1
|
Han Y, Dong J, Zhang L, Yue T, Zhao W, Gao C, Sun J, Zhang R. Biocompatible and size-dependent melanin-like nanocapsules for efficient therapy in hyperoxia-induced acute lung injury. Biomaterials 2025; 318:123169. [PMID: 39923536 DOI: 10.1016/j.biomaterials.2025.123169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 01/23/2025] [Accepted: 02/04/2025] [Indexed: 02/11/2025]
Abstract
Hyperoxia-induced acute lung injury (HALI) is a serious pulmonary disease, and its therapeutic effect is greatly limited by disordered oxidative stress microenvironment. Safe and efficient antioxidant-immunomodulatory therapy may be a promising strategy to maintain redox homeostasis in HALI. Herein, a novel therapeutic strategy (PCT) composed size-dependent melanin-like polydopamine nanocapsules (PC) and IKK-2 inhibitor TPCA-1 is developed to alleviate HALI. By flexibly tuning the size of nanocapsules, the lung-to-liver ratio could be finely optimized, which facilitates to delivery adequate dose of TPCA-1 to pulmonary lesions and improve the bioavailability. Notably, these nanocapsules exhibit superior biosafety in vitro and in vivo. The selected PCT sharply scavenges intracellular reactive oxygen species (ROS) and protects mitochondrial function, subsequently reprogramming the repolarization of macrophages. Moreover, injection of PCT eliminates elevated ROS and oxidative stress products against the redox imbalance in HALI mice. Mechanistically, benefiting from much ROS depletion, PCT plays a positive role in inhibiting immune cell infiltration, down-regulating multiple inflammatory factors, and promoting macrophage polarization toward anti-inflammatory M2 phenotype through activating the Keap-1/Nrf2 pathway, thus remarkably breaking the vicious cycle of inflammation and oxidative stress in HALI. Overall, these findings provide a secure and effective therapy combining antioxidation and immunoregulation for HALI and other pulmonary diseases.
Collapse
Affiliation(s)
- Yahong Han
- Department of Radiology, Fifth Hospital of Shanxi Medical University, Shanxi Provincial People's Hospital, Taiyuan, 030000, China; Shanxi Medical University, Taiyuan, 030001, China
| | - Jie Dong
- Department of Radiology, Fifth Hospital of Shanxi Medical University, Shanxi Provincial People's Hospital, Taiyuan, 030000, China; Shanxi Medical University, Taiyuan, 030001, China
| | - Liyan Zhang
- Shanxi Medical University, Taiyuan, 030001, China
| | - Tao Yue
- Shanxi Medical University, Taiyuan, 030001, China
| | - Wenjing Zhao
- Shanxi Medical University, Taiyuan, 030001, China
| | - Caifang Gao
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, 030032, China
| | - Jinghua Sun
- First Hospital of Shanxi Medical University, Taiyuan, 030001, China.
| | - Ruiping Zhang
- Department of Radiology, Fifth Hospital of Shanxi Medical University, Shanxi Provincial People's Hospital, Taiyuan, 030000, China.
| |
Collapse
|
2
|
Yang K, He T, Sun X, Dong W. Post-translational modifications and bronchopulmonary dysplasia. Front Pediatr 2025; 12:1426030. [PMID: 39830627 PMCID: PMC11738936 DOI: 10.3389/fped.2024.1426030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 12/13/2024] [Indexed: 01/22/2025] Open
Abstract
Bronchopulmonary dysplasia is a prevalent respiratory disorder posing a significant threat to the quality of life in premature infants. Its pathogenesis is intricate, and therapeutic options are limited. Besides genetic coding, protein post-translational modification plays a pivotal role in regulating cellular function, contributing complexity and diversity to substrate proteins and influencing various cellular processes. Substantial evidence indicates that post-translational modifications of several substrate proteins are intricately related to the molecular mechanisms underlying bronchopulmonary dysplasia. These modifications facilitate the progression of bronchopulmonary dysplasia through a cascade of signal transduction events. This review outlines the relationships between substrate protein phosphorylation, acetylation, ubiquitination, SUMOylation, methylation, glycosylation, glycation, S-glutathionylation, S-nitrosylation and bronchopulmonary dysplasia. The aim is to provide novel insights into bronchopulmonary dysplasia's pathogenesis and potential therapeutic targets for clinical management.
Collapse
Affiliation(s)
| | | | | | - Wenbin Dong
- Department of Neonatology, Children’s Medical Center, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| |
Collapse
|
3
|
Han J, Mao K, Yang YG, Sun T. Impact of inorganic/organic nanomaterials on the immune system for disease treatment. Biomater Sci 2024; 12:4903-4926. [PMID: 39190428 DOI: 10.1039/d4bm00853g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/28/2024]
Abstract
The study of nanomaterials' nature, function, and biocompatibility highlights their potential in drug delivery, imaging, diagnostics, and therapeutics. Advancements in nanotechnology have fostered the development and application of diverse nanomaterials. These materials facilitate drug delivery and influence the immune system directly. Yet, understanding of their impact on the immune system is incomplete, underscoring the need to select materials to achieve desired outcomes carefully. In this review, we outline and summarize the distinctive characteristics and effector functions of inorganic nanomaterials and organic materials in inducing immune responses. We highlight the role and advantages of nanomaterial-induced immune responses in the treatment of immune-related diseases. Finally, we briefly discuss the current challenges and future opportunities for disease treatment and clinical translation of these nanomaterials.
Collapse
Affiliation(s)
- Jing Han
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Institute of Immunology, The First Hospital, Jilin University, Changchun, Jilin, China.
- National-local Joint Engineering Laboratory of Animal Models for Human Diseases, Changchun, Jilin, China
| | - Kuirong Mao
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Institute of Immunology, The First Hospital, Jilin University, Changchun, Jilin, China.
- International Center of Future Science, Jilin University, Changchun, Jilin, China
- National-local Joint Engineering Laboratory of Animal Models for Human Diseases, Changchun, Jilin, China
| | - Yong-Guang Yang
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Institute of Immunology, The First Hospital, Jilin University, Changchun, Jilin, China.
- International Center of Future Science, Jilin University, Changchun, Jilin, China
- National-local Joint Engineering Laboratory of Animal Models for Human Diseases, Changchun, Jilin, China
- State Key Laboratory of Kidney Diseases, Chinese PLA General Hospital, Beijing, China
| | - Tianmeng Sun
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Institute of Immunology, The First Hospital, Jilin University, Changchun, Jilin, China.
- International Center of Future Science, Jilin University, Changchun, Jilin, China
- National-local Joint Engineering Laboratory of Animal Models for Human Diseases, Changchun, Jilin, China
- State Key Laboratory of Supramolecular Structure and Materials, Jilin University, Changchun, Jilin, China
- State Key Laboratory of Kidney Diseases, Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
4
|
Liu B, Yang Y, Fu Y, Zhao Y, Chen W, Wei S, Zuo X, Zhu Y, Ye H, Zhang M, Zhang P, Yang L, Wang W, Pan J. In-house ammonia induced lung impairment and oxidative stress of ducks. Poult Sci 2024; 103:103622. [PMID: 38513550 PMCID: PMC10973188 DOI: 10.1016/j.psj.2024.103622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 02/20/2024] [Accepted: 03/01/2024] [Indexed: 03/23/2024] Open
Abstract
Ammonia (NH3) is a toxic gas that in intensive poultry houses, damages the poultry health and induces various diseases. This study investigated the effects of NH3 exposure (0, 15, 30, and 45 ppm) on growth performance, serum biochemical indexes, antioxidative indicators, tracheal and lung impairments in Pekin ducks. A total of 288 one-day-old Pekin male ducks were randomly allocated to 4 groups with 6 replicates and slaughtered after the 21-d test period. Our results showed that 45 ppm NH3 significantly reduced the average daily feed intake (ADFI) of Pekin ducks. Ammonia exposure significantly reduced liver, lung, kidney, and heart indexes, and lowered the relative weight of the ileum. With the increasing of in-house NH3, serum NH3 and uric acid (UA) concentrations of ducks were significantly increased, as well as liver malondialdehyde (MDA), superoxide dismutase (SOD), and glutathione peroxidase (GPX-Px) contents. High NH3 also induced trachea and lung injury, thereby increasing levels of tumor necrosis factor-α (TNF-α) and interleukin-4 (IL-4) in the lung, and decreasing the mRNA expressions of zonula occludens 1 (ZO-1) and claudin 3 (CLDN3) in the lung. In conclusion, in-house NH3 decrease the growth performance in ducks, induce trachea and lung injuries and meanwhile increase the compensatory antioxidant activity for host protection.
Collapse
Affiliation(s)
- Bo Liu
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science, South China Agricultural University Guangzhou, China; Changsha Sanwang Feed Co. Ltd, Changsha, China
| | - Yongjie Yang
- Key Laboratory of Animal Nutrition and Healthy Breeding, Ministry of Agriculture, Wen's Foodstuff Group Co. Ltd, Yunfu, China
| | - Yang Fu
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science, South China Agricultural University Guangzhou, China
| | - Yue Zhao
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science, South China Agricultural University Guangzhou, China
| | - Wenjing Chen
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science, South China Agricultural University Guangzhou, China
| | - Shi Wei
- Key Laboratory of Animal Nutrition and Healthy Breeding, Ministry of Agriculture, Wen's Foodstuff Group Co. Ltd, Yunfu, China
| | - Xin Zuo
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science, South China Agricultural University Guangzhou, China
| | - Yongwen Zhu
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science, South China Agricultural University Guangzhou, China
| | - Hui Ye
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science, South China Agricultural University Guangzhou, China
| | - Minhong Zhang
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Pekin, China
| | - Peng Zhang
- Chimelong Group Co., Guangzhou 511430, China
| | - Lin Yang
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science, South China Agricultural University Guangzhou, China
| | - Wence Wang
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science, South China Agricultural University Guangzhou, China.
| | - Jie Pan
- Hunan Shihua Biotech Co. Ltd., Changsha, China
| |
Collapse
|
5
|
Hu Q, Wang R, Zhang J, Xue Q, Ding B. Tumor-associated neutrophils upregulate PANoptosis to foster an immunosuppressive microenvironment of non-small cell lung cancer. Cancer Immunol Immunother 2023; 72:4293-4308. [PMID: 37907644 PMCID: PMC10992448 DOI: 10.1007/s00262-023-03564-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 10/17/2023] [Indexed: 11/02/2023]
Abstract
Tumor microenvironment (TME) cells orchestrate an immunosuppressive milieu that supports cancer cell proliferation. Tumor-associated neutrophils (TANs) have gained attention as inflammation biomarkers. However, the role of heterogeneous TAN populations in TME immune tolerance and their clinical potential remain unclear. Herein, we used public database to conduct single-cell transcriptomic analysis of 81 patients with non-small cell lung cancer (NSCLC) to elucidate TAN phenotypes linked to unfavorable clinical outcomes. We identified a pro-tumoral TAN cluster characterized by elevated HMGB1 expression, which could potentially engage with the TME through HMGB1-TIM-3 interaction. GATA2 was the transcription factor that drove HMGB1 expression in this pro-tumoral TAN subcluster. Further in vivo experiments confirmed the recruitment of HMGB1-positive TANs to the tumor lesion. Dual-luciferase reporter assays consolidated that the transcription factor GATA2 mediated HMGB1 expression by binding to its promoter region. Moreover, surgical NSCLC specimens verified the putative association between HMGB1-positive TAN and the pathological grades of primary tumors. Overall, this report revealed a pro-tumoral TAN cluster with HMGB1 overexpression that potentially dampen anti-tumoral immunity and contributed to immune evasion via the GATA2/HMGB1/TIM-3 axis. Moreover, this report suggests that this specific phenotype of TAN could serve as an indicator to clinical outcomes and immunotherapy effects for NSCLC.
Collapse
Affiliation(s)
- Qin Hu
- Department of Cardiothoracic Surgery, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, 226000, People's Republic of China
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, 226000, China
| | - Runtian Wang
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210000, China
| | - Jiaxin Zhang
- Department of Cardiothoracic Surgery, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, 226000, People's Republic of China
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, 226000, China
| | - Qun Xue
- Department of Cardiothoracic Surgery, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, 226000, People's Republic of China.
| | - Bo Ding
- Department of Cardiothoracic Surgery, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, 226000, People's Republic of China.
| |
Collapse
|
6
|
Wang Y, Su J, Zhou Z, Yang J, Liu W, Zhang Y, Zhang P, Guo T, Li G. Baicalein Resensitizes Multidrug-Resistant Gram-Negative Pathogens to Doxycycline. Microbiol Spectr 2023; 11:e0470222. [PMID: 37070985 PMCID: PMC10269726 DOI: 10.1128/spectrum.04702-22] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 03/31/2023] [Indexed: 04/19/2023] Open
Abstract
As multidrug-resistant pathogens emerge and spread rapidly, novel antibiotics urgently need to be discovered. With a dwindling antibiotic pipeline, antibiotic adjuvants might be used to revitalize existing antibiotics. In recent decades, traditional Chinese medicine has occupied an essential position in adjuvants of antibiotics. This study found that baicalein potentiates doxycycline against multidrug-resistant Gram-negative pathogens. Mechanism studies have shown that baicalein causes membrane disruption by attaching to phospholipids on the Gram-negative bacterial cytoplasmic membrane and lipopolysaccharides on the outer membrane. This process facilitates the entry of doxycycline into bacteria. Through collaborative strategies, baicalein can also increase the production of reactive oxygen species and inhibit the activities of multidrug efflux pumps and biofilm formation to potentiate antibiotic efficacy. Additionally, baicalein attenuates the lipopolysaccharide-induced inflammatory response in vitro. Finally, baicalein can significantly improve doxycycline efficacy in mouse lung infection models. The present study showed that baicalein might be considered a lead compound, and it should be further optimized and developed as an adjuvant that helps combat antibiotic resistance. IMPORTANCE Doxycycline is an important broad-spectrum tetracycline antibiotic used for treating multiple human infections, but its resistance rates are recently rising globally. Thus, new agents capable of boosting the effectiveness of doxycycline need to be discovered. In this study, it was found that baicalein potentiates doxycycline against multidrug-resistant Gram-negative pathogens in vitro and in vivo. Due to its low cytotoxicity and resistance, the combination of baicalein and doxycycline provides a valuable clinical reference for selecting more effective therapeutic strategies for treating infections caused by multidrug-resistant Gram-negative clinical isolates.
Collapse
Affiliation(s)
- Yuhang Wang
- Department of Microbiology, Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, People’s Republic of China
- Jiangsu Key Laboratory of Experimental & Translational Non-coding RNA Research, Yangzhou, People’s Republic of China
| | - Junfeng Su
- Department of Microbiology, Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, People’s Republic of China
| | - Ziyan Zhou
- Jiangsu Key Laboratory of Experimental & Translational Non-coding RNA Research, Yangzhou, People’s Republic of China
| | - Jie Yang
- Department of Microbiology, Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, People’s Republic of China
- Jiangsu Key Laboratory of Zoonosis/Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, People’s Republic of China
| | - Wenjuan Liu
- Laboratory Department, Affiliated Hospital of Yangzhou University, Yangzhou, People’s Republic of China
| | - Yafen Zhang
- Laboratory Department, Affiliated Hospital of Yangzhou University, Yangzhou, People’s Republic of China
| | - Pengyu Zhang
- Department of Microbiology, Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, People’s Republic of China
- Jiangsu Key Laboratory of Experimental & Translational Non-coding RNA Research, Yangzhou, People’s Republic of China
| | - Tingting Guo
- Department of Microbiology, Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, People’s Republic of China
- Jiangsu Key Laboratory of Experimental & Translational Non-coding RNA Research, Yangzhou, People’s Republic of China
- Jiangsu Key Laboratory of Zoonosis/Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, People’s Republic of China
| | - Guocai Li
- Department of Microbiology, Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, People’s Republic of China
- Jiangsu Key Laboratory of Experimental & Translational Non-coding RNA Research, Yangzhou, People’s Republic of China
- Jiangsu Key Laboratory of Zoonosis/Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, People’s Republic of China
- Laboratory Department, Affiliated Hospital of Yangzhou University, Yangzhou, People’s Republic of China
| |
Collapse
|