1
|
Yu J, Yang M, Jin Y, Yang K, Yang H. Insights into the potential role of BMSCs-exo delivered USP14 on SIRT1 deubiquitination in Staphylococcus aureus-induced model of osteomyelitis. J Orthop Surg Res 2025; 20:539. [PMID: 40442730 PMCID: PMC12120999 DOI: 10.1186/s13018-025-05898-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/25/2024] [Accepted: 05/06/2025] [Indexed: 06/02/2025] Open
Abstract
Osteomyelitis resulting from a traumatic fracture is a recurrent and difficult-to-treat bone infection. Ubiquitin-specific protease 14 (USP14), a deubiquitinating enzyme, and Sirtuin-1 (SIRT1), an NAD+-dependent deacetylase, both play critical roles in regulating cellular processes, including inflammation. It has been discovered that exosomes originated from bone marrow mesenchymal stem cells (BMSCs-exo) can promote the repair and regeneration of bone fractures. In this study, we aimed to investigate the role of BMSCs-exo in osteoblast differentiation in osteomyelitis and the related molecular mechanisms. MC3T3-E1 cells induced with S. aureus were used as an in vitro model of osteomyelitis. BMSCs-exo were isolated and characterized using ultracentrifugation, transmission electron microscopy (TEM), and Western blot. RT-qPCR, Western blot, CCK-8, ALP staining, ELISA, and CO-IP were utilized to evaluate USP14 and SIRT1 levels, the osteogenic differentiation ability of MC3T3-E1 cells, and the deubiquitination level of SIRT1. Low expression of USP14 and SIRT1 was observed in the bone tissue of osteomyelitis patients. BMSCs-exo could upregulate the expression of USP14 and promote the expression of SIRT1 protein in the cell model of osteomyelitis. In addition, BMSCs-exo reduced the levels of inflammatory factors TNFα and IL-6, enhanced cell viability, promoted the expression of osteogenic differentiation markers RUNX2 and OCN in MC3T3-E1 cells, and improved cell osteogenic capacity. However, these trends were significantly reversed in MC3T3-E1 cells following treatment with BMSCs-exo transfected with si-USP14. Furthermore, knockdown of USP14 promoted SIRT1 ubiquitination and degradation, the process that was reversed by the proteasome inhibitor MG132, whereas USP14 overexpression inhibited SIRT1 ubiquitination. In MC3T3-E1 cells infected with S. aureus, BMSCs-exo delivers USP14, which may enhance SIRT1 deubiquitination and increase SIRT1 protein activity. This process inhibits inflammation and promotes osteogenesis, warranting further investigation into its mechanisms and in vivo efficacy.
Collapse
Affiliation(s)
- Jun Yu
- Orthopaedic Trauma Department, General Hospital of Ningxia Medical University, 804 Shengli South Street, Xingqing District, Yinchuan City, Ningxia, 750001, China
| | - Ming Yang
- Emergency Department, People's Hospital of Ningxia Hui Autonomous Region, Ningxia, China
| | - Yun Jin
- Orthopaedic Trauma Department, General Hospital of Ningxia Medical University, 804 Shengli South Street, Xingqing District, Yinchuan City, Ningxia, 750001, China
| | - Kaijie Yang
- Orthopaedic Trauma Department, General Hospital of Ningxia Medical University, 804 Shengli South Street, Xingqing District, Yinchuan City, Ningxia, 750001, China
| | - Haibo Yang
- Orthopaedic Trauma Department, General Hospital of Ningxia Medical University, 804 Shengli South Street, Xingqing District, Yinchuan City, Ningxia, 750001, China.
| |
Collapse
|
2
|
Le G, Wen R, Fang H, Huang Z, Wang Y, Luo H. Exosomal miR-122 derived from M2 macrophages induces osteogenic differentiation of bone marrow mesenchymal stem cells in the treatment of alcoholic osteonecrosis of the femoral head. J Orthop Surg Res 2025; 20:107. [PMID: 39881350 PMCID: PMC11776149 DOI: 10.1186/s13018-025-05515-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Accepted: 01/17/2025] [Indexed: 01/31/2025] Open
Abstract
Alcoholic osteonecrosis of the femoral head (AIONFH) is caused by long-term heavy drinking, which leads to abnormal alcohol and lipid metabolism, resulting in femoral head tissue damage, and then pathological necrosis of femoral head tissue. If not treated in time in clinical practice, it will seriously affect the quality of life of patients and even require hip replacement to treat alcoholic femoral head necrosis. This study will confirm whether M2 macrophage exosome (M2-Exo) miR-122 mediates alcohol-induced BMSCs osteogenic differentiation, ultimately leading to the inhibition of femoral head necrosis. M2 macrophages were identified by flow cytometry, and the isolated exosomes were characterized by transmission electron microscopy (TEM) and Nanoparticle Tracking Analysis (NTA). Next, miR-122 was overexpressed by transfecting miR-122 mimic, and the expression of miR-122 in M2 macrophages and their exosomes was evaluated. Subsequently, the effect of exosomal miR-122 on the osteogenic differentiation ability of BMSCs was detected, including cell proliferation, expression of osteogenic-related genes (RUNX2, BMP2, OPN, ALP), and calcium nodule formation. Finally, the therapeutic effect of M2-Exo was analyzed in a rat model of AIONFH, and bone repair and pathological damage were evaluated by Micro-CT, RT-qPCR, HE, Masson staining, and immunohistochemistry (COL I). The results showed that M2 macrophages were successfully polarized, with an average M2-Exo particle size of 156.4 nm and a concentration of 3.2E + 12 particles/mL. The expression of miR-122 in M2 macrophages is significantly higher than that in M0 macrophages, and miR-122 mimic can increase the content of miR-122 in M2-Exo. miR-122 in M2-Exo can promote osteogenic differentiation of rat bone marrow BMSCs, enhance cell viability, and increase the expression of osteogenesis-related genes. After being applied to the AIONFH rat model, the injection of M2-exo and miR-122 mimics significantly improved the repair effect of articular cartilage, alleviated pathological changes, and promoted the regeneration of bone tissue. M2-macrophage-derived exosomal miR-122 induces osteogenic differentiation of bone mesenchymal stem cells in treating AIONFH.
Collapse
Affiliation(s)
- Guoping Le
- Department of Joint Osteopathy, Liuzhou Worker's Hospital, Liuzhou, Guangxi Province, 545000, China
| | - Riyou Wen
- Department of Joint Osteopathy, Liuzhou Worker's Hospital, Liuzhou, Guangxi Province, 545000, China
| | - Huaixi Fang
- Department of Joint Osteopathy, Liuzhou Worker's Hospital, Liuzhou, Guangxi Province, 545000, China
| | - Zhifa Huang
- Department of Joint Osteopathy, Liuzhou Worker's Hospital, Liuzhou, Guangxi Province, 545000, China
| | - Yong Wang
- Department of Joint Osteopathy, Liuzhou Worker's Hospital, Liuzhou, Guangxi Province, 545000, China
| | - Hanwen Luo
- Department of Joint Osteopathy, Liuzhou Worker's Hospital, Liuzhou, Guangxi Province, 545000, China.
| |
Collapse
|
3
|
Xu L, Chen S, Fan Q, Zhu Y, Mei H, Wang J, Yu H, Chen Y, Liu F. N6-methyladenosine regulates metabolic remodeling in kidney aging through transcriptional regulator GLIS1. BMC Biol 2024; 22:302. [PMID: 39736678 DOI: 10.1186/s12915-024-02100-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 12/17/2024] [Indexed: 01/01/2025] Open
Abstract
BACKGROUND Age-related kidney impairment, characterized by tubular epithelial cell senescence and renal fibrosis, poses a significant global public health threat. Although N6-methyladenosine (m6A) methylation is implicated in various pathological processes, its regulatory mechanism in kidney aging remains unclear. METHODS An m6A-mRNA epitranscriptomic microarray was performed to identify genes with abnormal m6A modifications in aged human kidney tissues. Histological, immunohistochemical, and immunofluorescent staining, western blot, and RT-qPCR were employed to examine the biological functions of targeted genes and m6A methyltransferases both in vivo and in vitro. RNA immunoprecipitation, chromatin immunoprecipitation, ribosomal immunoprecipitation, and luciferase reporter assays were used to investigate the specific interactions between m6A methyltransferases, targeted genes, and their downstream signals. RESULTS Significantly lower m6A modification levels were observed in aged human kidney tissues. GLIS1, identified as a "metabolic remodeling factor," showed significantly reduced protein levels with abnormal m6A modifications. The downregulation of GLIS1 induced cell senescence and renal fibrosis by shifting metabolic remodeling from fatty acid oxidation (FAO) to glycolysis. Additionally, the methylated GLIS1 mRNA was regulated by the abnormal expression of METTL3 and YTHDF1. Silencing METTL3/YTHDF1 weakened the translation of GLIS1 and disrupted the balance between FAO and glycolysis. CONCLUSIONS Our findings suggest that the m6A modification of GLIS1, activated by METTL3 and reduced in a YTHDF1-dependent manner, leads to kidney aging by regulating the metabolic shift from FAO to glycolysis. This mechanism provides a promising therapeutic target for kidney aging.
Collapse
Affiliation(s)
- Li Xu
- Department of Laboratory Medicine, The Second Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524003, China
| | - Shuo Chen
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China
- Department of Gynecologic Oncology Research Office, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangzhou, 510150, China
| | - Qiuling Fan
- Department of Nephrology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
| | - Yonghong Zhu
- Department of Nephrology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510245, Guangdong, China
| | - Hang Mei
- Department of Nephrology, The First Hospital of China Medical University, Shenyang, 110001, China
| | - Jiao Wang
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, 110004, China
| | - Hongyuan Yu
- Department of Urology, The First Hospital of China Medical University, Shenyang, 110001, China.
| | - Ying Chen
- Department of Nephrology, The First Hospital of China Medical University, Shenyang, 110001, China.
| | - Fan Liu
- Department of Orthodontics, School and Hospital of Stomatology, Liaoning Provincial Key Laboratory of Oral Diseases, China Medical University, Shenyang, 110001, China.
| |
Collapse
|
4
|
Zhao X, Hu X, Wang W, Lu S. Macrophages dying from ferroptosis promote microglia-mediated inflammatory responses during spinal cord injury. Int Immunopharmacol 2024; 143:113281. [PMID: 39357207 DOI: 10.1016/j.intimp.2024.113281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 09/15/2024] [Accepted: 09/26/2024] [Indexed: 10/04/2024]
Abstract
The neurological deficits following traumatic spinal cord injury are associated with severe patient disability and economic consequences. Currently, an increasing number of studies are focusing on the importance of ferroptosis during acute organ injuries. However, the spatial and temporal distribution patterns of ferroptosis during SCI and the details of its role are largely unknown. In this study, in vivo experiments revealed that microglia are in close proximity to macrophages, the major cell type that undergoes ferroptosis following SCI. Furthermore, we found that ferroptotic macrophages aggravate SCI by inducing the proinflammatory properties of microglia. In vitro studies further revealed ferroptotic macrophages increased the expression of IL-1β, IL-6, and IL-23 in microglia. Mechanistically, due to the activation of the NF-κB signaling pathway, the expression of IL-1β and IL-6 was increased. In addition, we established that increased levels of oxidative phosphorylation cause mitochondrial reactive oxygen species generation and unfolded protein response activation and trigger an inflammatory response marked by an increase in IL-23 production. Our findings identified that targeting ferroptosis and IL-23 could be an effective strategy for promoting neurological recovery after SCI.
Collapse
Affiliation(s)
- Xuan Zhao
- Department of Orthopedics, Xuanwu Hospital, Capital Medical University, Beijing, China; National Clinical Research Center for Geriatric Diseases, Beijing, China
| | - Xinli Hu
- Department of Orthopedics, Xuanwu Hospital, Capital Medical University, Beijing, China; National Clinical Research Center for Geriatric Diseases, Beijing, China
| | - Wei Wang
- Department of Orthopedics, Xuanwu Hospital, Capital Medical University, Beijing, China; National Clinical Research Center for Geriatric Diseases, Beijing, China.
| | - Shibao Lu
- Department of Orthopedics, Xuanwu Hospital, Capital Medical University, Beijing, China; National Clinical Research Center for Geriatric Diseases, Beijing, China.
| |
Collapse
|
5
|
Kempkes RWM, Prinjha RK, de Winther MPJ, Neele AE. Novel insights into the dynamic function of PRC2 in innate immunity. Trends Immunol 2024; 45:1015-1030. [PMID: 39603889 DOI: 10.1016/j.it.2024.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 10/17/2024] [Accepted: 10/18/2024] [Indexed: 11/29/2024]
Abstract
The polycomb repressive complex 2 (PRC2) is an established therapeutic target in cancer. PRC2 catalyzes methylation of histone H3 at lysine 27 (H3K27me3) and is known for maintaining eukaryote cell identity. Recent discoveries show that modulation of PRC2 not only impacts cell differentiation and tumor growth but also has immunomodulatory properties. Here, we integrate multiple immunological fields to understand PRC2 and its subunits in epigenetic canonical regulation and non-canonical mechanisms within innate immunity. We discuss how PRC2 regulates hematopoietic stem cell proliferation, myeloid cell differentiation, and shapes innate immune responses. The PRC2 catalytic domain EZH2 is upregulated in various human inflammatory diseases and its deletion or inhibition in experimental mouse models can reduce disease severity, emphasizing its importance in regulating inflammation.
Collapse
Affiliation(s)
- Rosalie W M Kempkes
- Amsterdam UMC location University of Amsterdam, Department of Medical Biochemistry, Amsterdam, the Netherlands; Amsterdam Cardiovascular Sciences, Atherosclerosis & Ischemic Syndromes, Amsterdam, the Netherlands; Amsterdam Institute for Immunology and Infectious Disease, Amsterdam, the Netherlands
| | | | - Menno P J de Winther
- Amsterdam UMC location University of Amsterdam, Department of Medical Biochemistry, Amsterdam, the Netherlands; Amsterdam Cardiovascular Sciences, Atherosclerosis & Ischemic Syndromes, Amsterdam, the Netherlands; Amsterdam Institute for Immunology and Infectious Disease, Amsterdam, the Netherlands.
| | - Annette E Neele
- Amsterdam UMC location University of Amsterdam, Department of Medical Biochemistry, Amsterdam, the Netherlands; Amsterdam Cardiovascular Sciences, Atherosclerosis & Ischemic Syndromes, Amsterdam, the Netherlands; Amsterdam Institute for Immunology and Infectious Disease, Amsterdam, the Netherlands.
| |
Collapse
|
6
|
Chen J, Yin T, Hu X, Chang L, Sang Y, Xu L, Zhao W, Liu L, Xu C, Lin Y, Li Y, Wu Q, Li D, Li Y, Du M. CD36-mediated arachidonic acid influx from decidual stromal cells increases inflammatory macrophages in miscarriage. Cell Rep 2024; 43:114881. [PMID: 39427314 DOI: 10.1016/j.celrep.2024.114881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 07/09/2024] [Accepted: 10/01/2024] [Indexed: 10/22/2024] Open
Abstract
Spontaneous abortion is associated with aberrant lipid metabolism, but the underlying mechanisms remain unclear. Here, we show that lipids are accumulated in decidual stromal cells (DSCs) and macrophages (dMφs) in women with miscarriage and mouse abortion-prone models. Moreover, we show that excessive lipids from DSCs are transferred to dMφs via a CD36-dependent mechanism that induces inflammation in dMφs. In particular, DSC-derived arachidonic acid (AA) is internalized by dMφs via CD36, which activates cyclooxygenase 2-dependent prostaglandin E2 production and interleukin (IL)-1β expression. In mice, AA injection induces miscarriage, whereas conditional knockout of Cd36 in dMφs ameliorates AA-induced embryo loss. Additionally, DSC-derived prolactin (PRL) inhibits CD36-mediated lipid intake in dMφs, and PRL administration reduces embryo loss in pregnant mice treated with CD36+ Mφs. Our findings reveal a critical interplay between DSCs and dMφs in dysregulated lipid metabolism that may contribute to miscarriage, in which PRL may be harnessed as a therapeutic agent.
Collapse
Affiliation(s)
- Jiajia Chen
- Laboratory of Reproduction Immunology, Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Obstetrics and Gynecology Hospital, Fudan University Shanghai Medical College, Shanghai 200032, China
| | - Tingxuan Yin
- Laboratory of Reproduction Immunology, Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Obstetrics and Gynecology Hospital, Fudan University Shanghai Medical College, Shanghai 200032, China
| | - Xianyang Hu
- Laboratory of Reproduction Immunology, Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Obstetrics and Gynecology Hospital, Fudan University Shanghai Medical College, Shanghai 200032, China
| | - Lingyu Chang
- Laboratory of Reproduction Immunology, Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Obstetrics and Gynecology Hospital, Fudan University Shanghai Medical College, Shanghai 200032, China
| | - Yifei Sang
- Laboratory of Reproduction Immunology, Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Obstetrics and Gynecology Hospital, Fudan University Shanghai Medical College, Shanghai 200032, China
| | - Ling Xu
- Laboratory of Reproduction Immunology, Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Obstetrics and Gynecology Hospital, Fudan University Shanghai Medical College, Shanghai 200032, China
| | - Weijie Zhao
- Laboratory of Reproduction Immunology, Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Obstetrics and Gynecology Hospital, Fudan University Shanghai Medical College, Shanghai 200032, China
| | - Lu Liu
- Laboratory of Reproduction Immunology, Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Obstetrics and Gynecology Hospital, Fudan University Shanghai Medical College, Shanghai 200032, China
| | - Chunfang Xu
- Laboratory of Reproduction Immunology, Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Obstetrics and Gynecology Hospital, Fudan University Shanghai Medical College, Shanghai 200032, China
| | - Yikong Lin
- Laboratory of Reproduction Immunology, Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Obstetrics and Gynecology Hospital, Fudan University Shanghai Medical College, Shanghai 200032, China
| | - Yue Li
- Laboratory of Reproduction Immunology, Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Obstetrics and Gynecology Hospital, Fudan University Shanghai Medical College, Shanghai 200032, China
| | - Qingyu Wu
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Prevention, Soochow University, Suzhou 215031, China
| | - Dajin Li
- Laboratory of Reproduction Immunology, Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Obstetrics and Gynecology Hospital, Fudan University Shanghai Medical College, Shanghai 200032, China.
| | - Yanhong Li
- Laboratory of Reproduction Immunology, Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Obstetrics and Gynecology Hospital, Fudan University Shanghai Medical College, Shanghai 200032, China.
| | - Meirong Du
- Laboratory of Reproduction Immunology, Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Obstetrics and Gynecology Hospital, Fudan University Shanghai Medical College, Shanghai 200032, China; Department of Obstetrics and Gynecology, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai 200092, China; State Key Laboratory of Quality Research in Chinese Medicine and School of Pharmacy, Macau University of Science and Technology, Macau 999078, China.
| |
Collapse
|
7
|
Zhao M, Qiu D, Miao X, Yang W, Li S, Cheng X, Tang J, Chen H, Ruan H, Liu Y, Wei C, Xiao J. Melatonin Delays Arthritis Inflammation and Reduces Cartilage Matrix Degradation through the SIRT1-Mediated NF-κB/Nrf2/TGF-β/BMPs Pathway. Int J Mol Sci 2024; 25:6202. [PMID: 38892389 PMCID: PMC11172638 DOI: 10.3390/ijms25116202] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 05/26/2024] [Accepted: 05/28/2024] [Indexed: 06/21/2024] Open
Abstract
Cartilage, a flexible and smooth connective tissue that envelops the surfaces of synovial joints, relies on chondrocytes for extracellular matrix (ECM) production and the maintenance of its structural and functional integrity. Melatonin (MT), renowned for its anti-inflammatory and antioxidant properties, holds the potential to modulate cartilage regeneration and degradation. Therefore, the present study was devoted to elucidating the mechanism of MT on chondrocytes. The in vivo experiment consisted of three groups: Sham (only the skin tissue was incised), Model (using the anterior cruciate ligament transection (ACLT) method), and MT (30 mg/kg), with sample extraction following 12 weeks of administration. Pathological alterations in articular cartilage, synovium, and subchondral bone were evaluated using Safranin O-fast green staining. Immunohistochemistry (ICH) analysis was employed to assess the expression of matrix degradation-related markers. The levels of serum cytokines were quantified via Enzyme-linked immunosorbent assay (ELISA) assays. In in vitro experiments, primary chondrocytes were divided into Control, Model, MT, negative control, and inhibitor groups. Western blotting (WB) and Quantitative RT-PCR (q-PCR) were used to detect Silent information regulator transcript-1 (SIRT1)/Nuclear factor kappa-B (NF-κB)/Nuclear factor erythroid-2-related factor 2 (Nrf2)/Transforming growth factor-beta (TGF-β)/Bone morphogenetic proteins (BMPs)-related indicators. Immunofluorescence (IF) analysis was employed to examine the status of type II collagen (COL2A1), SIRT1, phosphorylated NF-κB p65 (p-p65), and phosphorylated mothers against decapentaplegic homolog 2 (p-Smad2). In vivo results revealed that the MT group exhibited a relatively smooth cartilage surface, modest chondrocyte loss, mild synovial hyperplasia, and increased subchondral bone thickness. ICH results showed that MT downregulated the expression of components related to matrix degradation. ELISA results showed that MT reduced serum inflammatory cytokine levels. In vitro experiments confirmed that MT upregulated the expression of SIRT1/Nrf2/TGF-β/BMPs while inhibiting the NF-κB pathway and matrix degradation-related components. The introduction of the SIRT1 inhibitor Selisistat (EX527) reversed the effects of MT. Together, these findings suggest that MT has the potential to ameliorate inflammation, inhibit the release of matrix-degrading enzymes, and improve the cartilage condition. This study provides a new theoretical basis for understanding the role of MT in decelerating cartilage degradation and promoting chondrocyte repair in in vivo and in vitro cultured chondrocytes.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - Jianhua Xiao
- Heilongjiang Key Laboratory Animals and Comparative Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China; (M.Z.); (D.Q.); (X.M.); (W.Y.); (S.L.); (X.C.); (J.T.); (H.C.); (H.R.); (Y.L.); (C.W.)
| |
Collapse
|
8
|
Li X, Liang T, Dai B, Chang L, Zhang Y, Hu S, Guo J, Xu S, Zheng L, Yao H, Lian H, Nie Y, Li Y, He X, Yao Z, Tong W, Wang X, Chow DHK, Xu J, Qin L. Excess glucocorticoids inhibit murine bone turnover via modulating the immunometabolism of the skeletal microenvironment. J Clin Invest 2024; 134:e166795. [PMID: 38512413 DOI: 10.1172/jci166795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 03/15/2024] [Indexed: 03/23/2024] Open
Abstract
Elevated bone resorption and diminished bone formation have been recognized as the primary features of glucocorticoid-associated skeletal disorders. However, the direct effects of excess glucocorticoids on bone turnover remain unclear. Here, we explored the outcomes of exogenous glucocorticoid treatment on bone loss and delayed fracture healing in mice and found that reduced bone turnover was a dominant feature, resulting in a net loss of bone mass. The primary effect of glucocorticoids on osteogenic differentiation was not inhibitory; instead, they cooperated with macrophages to facilitate osteogenesis. Impaired local nutrient status - notably, obstructed fatty acid transportation - was a key factor contributing to glucocorticoid-induced impairment of bone turnover in vivo. Furthermore, fatty acid oxidation in macrophages fueled the ability of glucocorticoid-liganded receptors to enter the nucleus and then promoted the expression of BMP2, a key cytokine that facilitates osteogenesis. Metabolic reprogramming by localized fatty acid delivery partly rescued glucocorticoid-induced pathology by restoring a healthier immune-metabolic milieu. These data provide insights into the multifactorial metabolic mechanisms by which glucocorticoids generate skeletal disorders, thus suggesting possible therapeutic avenues.
Collapse
Affiliation(s)
- Xu Li
- Musculoskeletal Research Laboratory, Department of Orthopedics and Traumatology, Faculty of Medicine
- Innovative Orthopedic Biomaterial and Drug Translational Research Laboratory, Li Ka Shing Institute of Health Sciences, and
| | - Tongzhou Liang
- Musculoskeletal Research Laboratory, Department of Orthopedics and Traumatology, Faculty of Medicine
- Innovative Orthopedic Biomaterial and Drug Translational Research Laboratory, Li Ka Shing Institute of Health Sciences, and
| | - Bingyang Dai
- Musculoskeletal Research Laboratory, Department of Orthopedics and Traumatology, Faculty of Medicine
- Innovative Orthopedic Biomaterial and Drug Translational Research Laboratory, Li Ka Shing Institute of Health Sciences, and
| | - Liang Chang
- Musculoskeletal Research Laboratory, Department of Orthopedics and Traumatology, Faculty of Medicine
- Innovative Orthopedic Biomaterial and Drug Translational Research Laboratory, Li Ka Shing Institute of Health Sciences, and
| | - Yuan Zhang
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Shiwen Hu
- Musculoskeletal Research Laboratory, Department of Orthopedics and Traumatology, Faculty of Medicine
- Innovative Orthopedic Biomaterial and Drug Translational Research Laboratory, Li Ka Shing Institute of Health Sciences, and
| | - Jiaxin Guo
- Musculoskeletal Research Laboratory, Department of Orthopedics and Traumatology, Faculty of Medicine
- Innovative Orthopedic Biomaterial and Drug Translational Research Laboratory, Li Ka Shing Institute of Health Sciences, and
| | - Shunxiang Xu
- Musculoskeletal Research Laboratory, Department of Orthopedics and Traumatology, Faculty of Medicine
- Innovative Orthopedic Biomaterial and Drug Translational Research Laboratory, Li Ka Shing Institute of Health Sciences, and
| | - Lizhen Zheng
- Musculoskeletal Research Laboratory, Department of Orthopedics and Traumatology, Faculty of Medicine
- Innovative Orthopedic Biomaterial and Drug Translational Research Laboratory, Li Ka Shing Institute of Health Sciences, and
| | - Hao Yao
- Musculoskeletal Research Laboratory, Department of Orthopedics and Traumatology, Faculty of Medicine
- Innovative Orthopedic Biomaterial and Drug Translational Research Laboratory, Li Ka Shing Institute of Health Sciences, and
| | - Hong Lian
- Beijing Key Laboratory of Preclinical Research and Evaluation for Cardiovascular Implant Materials, Animal Experimental Centre, and
| | - Yu Nie
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ye Li
- Musculoskeletal Research Laboratory, Department of Orthopedics and Traumatology, Faculty of Medicine
- Innovative Orthopedic Biomaterial and Drug Translational Research Laboratory, Li Ka Shing Institute of Health Sciences, and
| | - Xuan He
- Musculoskeletal Research Laboratory, Department of Orthopedics and Traumatology, Faculty of Medicine
- Innovative Orthopedic Biomaterial and Drug Translational Research Laboratory, Li Ka Shing Institute of Health Sciences, and
| | - Zhi Yao
- Musculoskeletal Research Laboratory, Department of Orthopedics and Traumatology, Faculty of Medicine
- Innovative Orthopedic Biomaterial and Drug Translational Research Laboratory, Li Ka Shing Institute of Health Sciences, and
| | - Wenxue Tong
- Musculoskeletal Research Laboratory, Department of Orthopedics and Traumatology, Faculty of Medicine
- Innovative Orthopedic Biomaterial and Drug Translational Research Laboratory, Li Ka Shing Institute of Health Sciences, and
| | - Xinluan Wang
- Centre for Translational Medicine Research and Development, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Dick Ho Kiu Chow
- Musculoskeletal Research Laboratory, Department of Orthopedics and Traumatology, Faculty of Medicine
- Innovative Orthopedic Biomaterial and Drug Translational Research Laboratory, Li Ka Shing Institute of Health Sciences, and
| | - Jiankun Xu
- Musculoskeletal Research Laboratory, Department of Orthopedics and Traumatology, Faculty of Medicine
- Innovative Orthopedic Biomaterial and Drug Translational Research Laboratory, Li Ka Shing Institute of Health Sciences, and
| | - Ling Qin
- Musculoskeletal Research Laboratory, Department of Orthopedics and Traumatology, Faculty of Medicine
- Innovative Orthopedic Biomaterial and Drug Translational Research Laboratory, Li Ka Shing Institute of Health Sciences, and
| |
Collapse
|
9
|
Wang Y, Liu Z, Pan C, Zheng Y, Chen Y, Lian X, Jiang Y, Chen C, Xue K, Zhang Y, Xu P, Liu K. Ultrasound-Driven Healing: Unleashing the Potential of Chondrocyte-Derived Extracellular Vesicles for Chondrogenesis in Adipose-Derived Stem Cells. Biomedicines 2023; 11:2836. [PMID: 37893208 PMCID: PMC10604747 DOI: 10.3390/biomedicines11102836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 10/08/2023] [Accepted: 10/13/2023] [Indexed: 10/29/2023] Open
Abstract
Repairing cartilage defects represents a significant clinical challenge. While adipose-derived stem cell (ADSC)-based strategies hold promise for cartilage regeneration, their inherent chondrogenic potential is limited. Extracellular vesicles (EVs) derived from chondrocytes (CC-EVs) have shown potential in enhancing chondrogenesis, but their role in promoting chondrogenic differentiation of ADSCs remains poorly understood. Moreover, the clinical application of EVs faces limitations due to insufficient quantities for in vivo use, necessitating the development of effective methods for extracting significant amounts of CC-EVs. Our previous study demonstrated that low-intensity ultrasound (LIUS) stimulation enhances EV secretion from mesenchymal stem cells. Here, we identified a specific LIUS parameter for chondrocytes that increased EV secretion by 16-fold. CC-EVs were found to enhance cell activity, proliferation, migration, and 21-day chondrogenic differentiation of ADSCs in vitro, while EVs secreted by chondrocytes following LIUS stimulation (US-CC-EVs) exhibited superior efficacy. miRNA-seq revealed that US-CC-EVs were enriched in cartilage-regeneration-related miRNAs, contributing to chondrogenesis in various biological processes. In conclusion, we found that CC-EVs can enhance the chondrogenesis of ADSCs in vitro. In addition, our study introduces ultrasound-driven healing as an innovative method to enhance the quantity and quality of CC-EVs, meeting clinical demand and addressing the limited chondrogenic potential of ADSCs. The ultrasound-driven healing unleashes the potential of CC-EVs for chondrogenesis possibly through the enrichment of cartilage-regeneration-associated miRNAs in EVs, suggesting their potential role in cartilage reconstruction. These findings hold promise for advancing cartilage regeneration strategies and may pave the way for novel therapeutic interventions in regenerative medicine.
Collapse
Affiliation(s)
- Yikai Wang
- Shanghai Key Laboratory of Tissue Engineering, Department of Plastic and Reconstructive Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China; (Y.W.); (Z.L.); (C.P.); (Y.Z.); (Y.C.); (X.L.); (Y.J.); (C.C.); (K.X.)
| | - Zibo Liu
- Shanghai Key Laboratory of Tissue Engineering, Department of Plastic and Reconstructive Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China; (Y.W.); (Z.L.); (C.P.); (Y.Z.); (Y.C.); (X.L.); (Y.J.); (C.C.); (K.X.)
| | - Chuqiao Pan
- Shanghai Key Laboratory of Tissue Engineering, Department of Plastic and Reconstructive Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China; (Y.W.); (Z.L.); (C.P.); (Y.Z.); (Y.C.); (X.L.); (Y.J.); (C.C.); (K.X.)
| | - Yi Zheng
- Shanghai Key Laboratory of Tissue Engineering, Department of Plastic and Reconstructive Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China; (Y.W.); (Z.L.); (C.P.); (Y.Z.); (Y.C.); (X.L.); (Y.J.); (C.C.); (K.X.)
| | - Yahong Chen
- Shanghai Key Laboratory of Tissue Engineering, Department of Plastic and Reconstructive Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China; (Y.W.); (Z.L.); (C.P.); (Y.Z.); (Y.C.); (X.L.); (Y.J.); (C.C.); (K.X.)
| | - Xiang Lian
- Shanghai Key Laboratory of Tissue Engineering, Department of Plastic and Reconstructive Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China; (Y.W.); (Z.L.); (C.P.); (Y.Z.); (Y.C.); (X.L.); (Y.J.); (C.C.); (K.X.)
| | - Yu Jiang
- Shanghai Key Laboratory of Tissue Engineering, Department of Plastic and Reconstructive Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China; (Y.W.); (Z.L.); (C.P.); (Y.Z.); (Y.C.); (X.L.); (Y.J.); (C.C.); (K.X.)
| | - Chuhsin Chen
- Shanghai Key Laboratory of Tissue Engineering, Department of Plastic and Reconstructive Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China; (Y.W.); (Z.L.); (C.P.); (Y.Z.); (Y.C.); (X.L.); (Y.J.); (C.C.); (K.X.)
| | - Ke Xue
- Shanghai Key Laboratory of Tissue Engineering, Department of Plastic and Reconstructive Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China; (Y.W.); (Z.L.); (C.P.); (Y.Z.); (Y.C.); (X.L.); (Y.J.); (C.C.); (K.X.)
| | - Yuanyuan Zhang
- Wake Forest Institute for Regenerative Medicine, Wake Forest University Health Sciences, Winston-Salem, NC 27101, USA;
| | - Peng Xu
- Shanghai Key Laboratory of Tissue Engineering, Department of Plastic and Reconstructive Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China; (Y.W.); (Z.L.); (C.P.); (Y.Z.); (Y.C.); (X.L.); (Y.J.); (C.C.); (K.X.)
| | - Kai Liu
- Shanghai Key Laboratory of Tissue Engineering, Department of Plastic and Reconstructive Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China; (Y.W.); (Z.L.); (C.P.); (Y.Z.); (Y.C.); (X.L.); (Y.J.); (C.C.); (K.X.)
| |
Collapse
|
10
|
Hasegawa K, Raudales JLM, I T, Yoshida T, Honma R, Iwatake M, Tran SD, Seki M, Asahina I, Sumita Y. Effective-mononuclear cell (E-MNC) therapy alleviates salivary gland damage by suppressing lymphocyte infiltration in Sjögren-like disease. Front Bioeng Biotechnol 2023; 11:1144624. [PMID: 37168614 PMCID: PMC10164970 DOI: 10.3389/fbioe.2023.1144624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Accepted: 04/14/2023] [Indexed: 05/13/2023] Open
Abstract
Introduction: Sjögren syndrome (SS) is an autoimmune disease characterized by salivary gland (SG) destruction leading to loss of secretory function. A hallmark of the disease is the presence of focal lymphocyte infiltration in SGs, which is predominantly composed of T cells. Currently, there are no effective therapies for SS. Recently, we demonstrated that a newly developed therapy using effective-mononuclear cells (E-MNCs) improved the function of radiation-injured SGs due to anti-inflammatory and regenerative effects. In this study, we investigated whether E-MNCs could ameliorate disease development in non-obese diabetic (NOD) mice as a model for primary SS. Methods: E-MNCs were obtained from peripheral blood mononuclear cells (PBMNCs) cultured for 7 days in serum-free medium supplemented with five specific recombinant proteins (5G culture). The anti-inflammatory characteristics of E-MNCs were then analyzed using a co-culture system with CD3/CD28-stimulated PBMNCs. To evaluate the therapeutic efficacy of E-MNCs against SS onset, E-MNCs were transplanted into SGs of NOD mice. Subsequently, saliva secretion, histological, and gene expression analyses of harvested SG were performed to investigate if E-MNCs therapy delays disease development. Results: First, we characterized that both human and mouse E-MNCs exhibited induction of CD11b/CD206-positive cells (M2 macrophages) and that human E-MNCs could inhibit inflammatory gene expressions in CD3/CD28- stimulated PBMNCs. Further analyses revealed that Msr1-and galectin3-positive macrophages (immunomodulatory M2c phenotype) were specifically induced in E-MNCs of both NOD and MHC class I-matched mice. Transplanted E-MNCs induced M2 macrophages and reduced the expression of T cell-derived chemokine-related and inflammatory genes in SG tissue of NOD mice at SS-onset. Then, E-MNCs suppressed the infiltration of CD4-positive T cells and facilitated the maintenance of saliva secretion for up to 12 weeks after E-MNC administration. Discussion: Thus, the immunomodulatory actions of E-MNCs could be part of a therapeutic strategy targeting the early stage of primary SS.
Collapse
Affiliation(s)
- Kayo Hasegawa
- Department of Medical Research and Development for Oral Disease, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Jorge Luis Montenegro Raudales
- Department of Medical Research and Development for Oral Disease, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Takashi I
- Department of Medical Research and Development for Oral Disease, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Takako Yoshida
- Department of Medical Research and Development for Oral Disease, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Ryo Honma
- Department of Medical Research and Development for Oral Disease, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
- Unit of Translational Medicine, Department of Regenerative Oral Surgery, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Mayumi Iwatake
- Department of Medical Research and Development for Oral Disease, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Simon D. Tran
- Laboratory of Craniofacial Tissue Engineering and Stem Cells, Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montreal, QC, Canada
| | | | - Izumi Asahina
- Unit of Translational Medicine, Department of Regenerative Oral Surgery, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
- Depatment of Oral and Maxillofacial Surgery, Juntendo University Hospital, Tokyo, Japan
| | - Yoshinori Sumita
- Department of Medical Research and Development for Oral Disease, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
- *Correspondence: Yoshinori Sumita,
| |
Collapse
|