1
|
Zhang L, Zhang L, Yang Y, Zhang X, Fang S, Zhao Y, Yang X, Wang X, Chen L. Studying mercury and polymethyl methacrylate joint effects on endogenous hydrogen polysulfides via fluorescence imaging. JOURNAL OF HAZARDOUS MATERIALS 2025; 489:137643. [PMID: 39983645 DOI: 10.1016/j.jhazmat.2025.137643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Revised: 12/18/2024] [Accepted: 02/15/2025] [Indexed: 02/23/2025]
Abstract
Heavy metal ions and micro(nano)plastic pollution have attracted increasing attention. However, their toxicological effects on endogenous reactive species at molecular level are unclear, especially their joint effects. Hence, two typical environmental poisons, mercury (Hg2+) and polymethyl methacrylate (PMMA), posing significant risks to both human health and ecosystems, are selected as pollution models for studying joint effects. Hydrogen polysulfides (H2Sn, n > 1) play crucial roles in removing oxidants and intracellular electrophilic reagents, involved in regulating intracellular redox state. The understanding of its precise biological role and intricate mechanism action remains limited, especially suffering from exogenous environmental stress. Herein, we have developed a novel H2Sn- responsive fluorescence probe P-Y with outstanding performance. Moreover, probe P-Y could image endogenous H2Sn levels in cells, and was successfully applied for monitoring the fluctuations of endogenous H2Sn levels to investigate their effects on redox homeostasis under Hg2+ and PMMA single and combined exposure. This study provided imaging evidences and an absorbing insight for understanding H2Sn function under Hg2+ and PMMA single and joint effects in living organisms.
Collapse
Affiliation(s)
- Li Zhang
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Shandong Key Laboratory of Coastal Environmental Processes, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Liangwei Zhang
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Shandong Key Laboratory of Coastal Environmental Processes, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China.
| | - Yang Yang
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Shandong Key Laboratory of Coastal Environmental Processes, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
| | - Xia Zhang
- University of Chinese Academy of Sciences, Beijing 100049, China; School of Pharmacy, Binzhou Medical University, Yantai 264003, China
| | - Shujing Fang
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Shandong Key Laboratory of Coastal Environmental Processes, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
| | - Yang Zhao
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Shandong Key Laboratory of Coastal Environmental Processes, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
| | - Xintong Yang
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Shandong Key Laboratory of Coastal Environmental Processes, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
| | - Xiaoyan Wang
- School of Pharmacy, Binzhou Medical University, Yantai 264003, China.
| | - Lingxin Chen
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Shandong Key Laboratory of Coastal Environmental Processes, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China; Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao 266237, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China; School of Pharmacy, Binzhou Medical University, Yantai 264003, China.
| |
Collapse
|
2
|
Miró-Vinyals C, Emmert S, Grammbitter G, Jud A, Kockmann T, Rivera-Fuentes P. Characterization of the glutathione redox state in the Golgi apparatus. Redox Biol 2025; 81:103560. [PMID: 39986117 PMCID: PMC11904595 DOI: 10.1016/j.redox.2025.103560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Revised: 02/17/2025] [Accepted: 02/18/2025] [Indexed: 02/24/2025] Open
Abstract
Redox homeostasis is crucial for cell function, and, in eukaryotic cells, studying it in a compartmentalized way is essential due to the redox variations between different organelles. The redox state of organelles is largely determined by the redox potential of glutathione, EGSH, and the concentration of its reduced and oxidized species, [GS]. The Golgi apparatus is an essential component of the secretory pathway, yet little is known about the concentration or redox state of GSH in this organelle. Here, we characterized the redox state of GSH in the Golgi apparatus using a combination of microscopy and proteomics methods. Our results prove that the Golgi apparatus is a highly oxidizing organelle with a strikingly low GSH concentration (EGSH = - 157 mV, 1-5 mM). These results fill an important gap in our knowledge of redox homeostasis in subcellular organelles. Moreover, the new Golgi-targeted GSH sensors allow us to observe dynamic changes in the GSH redox state in the organelle and pave the way for further characterization of the Golgi redox state under various physiological and pathological conditions.
Collapse
Affiliation(s)
| | - Sarah Emmert
- Department of Chemistry, University of Zurich, Zurich, Switzerland
| | - Gina Grammbitter
- Institute of Chemical Sciences and Engineering, École Polytechnique Fédéral de Lausanne, Lausanne, Switzerland
| | - Alex Jud
- Department of Biochemistry, University of Zurich, Zurich, Switzerland
| | - Tobias Kockmann
- Functional Genomics Center Zurich, ETH Zurich/University of Zurich, Zurich, Switzerland
| | | |
Collapse
|
3
|
Capdevila DA, Rondón JJ, Edmonds KA, Rocchio JS, Dujovne MV, Giedroc DP. Bacterial Metallostasis: Metal Sensing, Metalloproteome Remodeling, and Metal Trafficking. Chem Rev 2024; 124:13574-13659. [PMID: 39658019 DOI: 10.1021/acs.chemrev.4c00264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2024]
Abstract
Transition metals function as structural and catalytic cofactors for a large diversity of proteins and enzymes that collectively comprise the metalloproteome. Metallostasis considers all cellular processes, notably metal sensing, metalloproteome remodeling, and trafficking (or allocation) of metals that collectively ensure the functional integrity and adaptability of the metalloproteome. Bacteria employ both protein and RNA-based mechanisms that sense intracellular transition metal bioavailability and orchestrate systems-level outputs that maintain metallostasis. In this review, we contextualize metallostasis by briefly discussing the metalloproteome and specialized roles that metals play in biology. We then offer a comprehensive perspective on the diversity of metalloregulatory proteins and metal-sensing riboswitches, defining general principles within each sensor superfamily that capture how specificity is encoded in the sequence, and how selectivity can be leveraged in downstream synthetic biology and biotechnology applications. This is followed by a discussion of recent work that highlights selected metalloregulatory outputs, including metalloproteome remodeling and metal allocation by metallochaperones to both client proteins and compartments. We close by briefly discussing places where more work is needed to fill in gaps in our understanding of metallostasis.
Collapse
Affiliation(s)
- Daiana A Capdevila
- Fundación Instituto Leloir, Instituto de Investigaciones Bioquímicas de Buenos Aires (IIBBA-CONICET), C1405 BWE Buenos Aires, Argentina
| | - Johnma J Rondón
- Fundación Instituto Leloir, Instituto de Investigaciones Bioquímicas de Buenos Aires (IIBBA-CONICET), C1405 BWE Buenos Aires, Argentina
| | - Katherine A Edmonds
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405-7102, United States
| | - Joseph S Rocchio
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405-7102, United States
| | - Matias Villarruel Dujovne
- Fundación Instituto Leloir, Instituto de Investigaciones Bioquímicas de Buenos Aires (IIBBA-CONICET), C1405 BWE Buenos Aires, Argentina
| | - David P Giedroc
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405-7102, United States
| |
Collapse
|
4
|
Akaike T, Morita M, Ogata S, Yoshitake J, Jung M, Sekine H, Motohashi H, Barayeu U, Matsunaga T. New aspects of redox signaling mediated by supersulfides in health and disease. Free Radic Biol Med 2024; 222:539-551. [PMID: 38992395 DOI: 10.1016/j.freeradbiomed.2024.07.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 07/05/2024] [Accepted: 07/08/2024] [Indexed: 07/13/2024]
Abstract
Oxygen molecules accept electrons from the respiratory chain in the mitochondria and are responsible for energy production in aerobic organisms. The reactive oxygen species formed via these oxygen reduction processes undergo complicated electron transfer reactions with other biological substances, which leads to alterations in their physiological functions and cause diverse biological and pathophysiological consequences (e.g., oxidative stress). Oxygen accounts for only a small proportion of the redox reactions in organisms, especially under aerobic or hypoxic conditions but not under anaerobic and hypoxic conditions. This article discusses a completely new concept of redox biology, which is governed by redox-active supersulfides, i.e., sulfur-catenated molecular species. These species are present in abundance in all organisms but remain largely unexplored in terms of redox biology and life science research. In fact, accumulating evidence shows that supersulfides have extensive redox chemical properties and that they can be readily ionized or radicalized to participate in energy metabolism, redox signaling, and oxidative stress responses in cells and in vivo. Thus, pharmacological intervention and medicinal modulation of supersulfide activities have been shown to benefit the regulation of disease pathogenesis as well as disease control.
Collapse
Affiliation(s)
- Takaaki Akaike
- Department of Environmental Medicine and Molecular Toxicology, Tohoku University Graduate School of Medicine, Sendai, 980-8575, Japan.
| | - Masanobu Morita
- Department of Environmental Medicine and Molecular Toxicology, Tohoku University Graduate School of Medicine, Sendai, 980-8575, Japan
| | - Seiryo Ogata
- Department of Environmental Medicine and Molecular Toxicology, Tohoku University Graduate School of Medicine, Sendai, 980-8575, Japan
| | - Jun Yoshitake
- Department of Environmental Medicine and Molecular Toxicology, Tohoku University Graduate School of Medicine, Sendai, 980-8575, Japan
| | - Minkyung Jung
- Department of Environmental Medicine and Molecular Toxicology, Tohoku University Graduate School of Medicine, Sendai, 980-8575, Japan
| | - Hiroki Sekine
- Department of Medical Biochemistry, Tohoku University Graduate School of Medicine, Sendai, 980-8575, Japan
| | - Hozumi Motohashi
- Department of Medical Biochemistry, Tohoku University Graduate School of Medicine, Sendai, 980-8575, Japan
| | - Uladzimir Barayeu
- Department of Environmental Medicine and Molecular Toxicology, Tohoku University Graduate School of Medicine, Sendai, 980-8575, Japan; Max-Planck-Institute for Polymer Research, Mainz, 55128, Germany.
| | - Tetsuro Matsunaga
- Department of Environmental Medicine and Molecular Toxicology, Tohoku University Graduate School of Medicine, Sendai, 980-8575, Japan; Center for Integrated Control, Epidemiology and Molecular Pathophysiology of Infectious Diseases, Akita University, Akita, 010-8543, Japan.
| |
Collapse
|
5
|
Olson KR, Takata T, Clear KJ, Gao Y, Ma Z, Pfaff E, Mouli K, Kent TA, Jones P, Fukuto J, Wu G, Straub KD. The SOD1 Inhibitor, LCS-1, Oxidizes H2S to Reactive Sulfur Species, Directly and Indirectly, through Conversion of SOD1 to an Oxidase. Antioxidants (Basel) 2024; 13:991. [PMID: 39199236 PMCID: PMC11351665 DOI: 10.3390/antiox13080991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 07/30/2024] [Accepted: 08/08/2024] [Indexed: 09/01/2024] Open
Abstract
LCS-1, a putative selective inhibitor of SOD1, is a substituted pyridazinone with rudimentary similarity to quinones and naphthoquinones. As quinones catalytically oxidize H2S to biologically active reactive sulfur species (RSS), we hypothesized LCS-1 might have similar attributes. Here, we examine LCS-1 reactions with H2S and SOD1 using thiol-specific fluorophores, liquid chromatography-mass spectrometry, electron paramagnetic resonance (EPR), UV-vis spectrometry, and oxygen consumption. We show that LCS-1 catalytically oxidizes H2S in buffer solutions to form RSS, namely per- and polyhydrosulfides (H2Sn, n = 2-6). These reactions consume oxygen and produce hydrogen peroxide, but they do not have an EPR signature, nor do they affect the UV-vis spectrum. Surprisingly, LCS-1 synergizes with SOD1, but not SOD2, to oxidize H2S to H2S3-6. LCS-1 forms monothiol adducts with H2S, glutathione (GSH), and cysteine (Cys), but not with oxidized glutathione or cystine; both thiol adducts inhibit LCS-1-SOD1 synergism. We propose that LCS-1 forms an adduct with SOD1 that disrupts the intramolecular Cys57-Cys146 disulfide bond and transforms SOD1 from a dismutase to an oxidase. This would increase cellular ROS and polysulfides, the latter potentially affecting cellular signaling and/or cytoprotection.
Collapse
Affiliation(s)
- Kenneth R. Olson
- Department of Physiology, Indiana University School of Medicine South Bend, South Bend, IN 46617, USA; (T.T.); (Y.G.); (Z.M.); (E.P.)
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Tsuyoshi Takata
- Department of Physiology, Indiana University School of Medicine South Bend, South Bend, IN 46617, USA; (T.T.); (Y.G.); (Z.M.); (E.P.)
| | - Kasey J. Clear
- Department of Chemistry and Biochemistry, Indiana University South Bend, South Bend, IN 46615, USA;
| | - Yan Gao
- Department of Physiology, Indiana University School of Medicine South Bend, South Bend, IN 46617, USA; (T.T.); (Y.G.); (Z.M.); (E.P.)
| | - Zhilin Ma
- Department of Physiology, Indiana University School of Medicine South Bend, South Bend, IN 46617, USA; (T.T.); (Y.G.); (Z.M.); (E.P.)
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Ella Pfaff
- Department of Physiology, Indiana University School of Medicine South Bend, South Bend, IN 46617, USA; (T.T.); (Y.G.); (Z.M.); (E.P.)
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Karthik Mouli
- Institute of Biosciences and Technology, Texas A&M Health Sciences Center-Houston Campus, Houston, TX 77030, USA; (K.M.); (T.A.K.)
| | - Thomas A. Kent
- Institute of Biosciences and Technology, Texas A&M Health Sciences Center-Houston Campus, Houston, TX 77030, USA; (K.M.); (T.A.K.)
| | - Prentiss Jones
- Toxicology Department, Western Michigan University Homer Stryker M.D. School of Medicine, Kalamazoo, MI 49007, USA;
| | - Jon Fukuto
- Department of Chemistry, Sonoma State University, Rohnert Park, CA 94928, USA;
| | - Gang Wu
- Department of Internal Medicine, McGovern Medical School, University of Texas, Houston, TX 77030, USA;
| | - Karl D. Straub
- Central Arkansas Veteran’s Healthcare System, Little Rock, AR 72205, USA;
- Departments of Medicine and Biochemistry, University of Arkansas for Medical Sciences, Little Rock, AR 72202, USA
| |
Collapse
|
6
|
Suzuki J, Hemmi T, Ida T, Ogata S, Yoshitake J, Matsunaga T, Ishida T, Numano Y, Kusano Y, Ikeda R, Nomura K, Sugawara M, Ohta N, Akaike T, Katori Y. Supersulfide formation in the sinus mucosa of chronic rhinosinusitis. Laryngoscope Investig Otolaryngol 2024; 9:e1261. [PMID: 39071205 PMCID: PMC11283289 DOI: 10.1002/lio2.1261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 04/15/2024] [Accepted: 04/25/2024] [Indexed: 07/30/2024] Open
Abstract
Objectives Disruption of the oxidative stress defense system is involved in developing various diseases. Sulfur compounds such as glutathione (GSH) and cysteine (CysSH) are representative antioxidants in the body. Recently, supersulfides, including reactive persulfide and polysulfide species, have gained attention as potent antioxidants regulating oxidative stress and redox signaling. However, their involvement in the pathogenesis of chronic rhinosinusitis (CRS) remains unclear. Methods To clarify the changes in sulfur compounds within the sinus mucosa of each CRS subtype, we measured sulfur compound levels in the sinus mucosa of control individuals (n = 9), patients with eosinophilic CRS (ECRS) (n = 13), and those with non-ECRS (nECRS) (n = 11) who underwent sinus surgery using mass spectrometry. Results GSH and CysSH levels were significantly reduced, and the glutathione disulfide (GSSG)/GSH ratio, an oxidative stress indicator, was increased in patients with ECRS. Despite the absence of notable variations in supersulfides, patients with ECRS and nECRS exhibited a significant reduction in glutathione trisulfide (GSSSG), which serves as the precursor for supersulfides. Conclusions This study is the first quantitative assessment of supersulfides in normal and inflamed sinus mucosa, suggesting that sulfur compounds contribute to the pathogenesis of CRS. Level of Evidence N/A.
Collapse
Affiliation(s)
- Jun Suzuki
- Department of Otolaryngology, Head and Neck SurgeryTohoku University Graduate School of MedicineSendaiJapan
| | - Tomotaka Hemmi
- Department of OtolaryngologyTohoku Kosai HospitalSendaiJapan
| | - Tomoaki Ida
- Organization for Research PromotionOsaka Metropolitan UniversitySakaiJapan
| | - Seiryo Ogata
- Department of Environmental Medicine and Molecular ToxicologyTohoku University Graduate School of MedicineSendaiJapan
| | - Jun Yoshitake
- Department of Environmental Medicine and Molecular ToxicologyTohoku University Graduate School of MedicineSendaiJapan
| | - Tetsuro Matsunaga
- Center for Integrated Control, Epidemiology and Molecular Pathophysiology of Infectious DiseasesAkita UniversityAkitaJapan
| | - Tomoyasu Ishida
- Department of Otolaryngology, Head and Neck SurgeryTohoku University Graduate School of MedicineSendaiJapan
- Department of Environmental Medicine and Molecular ToxicologyTohoku University Graduate School of MedicineSendaiJapan
| | - Yuki Numano
- Department of Otolaryngology, Head and Neck SurgeryTohoku University Graduate School of MedicineSendaiJapan
| | - Yusuke Kusano
- Department of Otolaryngology, Head and Neck SurgeryTohoku University Graduate School of MedicineSendaiJapan
| | - Ryoukichi Ikeda
- Department of Otolaryngology, Head and Neck SurgeryIwate Medical University School of MedicineYahabaJapan
| | - Kazuhiro Nomura
- Department of OtolaryngologyTohoku Kosai HospitalSendaiJapan
| | | | - Nobuo Ohta
- Division of OtolaryngologyTohoku Medical and Pharmaceutical University HospitalSendaiJapan
| | - Takaaki Akaike
- Department of Environmental Medicine and Molecular ToxicologyTohoku University Graduate School of MedicineSendaiJapan
| | - Yukio Katori
- Department of Otolaryngology, Head and Neck SurgeryTohoku University Graduate School of MedicineSendaiJapan
| |
Collapse
|
7
|
Borbényi-Galambos K, Czikora Á, Erdélyi K, Nagy P. Versatile roles of cysteine persulfides in tumor biology. Curr Opin Chem Biol 2024; 79:102440. [PMID: 38422870 DOI: 10.1016/j.cbpa.2024.102440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 02/12/2024] [Accepted: 02/14/2024] [Indexed: 03/02/2024]
Abstract
Rewiring the transsulfuration pathway is recognized as a rapid adaptive metabolic response to environmental conditions in cancer cells to support their increased cysteine demand and to produce Reactive Sulfur Species (RSS) including hydrogen sulfide (H2S) and cysteine persulfide. This can directly (via RSS) or indirectly (by supplying Cys) trigger chemical or enzyme catalyzed persulfidation on critical protein cysteine residues to protect them from oxidative damage and to orchestrate protein functions, and thereby contribute to cancer cell plasticity. In this review key aspects of persulfide-mediated biological processes are highlighted and critically discussed in relation to cancer cell survival, bioenergetics, proliferation as well as in tumor angiogenesis, adaptation to hypoxia and oxidative stress, and regulation of epithelial to mesenchymal transition.
Collapse
Affiliation(s)
- Klaudia Borbényi-Galambos
- Department of Molecular Immunology and Toxicology and the National Tumor Biology Laboratory, National Institute of Oncology, Budapest, 1122, Hungary; Kálmán Laki Doctoral School, University of Debrecen, Debrecen, Hajdú-Bihar County, 4032, Hungary
| | - Ágnes Czikora
- Department of Molecular Immunology and Toxicology and the National Tumor Biology Laboratory, National Institute of Oncology, Budapest, 1122, Hungary
| | - Katalin Erdélyi
- Department of Molecular Immunology and Toxicology and the National Tumor Biology Laboratory, National Institute of Oncology, Budapest, 1122, Hungary
| | - Péter Nagy
- Department of Molecular Immunology and Toxicology and the National Tumor Biology Laboratory, National Institute of Oncology, Budapest, 1122, Hungary; Department of Anatomy and Histology, HUN-REN-UVMB Laboratory of Redox Biology Research Group, University of Veterinary Medicine, Budapest, 1078, Hungary; Chemistry Institute, University of Debrecen, Debrecen, Hajdú-Bihar County, 4012, Hungary.
| |
Collapse
|
8
|
Kasamatsu S, Kinno A, Miura C, Hishiyama JI, Fukui K, Kure S, Tsumura K, Ida T, Matsunaga T, Akaike T, Ihara H. Quantitative profiling of supersulfides naturally occurring in dietary meats and beans. Anal Biochem 2024; 685:115392. [PMID: 37967784 DOI: 10.1016/j.ab.2023.115392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 10/16/2023] [Accepted: 11/09/2023] [Indexed: 11/17/2023]
Abstract
Sulfur is essential in the inception of life and crucial for maintaining human health. This mineral is primarily supplied through the intake of proteins and is used for synthesizing various sulfur-containing biomolecules. Recent research has highlighted the biological significance of endogenous supersulfides, which include reactive persulfide species and sulfur catenated residues in thiol and proteins. Ingestion of exogenous sulfur compounds is essential for endogenous supersulfide production. However, the content and composition of supersulfides in foods remain unclear. This study investigated the supersulfide profiles of protein-rich foods, including edible animal meat and beans. Quantification of the supersulfide content revealed that natto, chicken liver, and bean sprouts contained abundant supersulfides. In general, the supersulfide content in beans and their derivatives was higher than that in animal meat. The highest proportion (2.15 %) was detected in natto, a traditional Japanese fermented soybean dish. These results suggest that the abundance of supersulfides, especially in foods like natto and bean sprouts, may contribute to their health-promoting properties. Our findings may have significant biological implications and warrant developing novel dietary intervention for the human health-promoting effects of dietary supersulfides abundantly present in protein-rich foods such as natto and bean sprouts.
Collapse
Affiliation(s)
- Shingo Kasamatsu
- Department of Biological Chemistry, Graduate School of Science, Osaka Metropolitan University, Sakai, Osaka, 599-8531, Japan; Department of Biological Science, Graduate School of Science, Osaka Prefecture University, Sakai, Osaka, 599-8531, Japan
| | - Ayaka Kinno
- Department of Biological Chemistry, Graduate School of Science, Osaka Metropolitan University, Sakai, Osaka, 599-8531, Japan
| | - Chiharu Miura
- Department of Biological Chemistry, Graduate School of Science, Osaka Metropolitan University, Sakai, Osaka, 599-8531, Japan
| | - Jun-Ichi Hishiyama
- Department of Biological Science, Graduate School of Science, Osaka Prefecture University, Sakai, Osaka, 599-8531, Japan
| | - Kensuke Fukui
- Research Institute for Creating the Future, Fuji Oil Holdings Inc., Japan
| | - Shoji Kure
- Soy Ingredients R&D Department, Fuji Oil Co., Ltd., Izumisano, 598-8540, Japan
| | - Kazunobu Tsumura
- Research Institute for Creating the Future, Fuji Oil Holdings Inc., Japan
| | - Tomoaki Ida
- Organization for Research Promotion, Osaka Metropolitan University, Sakai, 599-8531, Japan
| | - Tetsuro Matsunaga
- Department of Environmental Medicine and Molecular Toxicology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, 980-8575, Japan
| | - Takaaki Akaike
- Department of Environmental Medicine and Molecular Toxicology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, 980-8575, Japan.
| | - Hideshi Ihara
- Department of Biological Chemistry, Graduate School of Science, Osaka Metropolitan University, Sakai, Osaka, 599-8531, Japan; Department of Biological Science, Graduate School of Science, Osaka Prefecture University, Sakai, Osaka, 599-8531, Japan.
| |
Collapse
|
9
|
Barayeu U, Sawa T, Nishida M, Wei FY, Motohashi H, Akaike T. Supersulfide biology and translational medicine for disease control. Br J Pharmacol 2023. [PMID: 37872133 DOI: 10.1111/bph.16271] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 09/27/2023] [Accepted: 10/10/2023] [Indexed: 10/25/2023] Open
Abstract
For decades, the major focus of redox biology has been oxygen, the most abundant element on Earth. Molecular oxygen functions as the final electron acceptor in the mitochondrial respiratory chain, contributing to energy production in aerobic organisms. In addition, oxygen-derived reactive oxygen species including hydrogen peroxide and nitrogen free radicals, such as superoxide, hydroxyl radical and nitric oxide radical, undergo a complicated sequence of electron transfer reactions with other biomolecules, which lead to their modified physiological functions and diverse biological and pathophysiological consequences (e.g. oxidative stress). What is now evident is that oxygen accounts for only a small number of redox reactions in organisms and knowledge of biological redox reactions is still quite limited. This article reviews a new aspects of redox biology which is governed by redox-active sulfur-containing molecules-supersulfides. We define the term 'supersulfides' as sulfur species with catenated sulfur atoms. Supersulfides were determined to be abundant in all organisms, but their redox biological properties have remained largely unexplored. In fact, the unique chemical properties of supersulfides permit them to be readily ionized or radicalized, thereby allowing supersulfides to actively participate in redox reactions and antioxidant responses in cells. Accumulating evidence has demonstrated that supersulfides are indispensable for fundamental biological processes such as energy production, nucleic acid metabolism, protein translation and others. Moreover, manipulation of supersulfide levels was beneficial for pathogenesis of various diseases. Thus, supersulfide biology has opened a new era of disease control that includes potential applications to clinical diagnosis, prevention and therapeutics of diseases.
Collapse
Grants
- 22K19397 Ministry of Education, Culture, Sports, Science and Technology
- 21H05263 Ministry of Education, Culture, Sports, Science and Technology
- 18H05277 Ministry of Education, Culture, Sports, Science and Technology
- 21H04799 Ministry of Education, Culture, Sports, Science and Technology
- 21H05264 Ministry of Education, Culture, Sports, Science and Technology
- 21H05265 Ministry of Education, Culture, Sports, Science and Technology
- 21H02659 Ministry of Education, Culture, Sports, Science and Technology
- JPMJER2002 Ministry of Education, Culture, Sports, Science and Technology
- JPMJFR205Y Ministry of Education, Culture, Sports, Science and Technology
- 22K19395 Ministry of Education, Culture, Sports, Science and Technology
- 22H02772 Ministry of Education, Culture, Sports, Science and Technology
- 21H05269 Ministry of Education, Culture, Sports, Science and Technology
- 21H05267 Ministry of Education, Culture, Sports, Science and Technology
- 21H02071 Ministry of Education, Culture, Sports, Science and Technology
- 21H05258 Ministry of Education, Culture, Sports, Science and Technology
- JPMJCR2024 Japan Science and Technology Agency
- PE23749 Japan Society for the Promotion of Science
- JP21zf0127001 Japan Agency for Medical Research and Development
Collapse
Affiliation(s)
- Uladzimir Barayeu
- Department of Environmental Medicine and Molecular Toxicology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Tomohiro Sawa
- Department of Microbiology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Motohiro Nishida
- Department of Physiology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| | - Fan-Yan Wei
- Department of Modomics Biology and Medicine, Institute of Development, Aging and Cancer (IDAC), Tohoku University, Sendai, Japan
| | - Hozumi Motohashi
- Department of Gene Expression Regulation, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| | - Takaaki Akaike
- Department of Environmental Medicine and Molecular Toxicology, Tohoku University Graduate School of Medicine, Sendai, Japan
| |
Collapse
|