfide biosynthesis underlies eccentric contraction-induced force loss in dystrophin-deficient skeletal muscle. J Clin Invest 2025; 135:e176942. [PMID: 39808494 PMCID: PMC11870723 DOI: 10.1172/jci176942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 01/08/2025] [Indexed: 01/16/2025] Open
Abstract
Eccentric contraction-induced (ECC-induced) force loss is a hallmark of murine dystrophin-deficient (mdx) skeletal muscle that is used to assess efficacy of potential therapies for Duchenne muscular dystrophy. While virtually all key proteins involved in muscle contraction have been implicated in ECC force loss, a unifying mechanism that orchestrates force loss across such diverse molecular targets has not been identified. We showed that correcting defective hydrogen sulfide (H2S) signaling in mdx muscle prevented ECC force loss. We also showed that the cysteine proteome of skeletal muscle functioned as a redox buffer in WT and mdx muscle during ECCs, but that buffer capacity in mdx muscle was significantly compromised by elevated basal protein oxidation. Finally, chemo-proteomic data suggested that H2S protected several proteins central to muscle contraction against irreversible oxidation through persulfidation-based priming. Our results support a unifying, redox-based mechanism of ECC force loss in mdx muscle.
Collapse
Affiliation(s)
- W. Michael Southern
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, Minnesota, USA
| | - Erynn E. Johnson
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, Minnesota, USA
| | - Elizabeth K. Fasbender
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, Minnesota, USA
| | - Katherine S. Fallon
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, Minnesota, USA
| | - Courtney L. Cavazos
- Department of Integrative Physiology, Baylor College of Medicine, Houston, Texas, USA
| | - Dawn A. Lowe
- Department of Family Medicine and Community Health, Division of Physical Therapy and Rehabilitation Science, University of Minnesota, Minneapolis, Minnesota, USA
| | - George G. Rodney
- Department of Integrative Physiology, Baylor College of Medicine, Houston, Texas, USA
| | - James M. Ervasti
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, Minnesota, USA
| |
Collapse
|
6
|
Gómez Armengol E, Merckx C, De Sutter H, De Bleecker JL, De Paepe B. Changes to the Autophagy-Related Muscle Proteome Following Short-Term Treatment with Ectoine in the Duchenne Muscular Dystrophy Mouse Model mdx. Int J Mol Sci 2025; 26:439. [PMID: 39859157 PMCID: PMC11765399 DOI: 10.3390/ijms26020439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 12/20/2024] [Accepted: 12/26/2024] [Indexed: 01/27/2025] Open
Abstract
The most severe form of muscular dystrophy (MD), known as Duchenne MD (DMD), remains an incurable disease, hence the ongoing efforts to develop supportive therapies. The dysregulation of autophagy, a degradative yet protective mechanism activated when tissues are under severe and prolonged stress, is critically involved in DMD. Treatments that harness autophagic capacities therefore represent a promising therapeutic approach. Osmolytes are protective organic molecules that regulate osmotic pressure and cellular homeostasis and may support tissue-repairing autophagy. We therefore explored the effects of the osmolyte ectoine in the standard mouse model of DMD, the mdx, focusing on the autophagy-related proteome. Mice were treated with ectoine in their drinking water (150 mg/kg) or through daily intraperitoneal injection (177 mg/kg) until they were 5.5 weeks old. Hind limb muscles were dissected, and samples were prepared for Western blotting for protein quantification and for immunofluorescence for an evaluation of tissue distribution. We report changes in the protein levels of autophagy-related 5 (ATG5), Ser366-phosphorylated sequestosome 1 (SQSTM1), heat shock protein 70 (HSP70), activated microtubule-associated protein 1A/1B-light chain 3 (LC3 II) and mammalian target of rapamycin (mTOR). Most importantly, ectoine significantly improved the balance between LC3 II and SQSTM1 levels in mdx gastrocnemius muscle, and LC3 II immunostaining was most pronounced in muscle fibers of the tibialis anterior from treated mdx. These findings lend support for the further investigation of ectoine as a potential therapeutic intervention for DMD.
Collapse
MESH Headings
- Animals
- Amino Acids, Diamino/pharmacology
- Amino Acids, Diamino/administration & dosage
- Autophagy/drug effects
- Muscular Dystrophy, Duchenne/metabolism
- Muscular Dystrophy, Duchenne/drug therapy
- Muscular Dystrophy, Duchenne/pathology
- Mice, Inbred mdx
- Mice
- Disease Models, Animal
- Proteome/metabolism
- Muscle, Skeletal/metabolism
- Muscle, Skeletal/drug effects
- Muscle, Skeletal/pathology
- Male
- Sequestosome-1 Protein/metabolism
- HSP70 Heat-Shock Proteins/metabolism
- Mice, Inbred C57BL
Collapse
Affiliation(s)
| | | | | | | | - Boel De Paepe
- Neuromuscular Reference Center and Department of Neurology, Ghent University Hospital, Corneel Heymanslaan 10, 9000 Ghent, Belgium (J.L.D.B.)
| |
Collapse
|
7
|
Guedira G, Petermann O, Scapozza L, Ismail HM. Diapocynin treatment induces functional and structural improvements in an advanced disease state in the mdx 5Cv mice. Biomed Pharmacother 2024; 177:116957. [PMID: 38908198 DOI: 10.1016/j.biopha.2024.116957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 05/30/2024] [Accepted: 06/15/2024] [Indexed: 06/24/2024] Open
Abstract
Duchenne muscular dystrophy (DMD) is the most common muscular disorder affecting children. It affects nearly 1 male birth over 5000. Oxidative stress is a pervasive feature in the pathogenesis of DMD. Recent work shows that the main generators of ROS are NADPH oxidases (NOX), suggesting that they are an early and promising target in DMD. In addition, skeletal muscles of mdx mice, a murine model of DMD, overexpress NOXes. We investigated the impact of diapocynin, a dimer of the NOX inhibitor apocynin, on the chronic disease phase of mdx5Cv mice. Treatment of these mice with diapocynin from 7 to 10 months of age resulted in decreased hypertrophy of several muscles, prevented force loss induced by tetanic and eccentric contractions, improved muscle and respiratory functions, decreased fibrosis of the diaphragm and positively regulated the expression of disease modifiers. These encouraging results ensure the potential role of diapocynin in future treatment strategies.
Collapse
Affiliation(s)
- Ghali Guedira
- Pharmaceutical Biochemistry/Chemistry Group, School of Pharmaceutical Sciences, University of Geneva, Geneva, Switzerland; Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, Geneva, Switzerland
| | - Olivier Petermann
- Pharmaceutical Biochemistry/Chemistry Group, School of Pharmaceutical Sciences, University of Geneva, Geneva, Switzerland; Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, Geneva, Switzerland
| | - Leonardo Scapozza
- Pharmaceutical Biochemistry/Chemistry Group, School of Pharmaceutical Sciences, University of Geneva, Geneva, Switzerland; Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, Geneva, Switzerland.
| | - Hesham M Ismail
- Pharmaceutical Biochemistry/Chemistry Group, School of Pharmaceutical Sciences, University of Geneva, Geneva, Switzerland; Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, Geneva, Switzerland
| |
Collapse
|
8
|
Dubinin MV, Mikheeva IB, Stepanova AE, Igoshkina AD, Cherepanova AA, Semenova AA, Sharapov VA, Kireev II, Belosludtsev KN. Mitochondrial Transplantation Therapy Ameliorates Muscular Dystrophy in mdx Mouse Model. Biomolecules 2024; 14:316. [PMID: 38540736 PMCID: PMC10968431 DOI: 10.3390/biom14030316] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 03/03/2024] [Accepted: 03/05/2024] [Indexed: 06/10/2025] Open
Abstract
Duchenne muscular dystrophy is caused by loss of the dystrophin protein. This pathology is accompanied by mitochondrial dysfunction contributing to muscle fiber instability. It is known that mitochondria-targeted in vivo therapy mitigates pathology and improves the quality of life of model animals. In the present work, we applied mitochondrial transplantation therapy (MTT) to correct the pathology in dystrophin-deficient mdx mice. Intramuscular injections of allogeneic mitochondria obtained from healthy animals into the hind limbs of mdx mice alleviated skeletal muscle injury, reduced calcium deposits in muscles and serum creatine kinase levels, and improved the grip strength of the hind limbs and motor activity of recipient mdx mice. We noted normalization of the mitochondrial ultrastructure and sarcoplasmic reticulum/mitochondria interactions in mdx muscles. At the same time, we revealed a decrease in the efficiency of oxidative phosphorylation in the skeletal muscle mitochondria of recipient mdx mice accompanied by a reduction in lipid peroxidation products (MDA products) and reduced calcium overloading. We found no effect of MTT on the expression of mitochondrial signature genes (Drp1, Mfn2, Ppargc1a, Pink1, Parkin) and on the level of mtDNA. Our results show that systemic MTT mitigates the development of destructive processes in the quadriceps muscle of mdx mice.
Collapse
Affiliation(s)
- Mikhail V. Dubinin
- Department of Biochemistry, Cell Biology and Microbiology, Mari State University, pl. Lenina 1, 424001 Yoshkar-Ola, Russia; (A.E.S.); (A.D.I.); (A.A.C.); (A.A.S.); (V.A.S.); (K.N.B.)
- Prokhorov General Physics Institute, Russian Academy of Sciences, Vavilov St. 38, 119991 Moscow, Russia
| | - Irina B. Mikheeva
- Laboratory of Mitochondrial Transport, Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Institutskaya 3, 142290 Pushchino, Russia;
| | - Anastasia E. Stepanova
- Department of Biochemistry, Cell Biology and Microbiology, Mari State University, pl. Lenina 1, 424001 Yoshkar-Ola, Russia; (A.E.S.); (A.D.I.); (A.A.C.); (A.A.S.); (V.A.S.); (K.N.B.)
| | - Anastasia D. Igoshkina
- Department of Biochemistry, Cell Biology and Microbiology, Mari State University, pl. Lenina 1, 424001 Yoshkar-Ola, Russia; (A.E.S.); (A.D.I.); (A.A.C.); (A.A.S.); (V.A.S.); (K.N.B.)
| | - Alena A. Cherepanova
- Department of Biochemistry, Cell Biology and Microbiology, Mari State University, pl. Lenina 1, 424001 Yoshkar-Ola, Russia; (A.E.S.); (A.D.I.); (A.A.C.); (A.A.S.); (V.A.S.); (K.N.B.)
| | - Alena A. Semenova
- Department of Biochemistry, Cell Biology and Microbiology, Mari State University, pl. Lenina 1, 424001 Yoshkar-Ola, Russia; (A.E.S.); (A.D.I.); (A.A.C.); (A.A.S.); (V.A.S.); (K.N.B.)
| | - Vyacheslav A. Sharapov
- Department of Biochemistry, Cell Biology and Microbiology, Mari State University, pl. Lenina 1, 424001 Yoshkar-Ola, Russia; (A.E.S.); (A.D.I.); (A.A.C.); (A.A.S.); (V.A.S.); (K.N.B.)
| | - Igor I. Kireev
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119991 Moscow, Russia;
| | - Konstantin N. Belosludtsev
- Department of Biochemistry, Cell Biology and Microbiology, Mari State University, pl. Lenina 1, 424001 Yoshkar-Ola, Russia; (A.E.S.); (A.D.I.); (A.A.C.); (A.A.S.); (V.A.S.); (K.N.B.)
- Laboratory of Mitochondrial Transport, Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Institutskaya 3, 142290 Pushchino, Russia;
| |
Collapse
|
9
|
Łoboda A, Dulak J. Cardioprotective Effects of Hydrogen Sulfide and Its Potential Therapeutic Implications in the Amelioration of Duchenne Muscular Dystrophy Cardiomyopathy. Cells 2024; 13:158. [PMID: 38247849 PMCID: PMC10814317 DOI: 10.3390/cells13020158] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/10/2024] [Accepted: 01/12/2024] [Indexed: 01/23/2024] Open
Abstract
Hydrogen sulfide (H2S) belongs to the family of gasotransmitters and can modulate a myriad of biological signaling pathways. Among others, its cardioprotective effects, through antioxidant, anti-inflammatory, anti-fibrotic, and proangiogenic activities, are well-documented in experimental studies. Cardiorespiratory failure, predominantly cardiomyopathy, is a life-threatening complication that is the number one cause of death in patients with Duchenne muscular dystrophy (DMD). Although recent data suggest the role of H2S in ameliorating muscle wasting in murine and Caenorhabditis elegans models of DMD, possible cardioprotective effects have not yet been addressed. In this review, we summarize the current understanding of the role of H2S in animal models of cardiac dysfunctions and cardiac cells. We highlight that DMD may be amenable to H2S supplementation, and we suggest H2S as a possible factor regulating DMD-associated cardiomyopathy.
Collapse
Affiliation(s)
- Agnieszka Łoboda
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Krakow, Gronostajowa 7 Street, 30-387 Kraków, Poland;
| | | |
Collapse
|
10
|
Mucha O, Myszka M, Podkalicka P, Świderska B, Malinowska A, Dulak J, Łoboda A. Proteome Profiling of the Dystrophic mdx Mice Diaphragm. Biomolecules 2023; 13:1648. [PMID: 38002330 PMCID: PMC10669179 DOI: 10.3390/biom13111648] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 11/02/2023] [Accepted: 11/08/2023] [Indexed: 11/26/2023] Open
Abstract
Mdx mice with a spontaneous mutation in exon 23 of the Dmd gene represent the most common model to investigate the pathophysiology of Duchenne muscular dystrophy (DMD). The disease, caused by the lack of functional dystrophin, is characterized by irreversible impairment of muscle functions, with the diaphragm affected earlier and more severely than other skeletal muscles. We applied a label-free (LF) method and the more thorough tandem mass tag (TMT)-based method to analyze differentially expressed proteins in the diaphragm of 6-week-old mdx mice. The comparison of both methods revealed 88 commonly changed proteins. A more in-depth analysis of the TMT-based method showed 953 significantly changed proteins, with 867 increased and 86 decreased in dystrophic animals (q-value < 0.05, fold-change threshold: 1.5). Consequently, several dysregulated processes were demonstrated, including the immune response, fibrosis, translation, and programmed cell death. Interestingly, in the dystrophic diaphragm, we found a significant decrease in the expression of enzymes generating hydrogen sulfide (H2S), suggesting that alterations in the metabolism of this gaseous mediator could modulate DMD progression, which could be a potential target for pharmacological intervention.
Collapse
Affiliation(s)
- Olga Mucha
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Krakow, Gronostajowa 7 Street, 30-387 Kraków, Poland; (O.M.); (M.M.); (P.P.); (J.D.)
| | - Małgorzata Myszka
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Krakow, Gronostajowa 7 Street, 30-387 Kraków, Poland; (O.M.); (M.M.); (P.P.); (J.D.)
- Doctoral School of Exact and Natural Sciences, Łojasiewicza 11 Street, 30-348 Kraków, Poland
| | - Paulina Podkalicka
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Krakow, Gronostajowa 7 Street, 30-387 Kraków, Poland; (O.M.); (M.M.); (P.P.); (J.D.)
| | - Bianka Świderska
- Mass Spectrometry Laboratory, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5a Street, 02-106 Warsaw, Poland; (B.Ś.); (A.M.)
| | - Agata Malinowska
- Mass Spectrometry Laboratory, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5a Street, 02-106 Warsaw, Poland; (B.Ś.); (A.M.)
| | - Józef Dulak
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Krakow, Gronostajowa 7 Street, 30-387 Kraków, Poland; (O.M.); (M.M.); (P.P.); (J.D.)
| | - Agnieszka Łoboda
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Krakow, Gronostajowa 7 Street, 30-387 Kraków, Poland; (O.M.); (M.M.); (P.P.); (J.D.)
| |
Collapse
|
11
|
Martelli A, d'Emmanuele di Villa Bianca R, Cirino G, Sorrentino R, Calderone V, Bucci M. Hydrogen sulfide and sulfaceutic or sulfanutraceutic agents: Classification, differences and relevance in preclinical and clinical studies. Pharmacol Res 2023; 196:106947. [PMID: 37797660 DOI: 10.1016/j.phrs.2023.106947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 10/01/2023] [Accepted: 10/02/2023] [Indexed: 10/07/2023]
Abstract
Hydrogen sulfide (H2S) has been extensively studied as a signal molecule in the body for the past 30 years. Researchers have conducted studies using both natural and synthetic sources of H2S, known as H2S donors, which have different characteristics in terms of how they release H2S. These donors can be inorganic salts or have various organic structures. In recent years, certain types of sulfur compounds found naturally in foods have been characterized as H2S donors and explored for their potential health benefits. These compounds are referred to as "sulfanutraceuticals," a term that combines "nutrition" and "pharmaceutical". It is used to describe products derived from food sources that offer additional health advantages. By introducing the terms "sulfaceuticals" and "sulfanutraceuticals," we categorize sulfur-containing substances based on their origin and their use in both preclinical and clinical research, as well as in dietary supplements.
Collapse
Affiliation(s)
- A Martelli
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy; Interdepartmental Research Center "Nutrafood: Nutraceutica e Alimentazione per la Salute", University of Pisa, 56126 Pisa, Italy; Interdepartmental Research Center "Biology and Pathology of Ageing", University of Pisa, 56126 Pisa, Italy
| | - R d'Emmanuele di Villa Bianca
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Via Domenico Montesano 49, 80131 Naples, Italy
| | - G Cirino
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Via Domenico Montesano 49, 80131 Naples, Italy
| | - R Sorrentino
- Department of Molecular Medicine and Medical Biotechnologies, School of Medicine, University of Naples, Federico II, Via Pansini, 5, 80131 Naples, Italy
| | - V Calderone
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy; Interdepartmental Research Center "Nutrafood: Nutraceutica e Alimentazione per la Salute", University of Pisa, 56126 Pisa, Italy; Interdepartmental Research Center "Biology and Pathology of Ageing", University of Pisa, 56126 Pisa, Italy.
| | - M Bucci
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Via Domenico Montesano 49, 80131 Naples, Italy
| |
Collapse
|
12
|
Myszka M, Mucha O, Podkalicka P, Waśniowska U, Dulak J, Łoboda A. Sodium hydrosulfide moderately alleviates the hallmark symptoms of Duchenne muscular dystrophy in mdx mice. Eur J Pharmacol 2023; 955:175928. [PMID: 37507045 DOI: 10.1016/j.ejphar.2023.175928] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 06/22/2023] [Accepted: 07/18/2023] [Indexed: 07/30/2023]
Abstract
Duchenne muscular dystrophy (DMD) is an incurable disease caused by mutations in the X-linked DMD gene that encodes a structural muscle protein, dystrophin. This, in turn, leads to progressive degeneration of the skeletal muscles and the heart. Hydrogen sulfide (H2S), the pleiotropic agent with antioxidant, anti-inflammatory, and pro-angiogenic activities, could be considered a promising therapeutic factor for DMD. In this work, we studied the effect of daily intraperitoneal administration of the H2S donor, sodium hydrosulfide (NaHS, 100 μmol/kg/day for 5 weeks) on skeletal muscle (gastrocnemius, diaphragm and tibialis anterior) pathology in dystrophin-deficient mdx mice, characterized by decreased expression of H2S-generating enzymes. NaHS reduced the level of muscle damage markers in plasma (creatine kinase, lactate dehydrogenase and osteopontin). It lowered oxidative stress by affecting the GSH/GSSG ratio, up-regulating the level of cytoprotective heme oxygenase-1 (HO-1) and down-regulating the NF-κB pathway. In the gastrocnemius muscle, it also increased angiogenic vascular endothelial growth factor (Vegf) and its receptor (Kdr) expression, accompanied by the elevated number of α-SMA/CD31/lectin-positive blood vessels. The expression of fibrotic regulators, like Tgfβ, Col1a1 and Fn1 was decreased by NaHS in the tibialis anterior, while the level of autophagy markers (AMPKα signalling and Atg genes), was mostly affected in the gastrocnemius. Histological and molecular analysis showed no effect of H2S donor on regeneration and the muscle fiber type composition. Overall, the H2S donor modified the gene expression and protein level of molecules associated with the pathophysiology of DMD, contributing to the regulation of oxidative stress, inflammation, autophagy, and angiogenesis.
Collapse
Affiliation(s)
- Małgorzata Myszka
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, Kraków, 30-387, Poland; Doctoral School of Exact and Natural Sciences, Jagiellonian University, Prof. St. Łojasiewicz 11, 30-348, Krakow, Poland
| | - Olga Mucha
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, Kraków, 30-387, Poland
| | - Paulina Podkalicka
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, Kraków, 30-387, Poland
| | - Urszula Waśniowska
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, Kraków, 30-387, Poland
| | - Józef Dulak
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, Kraków, 30-387, Poland
| | - Agnieszka Łoboda
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, Kraków, 30-387, Poland.
| |
Collapse
|
13
|
De Paepe B. What Nutraceuticals Can Do for Duchenne Muscular Dystrophy: Lessons Learned from Amino Acid Supplementation in Mouse Models. Biomedicines 2023; 11:2033. [PMID: 37509672 PMCID: PMC10377666 DOI: 10.3390/biomedicines11072033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 07/13/2023] [Accepted: 07/17/2023] [Indexed: 07/30/2023] Open
Abstract
Duchenne muscular dystrophy (DMD), the severest form of muscular dystrophy, is characterized by progressive muscle weakness with fatal outcomes most often before the fourth decade of life. Despite the recent addition of molecular treatments, DMD remains a disease without a cure, and the need persists for the development of supportive therapies aiming to help improve patients' quality of life. This review focuses on the therapeutical potential of amino acid and derivative supplements, summarizing results obtained in preclinical studies in murine disease models. Several promising compounds have emerged, with L-arginine, N-acetylcysteine, and taurine featuring among the most intensively investigated. Their beneficial effects include reduced inflammatory, oxidative, fibrotic, and necrotic damage to skeletal muscle tissues. Improvement of muscle strength and endurance have been reported; however, mild side effects have also surfaced. More explorative, placebo-controlled and long-term clinical trials would need to be conducted in order to identify amino acid formulae that are safe and of true benefit to DMD patients.
Collapse
Affiliation(s)
- Boel De Paepe
- Department of Neurology, Ghent University & Neuromuscular Reference Center, Ghent University Hospital, Route 830, Corneel Heymanslaan 10, 9000 Ghent, Belgium
| |
Collapse
|
14
|
Nagy P. Recent advances in sulfur biology and chemistry. Redox Biol 2023:102716. [PMID: 37127439 DOI: 10.1016/j.redox.2023.102716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2023] Open
Affiliation(s)
- Péter Nagy
- Department of Molecular Immunology and Toxicology and the National Tumor Biology Laboratory, National Institute of Oncology, 1122, Budapest, Hungary; Department of Anatomy and Histology, Laboratory of Redox Biology, University of Veterinary Medicine, 1078, Budapest, Hungary; Chemistry Institute, University of Debrecen, 4012, Debrecen, Hungary.
| |
Collapse
|
15
|
Vellecco V, Saviano A, Raucci F, Casillo GM, Mansour AA, Panza E, Mitidieri E, Femminella GD, Ferrara N, Cirino G, Sorrentino R, Iqbal AJ, d'Emmanuele di Villa Bianca R, Bucci M, Maione F. Interleukin-17 (IL-17) triggers systemic inflammation, peripheral vascular dysfunction, and related prothrombotic state in a mouse model of Alzheimer's disease. Pharmacol Res 2023; 187:106595. [PMID: 36470548 DOI: 10.1016/j.phrs.2022.106595] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 11/22/2022] [Accepted: 11/30/2022] [Indexed: 12/08/2022]
Abstract
Alzheimer's disease (AD) is one of the most prevalent forms of neurodegenerative disorders. Previously, we have shown that in vivo administration of an IL-17 neutralizing antibody (IL-17Ab) rescues amyloid-β-induced neuro-inflammation and memory impairment, demonstrating the pivotal role of IL-17 in AD-derived cognitive deficit. Recently, AD has been recognized as a more intriguing pathology affecting vascular networks and platelet function. However, not much is known about peripheral vascular inflammation and how pro-inflammatory circulating cells/mediators could affect peripheral vessels' function. This study aimed to evaluate whether IL-17Ab treatment could also impact peripheral AD features, such as systemic inflammation, peripheral vascular dysfunction, and related pro-thrombotic state in a non-genetic mouse model of AD. Mice were injected intracerebroventricularly with Aβ1-42 peptide (3 μg/3 μl). To evaluate the systemic/peripheral protective profile of IL-17Ab, we used an intranasal administration of IL-17Ab (1 μg/10 μl) at 5, 12, and 19 days after Aβ1-42 injection. Circulating Th17/Treg cells and related cyto-chemokines, haematological parameters, vascular/endothelial reactivity, platelets and coagulation function in mice were evaluated. IL-17Ab treatment ameliorates the systemic/peripheral inflammation, immunological perturbance, vascular/endothelial impairment and pro-thrombotic state, suggesting a key role for this cytokine in fostering inflammatory processes that characterize the multifaced aspects of AD.
Collapse
Affiliation(s)
- Valentina Vellecco
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Via Domenico Montesano 49, 80131 Naples, Italy.
| | - Anella Saviano
- ImmunoPharmaLab, Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Via Domenico Montesano 49, 80131 Naples, Italy.
| | - Federica Raucci
- ImmunoPharmaLab, Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Via Domenico Montesano 49, 80131 Naples, Italy.
| | - Gian Marco Casillo
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Via Domenico Montesano 49, 80131 Naples, Italy.
| | - Adel Abo Mansour
- Institute of Cardiovascular Sciences (ICVS), College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK; Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia.
| | - Elisabetta Panza
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Via Domenico Montesano 49, 80131 Naples, Italy.
| | - Emma Mitidieri
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Via Domenico Montesano 49, 80131 Naples, Italy.
| | - Grazia Daniela Femminella
- Department of Translational Medical Sciences, University of Naples Federico II, 80131 Naples, Italy.
| | - Nicola Ferrara
- Department of Translational Medical Sciences, University of Naples Federico II, 80131 Naples, Italy; Istituti Clinici Scientifici ICS-Maugeri, Telese Terme, BN, Italy.
| | - Giuseppe Cirino
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Via Domenico Montesano 49, 80131 Naples, Italy.
| | - Raffaella Sorrentino
- Department of Molecular Medicine and Medical Biotechnologies, School of Medicine, University of Naples, Federico II, Via Pansini, 5, 80131 Naples, Italy.
| | - Asif Jilani Iqbal
- ImmunoPharmaLab, Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Via Domenico Montesano 49, 80131 Naples, Italy; Institute of Cardiovascular Sciences (ICVS), College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK.
| | | | - Mariarosaria Bucci
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Via Domenico Montesano 49, 80131 Naples, Italy.
| | - Francesco Maione
- ImmunoPharmaLab, Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Via Domenico Montesano 49, 80131 Naples, Italy.
| |
Collapse
|
16
|
Vo TTT, Huynh TD, Wang CS, Lai KH, Lin ZC, Lin WN, Chen YL, Peng TY, Wu HC, Lee IT. The Potential Implications of Hydrogen Sulfide in Aging and Age-Related Diseases through the Lens of Mitohormesis. Antioxidants (Basel) 2022; 11:1619. [PMID: 36009338 PMCID: PMC9404924 DOI: 10.3390/antiox11081619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 08/15/2022] [Accepted: 08/18/2022] [Indexed: 11/16/2022] Open
Abstract
The growing increases in the global life expectancy and the incidence of chronic diseases as a direct consequence have highlighted a demand to develop effective strategies for promoting the health of the aging population. Understanding conserved mechanisms of aging across species is believed helpful for the development of approaches to delay the progression of aging and the onset of age-related diseases. Mitochondrial hormesis (or mitohormesis), which can be defined as an evolutionary-based adaptive response to low-level stress, is emerging as a promising paradigm in the field of anti-aging. Depending on the severity of the perceived stress, there are varying levels of hormetic response existing in the mitochondria called mitochondrial stress response. Hydrogen sulfide (H2S) is a volatile, flammable, and toxic gas, with a characteristic odor of rotten eggs. However, H2S is now recognized an important gaseous signaling molecule to both physiology and pathophysiology in biological systems. Recent studies that elucidate the importance of H2S as a therapeutic molecule has suggested its protective effects beyond the traditional understanding of its antioxidant properties. H2S can also be crucial for the activation of mitochondrial stress response, postulating a potential mechanism for combating aging and age-related diseases. Therefore, this review focuses on highlighting the involvement of H2S and its sulfur-containing derivatives in the induction of mitochondrial stress response, suggesting a novel possibility of mitohormesis through which this gaseous signaling molecule may promote the healthspan and lifespan of an organism.
Collapse
Affiliation(s)
- Thi Thuy Tien Vo
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei 11031, Taiwan
| | - Thao Duy Huynh
- Lab of Biomaterial, Department of Histology, Embryology, and Genetics, Pham Ngoc Thach University of Medicine, Ho Chi Minh City 72500, Vietnam
| | - Ching-Shuen Wang
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei 11031, Taiwan
| | - Kuei-Hung Lai
- PhD Program in Clinical Drug Development of Herbal Medicine, College of Pharmacy, Taipei Medical University, Taipei 11031, Taiwan
| | - Zih-Chan Lin
- Department of Nursing, Division of Basic Medical Sciences, and Chronic Diseases and Health Promotion Research Center, Chang Gung University of Science and Technology, Puzi City, Chiayi County 61363, Taiwan
| | - Wei-Ning Lin
- Graduate Institute of Biomedical and Pharmaceutical Science, Fu Jen Catholic University, New Taipei City 24205, Taiwan
| | - Yuh-Lien Chen
- Department of Anatomy and Cell Biology, College of Medicine, National Taiwan University, Taipei 10617, Taiwan
| | - Tzu-Yu Peng
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei 11031, Taiwan
| | - Ho-Cheng Wu
- Graduate Institute of Pharmacognosy, College of Pharmacy, Taipei Medical University, Taipei 11031, Taiwan
| | - I-Ta Lee
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei 11031, Taiwan
| |
Collapse
|
17
|
Song ZL, Zhao L, Ma T, Osama A, Shen T, He Y, Fang J. Progress and perspective on hydrogen sulfide donors and their biomedical applications. Med Res Rev 2022; 42:1930-1977. [PMID: 35657029 DOI: 10.1002/med.21913] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 05/18/2022] [Accepted: 05/23/2022] [Indexed: 12/22/2022]
Abstract
Following the discovery of nitric oxide (NO) and carbon monoxide (CO), hydrogen sulfide (H2 S) has been identified as the third gasotransmitter in humans. Increasing evidence have shown that H2 S is of preventive or therapeutic effects on diverse pathological complications. As a consequence, it is of great significance to develop suitable approaches of H2 S-based therapeutics for biomedical applications. H2 S-releasing agents (H2 S donors) play important roles in exploring and understanding the physiological functions of H2 S. More importantly, accumulating studies have validated the theranostic potential of H2 S donors in extensive repertoires of in vitro and in vivo disease models. Thus, it is imperative to summarize and update the literatures in this field. In this review, first, the background of H2 S on its chemical and biological aspects is concisely introduced. Second, the studies regarding the H2 S-releasing compounds are categorized and described, and accordingly, their H2 S-donating mechanisms, biological applications, and therapeutic values are also comprehensively delineated and discussed. Necessary comparisons between related H2 S donors are presented, and the drawbacks of many typical H2 S donors are analyzed and revealed. Finally, several critical challenges encountered in the development of multifunctional H2 S donors are discussed, and the direction of their future development as well as their biomedical applications is proposed. We expect that this review will reach extensive audiences across multiple disciplines and promote the innovation of H2 S biomedicine.
Collapse
Affiliation(s)
- Zi-Long Song
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu, China.,Botanical Agrochemicals Research & Development Center, Lanzhou Jiaotong University, Lanzhou, Gansu, China
| | - Lanning Zhao
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu, China.,School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China
| | - Tao Ma
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu, China
| | - Alsiddig Osama
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu, China
| | - Tong Shen
- Botanical Agrochemicals Research & Development Center, Lanzhou Jiaotong University, Lanzhou, Gansu, China
| | - Yilin He
- Botanical Agrochemicals Research & Development Center, Lanzhou Jiaotong University, Lanzhou, Gansu, China
| | - Jianguo Fang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu, China.,School of Chemistry and Chemical Engineering, Nanjing University of Science & Technology, Nanjing, China
| |
Collapse
|
18
|
Micheli L, Mitidieri E, Turnaturi C, Vanacore D, Ciampi C, Lucarini E, Cirino G, Ghelardini C, Sorrentino R, Di Cesare Mannelli L, d’Emmanuele di Villa Bianca R. Beneficial Effect of H 2S-Releasing Molecules in an In Vitro Model of Sarcopenia: Relevance of Glucoraphanin. Int J Mol Sci 2022; 23:5955. [PMID: 35682634 PMCID: PMC9180606 DOI: 10.3390/ijms23115955] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 05/19/2022] [Accepted: 05/20/2022] [Indexed: 02/01/2023] Open
Abstract
Sarcopenia is a gradual and generalized skeletal muscle (SKM) syndrome, characterized by the impairment of muscle components and functionality. Hydrogen sulfide (H2S), endogenously formed within the body from the activity of cystathionine-γ-lyase (CSE), cystathionine- β-synthase (CBS), and mercaptopyruvate sulfurtransferase, is involved in SKM function. Here, in an in vitro model of sarcopenia based on damage induced by dexamethasone (DEX, 1 μM, 48 h treatment) in C2C12-derived myotubes, we investigated the protective potential of exogenous and endogenous sources of H2S, i.e., glucoraphanin (30 μM), L-cysteine (150 μM), and 3-mercaptopyruvate (150 μM). DEX impaired the H2S signalling in terms of a reduction in CBS and CSE expression and H2S biosynthesis. Glucoraphanin and 3-mercaptopyruvate but not L-cysteine prevented the apoptotic process induced by DEX. In parallel, the H2S-releasing molecules reduced the oxidative unbalance evoked by DEX, reducing catalase activity, O2- levels, and protein carbonylation. Glucoraphanin, 3-mercaptopyruvate, and L-cysteine avoided the changes in myotubes morphology and morphometrics after DEX treatment. In conclusion, in an in vitro model of sarcopenia, an impairment in CBS/CSE/H2S signalling occurs, whereas glucoraphanin, a natural H2S-releasing molecule, appears more effective for preventing the SKM damage. Therefore, glucoraphanin supplementation could be an innovative therapeutic approach in the management of sarcopenia.
Collapse
Affiliation(s)
- Laura Micheli
- Department of Neuroscience, Psychology, Drug Research and Child Health-Neurofarba—Section of Pharmacology and Toxicology, University of Florence, 50139 Florence, Italy; (L.M.); (C.C.); (E.L.); (C.G.)
| | - Emma Mitidieri
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, 80131 Naples, Italy; (E.M.); (C.T.); (D.V.); (G.C.); (R.d.d.V.B.)
| | - Carlotta Turnaturi
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, 80131 Naples, Italy; (E.M.); (C.T.); (D.V.); (G.C.); (R.d.d.V.B.)
| | - Domenico Vanacore
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, 80131 Naples, Italy; (E.M.); (C.T.); (D.V.); (G.C.); (R.d.d.V.B.)
| | - Clara Ciampi
- Department of Neuroscience, Psychology, Drug Research and Child Health-Neurofarba—Section of Pharmacology and Toxicology, University of Florence, 50139 Florence, Italy; (L.M.); (C.C.); (E.L.); (C.G.)
| | - Elena Lucarini
- Department of Neuroscience, Psychology, Drug Research and Child Health-Neurofarba—Section of Pharmacology and Toxicology, University of Florence, 50139 Florence, Italy; (L.M.); (C.C.); (E.L.); (C.G.)
| | - Giuseppe Cirino
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, 80131 Naples, Italy; (E.M.); (C.T.); (D.V.); (G.C.); (R.d.d.V.B.)
| | - Carla Ghelardini
- Department of Neuroscience, Psychology, Drug Research and Child Health-Neurofarba—Section of Pharmacology and Toxicology, University of Florence, 50139 Florence, Italy; (L.M.); (C.C.); (E.L.); (C.G.)
| | - Raffaella Sorrentino
- Department of Molecular Medicine and Medical Biotechnology, School of Medicine, University of Naples Federico II, 80131 Naples, Italy;
| | - Lorenzo Di Cesare Mannelli
- Department of Neuroscience, Psychology, Drug Research and Child Health-Neurofarba—Section of Pharmacology and Toxicology, University of Florence, 50139 Florence, Italy; (L.M.); (C.C.); (E.L.); (C.G.)
| | - Roberta d’Emmanuele di Villa Bianca
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, 80131 Naples, Italy; (E.M.); (C.T.); (D.V.); (G.C.); (R.d.d.V.B.)
| |
Collapse
|
19
|
Cirino G, Szabo C, Papapetropoulos A. Physiological roles of hydrogen sulfide in mammalian cells, tissues and organs. Physiol Rev 2022; 103:31-276. [DOI: 10.1152/physrev.00028.2021] [Citation(s) in RCA: 237] [Impact Index Per Article: 79.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
H2S belongs to the class of molecules known as gasotransmitters, which also includes nitric oxide (NO) and carbon monoxide (CO). Three enzymes are recognized as endogenous sources of H2S in various cells and tissues: cystathionine g-lyase (CSE), cystathionine β-synthase (CBS) and 3-mercaptopyruvate sulfurtransferase (3-MST). The current article reviews the regulation of these enzymes as well as the pathways of their enzymatic and non-enzymatic degradation and elimination. The multiple interactions of H2S with other labile endogenous molecules (e.g. NO) and reactive oxygen species are also outlined. The various biological targets and signaling pathways are discussed, with special reference to H2S and oxidative posttranscriptional modification of proteins, the effect of H2S on channels and intracellular second messenger pathways, the regulation of gene transcription and translation and the regulation of cellular bioenergetics and metabolism. The pharmacological and molecular tools currently available to study H2S physiology are also reviewed, including their utility and limitations. In subsequent sections, the role of H2S in the regulation of various physiological and cellular functions is reviewed. The physiological role of H2S in various cell types and organ systems are overviewed. Finally, the role of H2S in the regulation of various organ functions is discussed as well as the characteristic bell-shaped biphasic effects of H2S. In addition, key pathophysiological aspects, debated areas, and future research and translational areas are identified A wide array of significant roles of H2S in the physiological regulation of all organ functions emerges from this review.
Collapse
Affiliation(s)
- Giuseppe Cirino
- Department of Pharmacy, School of Medicine, University of Naples Federico II, Naples, Italy
| | - Csaba Szabo
- Chair of Pharmacology, Section of Medicine, University of Fribourg, Switzerland
| | - Andreas Papapetropoulos
- Laboratory of Pharmacology, Faculty of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece & Clinical, Experimental Surgery and Translational Research Center, Biomedical Research Foundation of the Academy of Athens, Greece
| |
Collapse
|
20
|
Kaziród K, Myszka M, Dulak J, Łoboda A. Hydrogen sulfide as a therapeutic option for the treatment of Duchenne muscular dystrophy and other muscle-related diseases. Cell Mol Life Sci 2022; 79:608. [PMID: 36441348 PMCID: PMC9705465 DOI: 10.1007/s00018-022-04636-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 10/25/2022] [Accepted: 11/15/2022] [Indexed: 11/29/2022]
Abstract
Hydrogen sulfide (H2S) has been known for years as a poisoning gas and until recently evoked mostly negative associations. However, the discovery of its gasotransmitter functions suggested its contribution to various physiological and pathological processes. Although H2S has been found to exert cytoprotective effects through modulation of antioxidant, anti-inflammatory, anti-apoptotic, and pro-angiogenic responses in a variety of conditions, its role in the pathophysiology of skeletal muscles has not been broadly elucidated so far. The classical example of muscle-related disorders is Duchenne muscular dystrophy (DMD), the most common and severe type of muscular dystrophy. Mutations in the DMD gene that encodes dystrophin, a cytoskeletal protein that protects muscle fibers from contraction-induced damage, lead to prominent dysfunctions in the structure and functions of the skeletal muscle. However, the main cause of death is associated with cardiorespiratory failure, and DMD remains an incurable disease. Taking into account a wide range of physiological functions of H2S and recent literature data on its possible protective role in DMD, we focused on the description of the 'old' and 'new' functions of H2S, especially in muscle pathophysiology. Although the number of studies showing its essential regulatory action in dystrophic muscles is still limited, we propose that H2S-based therapy has the potential to attenuate the progression of DMD and other muscle-related disorders.
Collapse
Affiliation(s)
- Katarzyna Kaziród
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Krakow, Gronostajowa 7, 30-387, Kraków, Poland
| | - Małgorzata Myszka
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Krakow, Gronostajowa 7, 30-387, Kraków, Poland
| | - Józef Dulak
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Krakow, Gronostajowa 7, 30-387, Kraków, Poland
| | - Agnieszka Łoboda
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Krakow, Gronostajowa 7, 30-387, Kraków, Poland.
| |
Collapse
|
21
|
Dysregulated Autophagy and Mitophagy in a Mouse Model of Duchenne Muscular Dystrophy Remain Unchanged Following Heme Oxygenase-1 Knockout. Int J Mol Sci 2021; 23:ijms23010470. [PMID: 35008897 PMCID: PMC8745437 DOI: 10.3390/ijms23010470] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 12/23/2021] [Accepted: 12/29/2021] [Indexed: 12/13/2022] Open
Abstract
Dysregulation of autophagy may contribute to the progression of various muscle diseases, including Duchenne muscular dystrophy (DMD). Heme oxygenase-1 (HO-1, encoded by Hmox1), a heme-degrading enzyme, may alleviate symptoms of DMD, inter alia, through anti-inflammatory properties. In the present study, we determined the role of HO-1 in the regulation of autophagy and mitophagy in mdx animals, a commonly used mouse model of the disease. In the gastrocnemius of 6-week-old DMD mice, the mRNA level of mitophagy markers: Bnip3 and Pink1, as well as autophagy regulators, e.g., Becn1, Map1lc3b, Sqstm1, and Atg7, was decreased. In the dystrophic diaphragm, changes in the latter were less prominent. In older, 12-week-old dystrophic mice, diminished expressions of Pink1 and Sqstm1 with upregulation of Atg5, Atg7, and Lamp1 was depicted. Interestingly, we demonstrated higher protein levels of autophagy regulator, LC3, in dystrophic muscles. Although the lack of Hmox1 in mdx mice influenced blood cell count and the abundance of profibrotic proteins, no striking differences in mRNA and protein levels of autophagy and mitophagy markers were found. In conclusion, we demonstrated complex, tissue, and age-dependent dysregulation of mitophagic and autophagic markers in DMD mice, which are not affected by the additional lack of Hmox1.
Collapse
|