1
|
Li J, Geng Y, Luo Y, Sun X, Guo Y, Dong Z. Pathological roles of NETs-platelet synergy in thrombotic diseases: From molecular mechanisms to therapeutic targeting. Int Immunopharmacol 2025; 159:114934. [PMID: 40418882 DOI: 10.1016/j.intimp.2025.114934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2025] [Revised: 05/10/2025] [Accepted: 05/20/2025] [Indexed: 05/28/2025]
Abstract
The formation of neutrophil extracellular traps (NETs) is a novel way for neutrophils to perform organismal protective functions essential for protecting the host against infections. Nevertheless, an increasing amount of data shows that uncontrolled or excessive formation of NETs in the body leads to inflammation and thrombosis. Many serious human diseases, such as sepsis, stroke, cancer, and autoimmune diseases, are associated with thrombosis, and inhibiting its formation is essential to prevent the development of many inflammatory and thrombotic diseases. With deeper research, it has been found that there is a complex interaction between NETs and platelets: platelets activate neutrophils to form NETs, while NET components enhance platelet aggregation and activation. This self-perpetuating vicious cycle between them mediates pathological processes such as inflammation, coagulation, and thrombosis. A deeper comprehension of the underlying molecular mechanisms between them promises to be a new target for thrombotic diseases. In this review, we concentrate on a summary of NET formation and its mechanisms of action. Providing a thorough summary of how neutrophils are activated by platelets to form NETs, how NETs cause platelet activation, and how this close interaction during inflammatory events affects the course of the disease, with the aim of providing fresh targets and ideas for thrombotic disease clinical prevention and therapy.
Collapse
Affiliation(s)
- Jiaqi Li
- School of Pharmacy, Heilongjiang University of Chinese Medicine, No. 24, Heping Road, Xiangfang District, Harbin 150040, China
| | - Yifei Geng
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 151, Malianwa North Road, Haidian District, Beijing 100193, China
| | - Yun Luo
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 151, Malianwa North Road, Haidian District, Beijing 100193, China; Beijing Key Laboratory of Neuro-Innovative Drug Research and Development of Traditional Chinese Medicine (Natural Medicines), No. 151, Malianwa North Road, Haidian District, Beijing 100193, China
| | - Xiaobo Sun
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 151, Malianwa North Road, Haidian District, Beijing 100193, China; Beijing Key Laboratory of Neuro-Innovative Drug Research and Development of Traditional Chinese Medicine (Natural Medicines), No. 151, Malianwa North Road, Haidian District, Beijing 100193, China
| | - Yifei Guo
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 151, Malianwa North Road, Haidian District, Beijing 100193, China; Beijing Key Laboratory of Neuro-Innovative Drug Research and Development of Traditional Chinese Medicine (Natural Medicines), No. 151, Malianwa North Road, Haidian District, Beijing 100193, China.
| | - Zhengqi Dong
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 151, Malianwa North Road, Haidian District, Beijing 100193, China; Beijing Key Laboratory of Neuro-Innovative Drug Research and Development of Traditional Chinese Medicine (Natural Medicines), No. 151, Malianwa North Road, Haidian District, Beijing 100193, China.
| |
Collapse
|
2
|
Wu Q, Chen Y, Zhu B, Zhou F, Li X, Ye X, Ding Z, Zhou M. Bletilla striata polysaccharides alleviate ARDS by inhibiting NETs-induced pyroptosis in pulmonary alveolar macrophage through the PAD4 pathway. Int J Biol Macromol 2025; 305:141026. [PMID: 39954881 DOI: 10.1016/j.ijbiomac.2025.141026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 02/08/2025] [Accepted: 02/12/2025] [Indexed: 02/17/2025]
Abstract
Bletilla striata, a traditional Chinese medicine known for its astringent hemostatic and heat-clearing properties, has been traditionally utilized for detoxification. This study aims to explore the potential of Bletilla striata polysaccharides (BSP) in alleviating pneumonia associated with acute respiratory distress syndrome (ARDS) by influencing Neutrophil Extracellular Traps (NETs) as well as NETs-induced alveolar macrophages (AMs) pyroptosis. Results found that BSP demonstrated a significant mitigation effect to lung injury in ARDS mice. It exhibited a notable regulatory effect on neutrophils and macrophages. Specifically, BSP effectively reduced the level of NETs in both lung tissue and the entire body of ARDS mice. It also attenuated the formation of immune thrombosis in the lungs and reduced the incidence of pyroptosis in AMs. Furthermore, in MH-S cells treated with NETs + LPS, which induced pyroptosis, BSP demonstrated significant alleviation of inflammation and pyroptosis. The attenuating effect of BSP was weakened when the GSK484 was introduced to ARDS mice, suggesting the involvement of PAD4 in BSP's mechanism of action. The results demonstrated that BSP has the potential to modulate neutrophil/macrophage homeostasis via the PAD4 pathway, leading to a reduction in NETs levels and alleviation of NETs-induced pyroptosis in alveolar macrophages, alleviating ARDS.
Collapse
Affiliation(s)
- Qian Wu
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, Hangzhou 310053, Zhejiang, China
| | - Yuchi Chen
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, Hangzhou 310053, Zhejiang, China
| | - Bingqi Zhu
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, Hangzhou 310053, Zhejiang, China
| | - Fangmei Zhou
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, Hangzhou 310053, Zhejiang, China
| | - Xiaoyan Li
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, Hangzhou 310053, Zhejiang, China
| | - Xiaoqing Ye
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, Hangzhou 310053, Zhejiang, China
| | - Zhishan Ding
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, Hangzhou 310053, Zhejiang, China.
| | - Mingyuan Zhou
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, Hangzhou 310053, Zhejiang, China.
| |
Collapse
|
3
|
Marco-Bonilla M, Fresnadillo M, de la Riva-Bueno M, Herrero-Beaumont G, Largo R, Mediero A. Animal Models in Rheumatoid Arthritis: Is There a Correlation Between Autoantibodies in Human Pathology and Animal Models? BIOLOGY 2025; 14:460. [PMID: 40427650 PMCID: PMC12108981 DOI: 10.3390/biology14050460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/26/2025] [Revised: 04/19/2025] [Accepted: 04/21/2025] [Indexed: 05/29/2025]
Abstract
RA is a chronic autoimmune disease characterized by synovial inflammation and joint damage, driven by autoantibodies such as ACPA, anti-CarP and RF. These autoantibodies, influenced by genetic and environmental factors, play a crucial role in RA pathogenesis through post-translational modifications like citrullination, carbamylation, and acetylation. The early detection of ACPA provides a potential window for intervention, while anti-CarP antibodies correlate with severe disease progression and RF aids in diagnosis. Translating these findings from human pathology to animal models presents significant challenges. Although the presence of adaptative immune cells (T cells) is well defined in animal models of RA, studies yield inconsistent results regarding autoantibody production and implication in the disease onset and progression, with varying detectability of ACPA, anti-CarP antibodies, and RF across different species and models. The collagen-induced arthritis (CIA) model shows PAD4 expression and citrullinated protein presence but inconsistent ACPA detection, while the K/BxN model elucidates the pathogenicity of anti-GPI autoantibodies and implicates Fcγ receptors in disease processes. Therefore, further research is needed to bridge the gap between animal models and human RA pathology. Future studies should focus on developing more representative animal models, exploring pharmacological targets and pathways that involve the interplay between anti-inflammatory and autoimmune responses, and investigating the complex interplay between genetic predisposition, environmental triggers, and autoimmune mechanisms. This approach may lead to improved early diagnostic tools, targeted therapies, and potentially preventive strategies for RA, ultimately enhancing patient outcomes and quality of life.
Collapse
|
4
|
Reis LR, Nascimento RO, Massafera MP, Di Mascio P, Ronsein GE. Investigating neutrophil responses to stimuli: Comparative analysis of reactive species-dependent and independent mechanisms. Redox Biol 2025; 81:103540. [PMID: 40037225 PMCID: PMC11923813 DOI: 10.1016/j.redox.2025.103540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 02/06/2025] [Accepted: 02/08/2025] [Indexed: 03/06/2025] Open
Abstract
Neutrophils play a critical role in immune response, using mechanisms as degranulation, phagocytosis, and the release of extracellular DNA together with microbicidal proteins, the so-called neutrophil extracellular traps (NETs), to combat pathogens. Multiple mechanisms might be involved in neutrophil's response to stimuli, but the biochemical characterization of each different pathway is still lacking. In this study, we used superoxide measurements, live-imaging microscopy and high-resolution proteomics to provide a thorough biochemical characterization of the neutrophil's response following activation by two well-known stimuli, namely phorbol-12-myristate-13-acetate (PMA), and ionomycin, a calcium ionophore. Our results demonstrated that although both stimuli induce extracellular DNA release, signals and mediators released by activated cells before this final event were distinct. Thus, PMA-treated neutrophils induce superoxide production, and degranulation of proteins from all granules, especially those derived from secretory vesicles and tertiary granules. On the other hand, ionomycin-treated neutrophils do not stimulate superoxide generation, but induce extensive protein citrullination (also known as arginine deimination), particularly modifying proteins related to actin cytoskeleton organization, nucleus stability, and the NADPH oxidase complex. Interestingly, many of the citrullinated proteins detected in this work were also found to act as autoantigens in autoimmune diseases such as rheumatoid arthritis. These striking differences show neutrophils' response to PMA and ionomycin are two distinct biochemical processes that point towards neutrophils diversification and plasticity responding to the environment. It also provides implications for understanding neutrophil-driven microbial response and potential roles in autoimmune diseases.
Collapse
Affiliation(s)
- Lorenna Rocha Reis
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, 05508-000, Brazil
| | | | - Mariana Pereira Massafera
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, 05508-000, Brazil
| | - Paolo Di Mascio
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, 05508-000, Brazil
| | - Graziella Eliza Ronsein
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, 05508-000, Brazil.
| |
Collapse
|
5
|
Alexandria G, Valerio HP, Massafera MP, Reis LR, Coelho FR, Di Mascio P, Ronsein GE. The miniaturized isolation of neutrophil granules (MING) method allowed a deep proteome mapping of human neutrophil granules. J Leukoc Biol 2025; 117:qiae224. [PMID: 39385601 DOI: 10.1093/jleuko/qiae224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 09/11/2024] [Accepted: 10/09/2024] [Indexed: 10/12/2024] Open
Abstract
Neutrophils are the innate immune system's first line of defense, and their storage organelles are essential to their function. The storage organelles are divided into 3 different granule types named azurophilic, specific, and gelatinase granules, besides a fourth component called secretory vesicles. The isolation of neutrophil's granules is challenging, and the existing procedures rely on large sample volumes, about 400 mL of peripheral blood, precluding the use of multiple biological and technical replicates. Therefore, the aim of this study was to develop a miniaturized isolation of neutrophil granules method, using biochemical assays, mass spectrometry-based proteomics and a machine learning approach to investigate the protein content of these organelles. Neutrophils were isolated from 40 mL of blood collected from 3 apparently healthy volunteers and disrupted using nitrogen cavitation; the organelles were fractionated with a discontinuous 3-layer Percoll density gradient. The method was proven successful and allowed for a reasonable separation and enrichment of neutrophil's storage organelles using a gradient approximately 37 times smaller than the methods described in the literature. Moreover, mass spectrometry-based proteomics identified 368 proteins in at least 3 of the 5 analyzed samples, and using a machine learning strategy aligned with markers from the literature, the localization of 50 proteins was predicted with confidence. When using markers determined within our dataset by a clusterization tool, the localization of 348 proteins was confidently determined. Importantly, this study was the first to investigate the proteome of neutrophil granules using technical and biological replicates, creating a reliable database for further studies.
Collapse
Affiliation(s)
- Gabrielly Alexandria
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, Avenida Professor Lineu Prestes, 748, São Paulo 05508-000, Brazil
| | - Hellen P Valerio
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, Avenida Professor Lineu Prestes, 748, São Paulo 05508-000, Brazil
| | - Mariana P Massafera
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, Avenida Professor Lineu Prestes, 748, São Paulo 05508-000, Brazil
| | - Lorenna R Reis
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, Avenida Professor Lineu Prestes, 748, São Paulo 05508-000, Brazil
| | - Fernando R Coelho
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, Avenida Professor Lineu Prestes, 748, São Paulo 05508-000, Brazil
| | - Paolo Di Mascio
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, Avenida Professor Lineu Prestes, 748, São Paulo 05508-000, Brazil
| | - Graziella E Ronsein
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, Avenida Professor Lineu Prestes, 748, São Paulo 05508-000, Brazil
| |
Collapse
|
6
|
Li Y, Cao Z, Liu J, Qiang R, Wang J, Lyu W. Current perspectives and trends of neutrophil extracellular traps in organ fibrosis: a bibliometric and visualization study. Front Immunol 2025; 16:1508909. [PMID: 40109341 PMCID: PMC11920176 DOI: 10.3389/fimmu.2025.1508909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Accepted: 02/17/2025] [Indexed: 03/22/2025] Open
Abstract
New insights into the role of immune responses in the fibrosis process provide valuable considerations for the treatment of organ fibrotic diseases. Neutrophil extracellular traps (NETs) represent a novel understanding of neutrophil functions, and their involvement in organ fibrotic diseases has garnered widespread attention in recent years. This study aims to conduct a bibliometric analysis and literature review focusing on the mechanisms by which NETs participate in fibrotic diseases. Specifically, we utilized a bibliometric dataset that includes 220 papers published in 139 journals, originating from 425 organizations across 39 countries, with a total citation count of 12,301. Keyword co-occurrence analysis indicates that the research focus on the mechanisms of NETs in organ fibrosis is likely to center on NETosis, immune responses, immune thrombosis, inflammation, and tissue damage associated with NET formation. In conclusion, our findings underscore the current status and emerging trends in NET research related to organ fibrosis, offering novel insights into the mechanisms by which NETs contribute to the pathogenesis of fibrotic diseases, as well as potential therapeutic strategies.
Collapse
Affiliation(s)
- Yanbo Li
- Department of Infectious Diseases, Guang’anmen Hospital, China Academy of Traditional Chinese Medicine, Beijing, China
| | - Zhengmin Cao
- Department of Infectious Diseases, Guang’anmen Hospital, China Academy of Traditional Chinese Medicine, Beijing, China
| | - Jing Liu
- Department of Infectious Diseases, Guang’anmen Hospital, China Academy of Traditional Chinese Medicine, Beijing, China
| | - Rui Qiang
- Department of Oncology, Beijing Hospital of Traditional Chinese Medicine Shunyi Hospital, Beijing, China
| | - Jiuchong Wang
- Department of Infectious Diseases, Guang’anmen Hospital, China Academy of Traditional Chinese Medicine, Beijing, China
| | - Wenliang Lyu
- Department of Infectious Diseases, Guang’anmen Hospital, China Academy of Traditional Chinese Medicine, Beijing, China
| |
Collapse
|
7
|
Birnberg-Weiss F, Castro JE, Pittaluga JR, Castillo LA, Martire-Greco D, Fuentes F, Bigi F, Gómez SA, Landoni VI, Fernández GC. Klebsiella pneumoniae ST258 impairs intracellular elastase mobilization and persists within human neutrophils. Microbiol Res 2025; 292:128035. [PMID: 40289722 DOI: 10.1016/j.micres.2024.128035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 12/02/2024] [Accepted: 12/18/2024] [Indexed: 04/30/2025]
Abstract
Klebsiella pneumoniae (Kp) strains of sequence type (ST) 258 producing K. pneumoniae-carbapenemase (KPC) are a major cause of hospital-associated outbreaks and the main contributors of carbapenemase spreading. Here, we deepen into the mechanisms behind the inhibition of neutrophil bactericidal functions mediated by a clinical isolate of Kp ST258 KPC, Kp from now on. We found that NETs formation induced by different stimuli (PMA, ionomycin, Staphylococcus aureus) was significantly reduced in the presence of Kp. We revealed that Kp affects actin polymerization which correlates with impaired mobilization of elastase from azurophilic granules to the nucleus and reduced elastase mobilization towards phagosomes that contain bacteria. In line with these results, Kp survived within neutrophils for 3 h post-challenge without compromising neutrophil viability. We also found that different Kp clinical isolates inhibited NETs formation and actin polymerization. These results describe a strategy of evasion used by Kp to subvert PMN-mediating both intra and extracellular mechanisms of killing, representing a clear advantage for the survival and spreading of this multidrug-resistant bacteria.
Collapse
Affiliation(s)
- Federico Birnberg-Weiss
- Laboratorio de Fisiología de los Procesos Inflamatorios, Instituto de Medicina Experimental (IMEX)-Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET)/Academia Nacional de Medicina, CABA, Argentina.
| | - Joselyn E Castro
- Laboratorio de Fisiología de los Procesos Inflamatorios, Instituto de Medicina Experimental (IMEX)-Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET)/Academia Nacional de Medicina, CABA, Argentina
| | - Jose R Pittaluga
- Laboratorio de Fisiología de los Procesos Inflamatorios, Instituto de Medicina Experimental (IMEX)-Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET)/Academia Nacional de Medicina, CABA, Argentina
| | - Luis A Castillo
- Laboratorio de Fisiología de los Procesos Inflamatorios, Instituto de Medicina Experimental (IMEX)-Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET)/Academia Nacional de Medicina, CABA, Argentina
| | - Daiana Martire-Greco
- Laboratorio de Fisiología de los Procesos Inflamatorios, Instituto de Medicina Experimental (IMEX)-Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET)/Academia Nacional de Medicina, CABA, Argentina
| | - Federico Fuentes
- Laboratorio de Fisiología de los Procesos Inflamatorios, Instituto de Medicina Experimental (IMEX)-Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET)/Academia Nacional de Medicina, CABA, Argentina
| | - Fabiana Bigi
- Instituto de Agrobiotecnología y Biología Molecular (IABIMO), Instituto Nacional de Tecnología Agropecuaria (INTA), CONICET, Nicolas Repetto y de los Reseros s/n, Hurlingham, Buenos Aires B1686, Argentina
| | - Sonia A Gómez
- Servicio de Antimicrobianos, Instituto Nacional de Enfermedades Infecciosas, ANLIS 'Dr Carlos G. Malbrán', CABA, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Verónica I Landoni
- Laboratorio de Fisiología de los Procesos Inflamatorios, Instituto de Medicina Experimental (IMEX)-Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET)/Academia Nacional de Medicina, CABA, Argentina
| | - Gabriela C Fernández
- Laboratorio de Fisiología de los Procesos Inflamatorios, Instituto de Medicina Experimental (IMEX)-Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET)/Academia Nacional de Medicina, CABA, Argentina
| |
Collapse
|
8
|
Wu W, Meng F, Zhang H, Tian H, Zhang X. Neutrophil PPIF exacerbates lung ischemia-reperfusion injury after lung transplantation by promoting calcium overload-induced neutrophil extracellular traps formation. Int Immunopharmacol 2024; 142:113051. [PMID: 39236457 DOI: 10.1016/j.intimp.2024.113051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 08/24/2024] [Accepted: 08/29/2024] [Indexed: 09/07/2024]
Abstract
Lung ischemia-reperfusion (I/R) injury is the main risk factor for primary graft dysfunction and patient death after lung transplantation (LTx). It is widely accepted that the main pathological mechanism of lung I/R injury are calcium overload, oxygen free radical explosion and neutrophil-mediated damage, which leading to the lack of effective treatment options. The aim of this study was to further explore the mechanisms of lung I/R injury after LTx and to provide potential therapeutic strategies. Our bioinformatics analysis revealed that the neutrophil extracellular traps (NETs) formation was closely involved in lung I/R injury after LTx, which was accompanied by up-regulation of peptidylprolyl isomerase F (PPIF) and peptidyl arginine deiminase 4 (PADI4). We further established an orthotopic LTx mouse model to simulate lung I/R injury in vivo, and found that PPIF and PADI4 inhibitors effectively reduced neutrophil infiltration, NETs formation, inflammatory response, and lung I/R injury. In the neutrophil model induced by HL-60 cell line in vitro, we found that PPIF inhibitor cyclosporin A (Cys A) better alleviated calcium overload induced inflammatory response, reactive oxygen species content and NETs formation. Further study demonstrated that interfering with neutrophil PPIF protected mitochondrial function by alleviating store-operated calcium entry (SOCE) during calcium overload and played the above positive role. On this basis, we found that the reduction of calcium content in neutrophils was accompanied by the inhibition of calcineurin (CN) and nuclear factor of activated T cells (NFAT). In conclusion, our findings suggested that neutrophil PPIF could serve as a novel biomarker and potential therapeutic target of lung I/R injury after LTx, which provided new clues for its treatment by inhibiting calcium overload-induced NETs formation.
Collapse
Affiliation(s)
- Wensi Wu
- Department of Thoracic Surgery, Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Fanqing Meng
- Department of Anesthesiology, Jinan Maternity and Child Care Hospital, Jinan, China
| | - Huiying Zhang
- Department of Thoracic Surgery, Qilu Hospital of Shandong University, Jinan, China
| | - Hui Tian
- Department of Thoracic Surgery, Qilu Hospital of Shandong University, Jinan, China.
| | - Xiaojun Zhang
- Department of Anesthesiology, Qilu Hospital of Shandong University, Jinan, China.
| |
Collapse
|
9
|
Cordeiro EF, Marzola EL, Maekawa RS, Santos MR, Assunção LG, Massafera MP, Oliveira JD, Batista TG, Sales MCOPD, Maria-Engler SS, Di Mascio P, Medeiros MHD, Ronsein GE, Loureiro APDM. Nicotinamide riboside Induced Energy Stress and Metabolic Reprogramming in BEAS-2B Cells. Chem Res Toxicol 2024; 37:1246-1268. [PMID: 38990804 PMCID: PMC11337214 DOI: 10.1021/acs.chemrestox.3c00312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 06/17/2024] [Accepted: 06/24/2024] [Indexed: 07/13/2024]
Abstract
Nicotinamide riboside (NR), a NAD+ precursor, has received attention due to several health benefits it has induced in experimental models. Studies in cultured cells, animals, and humans consistently show increased NAD+ availability after NR supplementation, which is considered the only mode of NR action that leads to health benefits. In the present study, we show that a persistently low NR concentration (1 μM) in the growth medium of BEAS-2B human cells, grown in a monolayer, induces energy stress, which precedes a cellular NAD+ increase after 192 h. NR concentrations greater than 1 μM under the specified conditions were cytotoxic in the 2D cell culture model, while all concentrations tested in the 3D cell culture model (BEAS-2B cell spheroids exposed to 1, 5, 10, and 50 μM NR) induced apoptosis. Shotgun proteomics revealed that NR modulated the abundance of proteins, agreeing with the observed effects on cellular energy metabolism and cell growth or survival. Energy stress may activate pathways that lead to health benefits such as cancer prevention. Accordingly, the premalignant 1198 cell line was more sensitive to NR cytotoxicity than the phenotypically normal parent BEAS-2B cell line. The role of a mild energy stress induced by low concentrations of NR in its beneficial effects deserves further investigation. On the other hand, strategies to increase the bioavailability of NR require attention to toxic effects that may arise.
Collapse
Affiliation(s)
- Everson
Willian Fialho Cordeiro
- Departamento
de Análises Clínicas e Toxicológicas, Faculdade
de Ciências Farmacêuticas, Universidade de São Paulo, Av. Prof. Lineu Prestes 580, CEP 05508-000 São Paulo, Brazil
| | - Elisabete Leide Marzola
- Departamento
de Análises Clínicas e Toxicológicas, Faculdade
de Ciências Farmacêuticas, Universidade de São Paulo, Av. Prof. Lineu Prestes 580, CEP 05508-000 São Paulo, Brazil
| | - Ricardo Soei Maekawa
- Departamento
de Análises Clínicas e Toxicológicas, Faculdade
de Ciências Farmacêuticas, Universidade de São Paulo, Av. Prof. Lineu Prestes 580, CEP 05508-000 São Paulo, Brazil
| | - Matheus Relvas
dos Santos
- Departamento
de Análises Clínicas e Toxicológicas, Faculdade
de Ciências Farmacêuticas, Universidade de São Paulo, Av. Prof. Lineu Prestes 580, CEP 05508-000 São Paulo, Brazil
| | - Lucas Gade Assunção
- Departamento
de Análises Clínicas e Toxicológicas, Faculdade
de Ciências Farmacêuticas, Universidade de São Paulo, Av. Prof. Lineu Prestes 580, CEP 05508-000 São Paulo, Brazil
| | - Mariana Pereira Massafera
- Departamento
de Bioquímica, Instituto de Química, Universidade de São Paulo, Av. Prof. Lineu Prestes 748, CEP 05508-000 São Paulo, Brazil
| | - Joseana de Oliveira
- Departamento
de Análises Clínicas e Toxicológicas, Faculdade
de Ciências Farmacêuticas, Universidade de São Paulo, Av. Prof. Lineu Prestes 580, CEP 05508-000 São Paulo, Brazil
| | - Thainá Gomes
Cury Batista
- Departamento
de Análises Clínicas e Toxicológicas, Faculdade
de Ciências Farmacêuticas, Universidade de São Paulo, Av. Prof. Lineu Prestes 580, CEP 05508-000 São Paulo, Brazil
| | - Maria Cármen Oliveira Pinho de Sales
- Departamento
de Análises Clínicas e Toxicológicas, Faculdade
de Ciências Farmacêuticas, Universidade de São Paulo, Av. Prof. Lineu Prestes 580, CEP 05508-000 São Paulo, Brazil
| | - Silvya Stuchi Maria-Engler
- Departamento
de Análises Clínicas e Toxicológicas, Faculdade
de Ciências Farmacêuticas, Universidade de São Paulo, Av. Prof. Lineu Prestes 580, CEP 05508-000 São Paulo, Brazil
| | - Paolo Di Mascio
- Departamento
de Bioquímica, Instituto de Química, Universidade de São Paulo, Av. Prof. Lineu Prestes 748, CEP 05508-000 São Paulo, Brazil
| | - Marisa Helena
Gennari de Medeiros
- Departamento
de Bioquímica, Instituto de Química, Universidade de São Paulo, Av. Prof. Lineu Prestes 748, CEP 05508-000 São Paulo, Brazil
| | - Graziella Eliza Ronsein
- Departamento
de Bioquímica, Instituto de Química, Universidade de São Paulo, Av. Prof. Lineu Prestes 748, CEP 05508-000 São Paulo, Brazil
| | - Ana Paula de Melo Loureiro
- Departamento
de Análises Clínicas e Toxicológicas, Faculdade
de Ciências Farmacêuticas, Universidade de São Paulo, Av. Prof. Lineu Prestes 580, CEP 05508-000 São Paulo, Brazil
| |
Collapse
|
10
|
Chen J, Cao Y, Xiao J, Hong Y, Zhu Y. The emerging role of neutrophil extracellular traps in the progression of rheumatoid arthritis. Front Immunol 2024; 15:1438272. [PMID: 39221253 PMCID: PMC11361965 DOI: 10.3389/fimmu.2024.1438272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Accepted: 07/19/2024] [Indexed: 09/04/2024] Open
Abstract
Rheumatoid arthritis (RA) is a chronic autoimmune disease with a complex etiology. Neutrophil extracellular traps (NETs are NETwork protein structures activated by neutrophils to induce the cleavage and release of DNA-protein complexes). Current studies have shown the critical involvement of NETs in the progression of autoimmune diseases, Neutrophils mostly gather in the inflammatory sites of patients and participate in the pathogenesis of autoimmune diseases in various ways. NETs, as the activated state of neutrophils, have attracted much attention in immune diseases. Many molecules released in NETs are targeted autoantigens in autoimmune diseases, such as histones, citrulline peptides, and myeloperoxidase. All of these suggest that NETs have a direct causal relationship between the production of autoantigens and autoimmune diseases. For RA in particular, as a disorder of the innate and adaptive immune response, the pathogenesis of RA is inseparable from the generation of RA. In this article, we investigate the emerging role of NETs in the pathogenesis of RA and suggest that NETs may be an important target for the treatment of inflammatory autoimmune diseases.
Collapse
Affiliation(s)
- Jingjing Chen
- The Geriatrics, Graduate School of Anhui University of Chinese Medicine, Hefei, China
| | - Yang Cao
- The Geriatrics, Graduate School of Anhui University of Chinese Medicine, Hefei, China
| | - Jing Xiao
- The Geriatrics, Graduate School of Anhui University of Chinese Medicine, Hefei, China
| | - Yujie Hong
- The Geriatrics, Graduate School of Anhui University of Chinese Medicine, Hefei, China
| | - Yan Zhu
- The Geriatrics, The Second Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, China
| |
Collapse
|
11
|
Matos IDA, Dallazen JL, Reis LR, Souza LF, Bevevino RC, de Moura RD, Ronsein GE, Hoch NC, da Costa Júnior NB, Costa SKP, Meotti FC. Targeting Myeloperoxidase Ameliorates Gouty Arthritis: A Virtual Screening Success Story. J Med Chem 2024; 67:12012-12032. [PMID: 38991154 DOI: 10.1021/acs.jmedchem.4c00721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/13/2024]
Abstract
This study presents a new approach for identifying myeloperoxidase (MPO) inhibitors with strong in vivo efficacy. By combining inhibitor-like rules and structure-based virtual screening, the pipeline achieved a 70% success rate in discovering diverse, nanomolar-potency reversible inhibitors and hypochlorous acid (HOCl) scavengers. Mechanistic analysis identified RL6 as a genuine MPO inhibitor and RL7 as a potent HOCl scavenger. Both compounds effectively suppressed HOCl production in cells and neutrophils, with RL6 showing a superior inhibition of neutrophil extracellular trap release (NETosis). In a gout arthritis mouse model, intraperitoneal RL6 administration reduced edema, peroxidase activity, and IL-1β levels. RL6 also exhibited oral bioavailability, significantly reducing paw edema when administered orally. This study highlights the efficacy of integrating diverse screening methods to enhance virtual screening success, validating the anti-inflammatory potential of potent inhibitors, and advancing the MPO inhibitor research.
Collapse
Affiliation(s)
- Isaac de A Matos
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo 05508-000, Brazil
| | - Jorge L Dallazen
- Department of Pharmacology, Institute of Biological Sciences, University of São Paulo, São Paulo 05508-000, Brazil
| | - Lorenna R Reis
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo 05508-000, Brazil
| | - Luiz Felipe Souza
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo 05508-000, Brazil
| | - Regina C Bevevino
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo 05508-000, Brazil
| | - Rafael D de Moura
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo 05508-000, Brazil
| | - Graziella E Ronsein
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo 05508-000, Brazil
| | - Nicolas Carlos Hoch
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo 05508-000, Brazil
| | | | - Soraia Kátia P Costa
- Department of Pharmacology, Institute of Biological Sciences, University of São Paulo, São Paulo 05508-000, Brazil
| | - Flavia C Meotti
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo 05508-000, Brazil
| |
Collapse
|
12
|
Li X, Xiao S, Filipczak N, Yalamarty SSK, Shang H, Zhang J, Zheng Q. Role and Therapeutic Targeting Strategies of Neutrophil Extracellular Traps in Inflammation. Int J Nanomedicine 2023; 18:5265-5287. [PMID: 37746050 PMCID: PMC10516212 DOI: 10.2147/ijn.s418259] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Accepted: 08/29/2023] [Indexed: 09/26/2023] Open
Abstract
Neutrophil extracellular traps (NETs) are large DNA reticular structures secreted by neutrophils and decorated with histones and antimicrobial proteins. As a key mechanism for neutrophils to resist microbial invasion, NETs play an important role in the killing of microorganisms (bacteria, fungi, and viruses). Although NETs are mostly known for mediating microbial killing, increasing evidence suggests that excessive NETs induced by stimulation of physical and chemical components, microorganisms, and pathological factors can exacerbate inflammation and organ damage. This review summarizes the induction and role of NETs in inflammation and focuses on the strategies of inhibiting NETosis and the mechanisms involved in pathogen evasion of NETs. Furthermore, herbal medicine inhibitors and nanodelivery strategies improve the efficiency of inhibition of excessive levels of NETs.
Collapse
Affiliation(s)
- Xiang Li
- National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal Medicine, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, People’s Republic of China
| | - Shanghua Xiao
- Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, People’s Republic of China
| | - Nina Filipczak
- Center for Pharmaceutical Biotechnology and Nanomedicine, Northeastern University, Boston, MA, USA
| | | | - Hongming Shang
- Department of Biochemistry & Chemical Biology, Vanderbilt University, Nashville, TN, USA
| | - Jing Zhang
- Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, People’s Republic of China
| | - Qin Zheng
- Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, People’s Republic of China
| |
Collapse
|