1
|
Mezouar S, Mege J. Monitoring Macrophage Polarization in Infectious Disease, Lesson From SARS-CoV-2 Infection. Rev Med Virol 2025; 35:e70034. [PMID: 40148134 PMCID: PMC11976041 DOI: 10.1002/ird3.70006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2025] [Revised: 03/11/2025] [Accepted: 03/20/2025] [Indexed: 03/29/2025]
Abstract
The concept of macrophage polarization has been largely used in human diseases to define a typology of activation of myeloid cells reminiscent of lymphocyte functional subsets. In COVID-19, several studies have investigated myeloid compartment dysregulation and macrophage polarization as an indicator of disease prognosis and monitoring. SARS-CoV-2 induces an in vitro activation state in monocytes and macrophages that does not match the polarization categories in most studies. In COVID-19 patients, monocytes and macrophages are activated but they do not show a polarization profile. Therefore, the investigation of polarization under basic conditions was not relevant to assess monocyte and macrophage activation. The analysis of monocytes and macrophages with high-throughput methods has allowed the identification of new functional subsets in the context of COVID-19. This approach proposes an innovative stratification of myeloid cell activation. These new functional subsets of myeloid cells would be better biomarkers to assess the risk of complications in COVID-19, reserving the concept of polarization for pharmacological programme evaluation. This review reappraises the polarization of monocytes and macrophages in viral infections, particularly in COVID-19.
Collapse
Affiliation(s)
- Soraya Mezouar
- Centre National de la Recherche ScientifiqueÉtablissement Français du SangAnthropologie Bio‐Culturelle, Droit, Éthique et SantéAix‐Marseille UniversityMarseilleFrance
- Faculty of Medical and Paramedical SciencesAix‐Marseille UniversityHIPE Human LabMarseilleFrance
| | - Jean‐Louis Mege
- Centre National de la Recherche ScientifiqueÉtablissement Français du SangAnthropologie Bio‐Culturelle, Droit, Éthique et SantéAix‐Marseille UniversityMarseilleFrance
- Department of ImmunologyLa Timone HospitalMarseilleFrance
| |
Collapse
|
2
|
Forsberg F, Ruge T, Larsson A, Wändell P, Carlsson AC, Nilsson PM, Swärd P. Angiotensin converting enzyme 2 in patients with sepsis associate with comorbidities but neither with mortality nor with organ failure. Sci Rep 2025; 15:14198. [PMID: 40268960 PMCID: PMC12019403 DOI: 10.1038/s41598-025-96640-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Accepted: 03/31/2025] [Indexed: 04/25/2025] Open
Abstract
High levels of circulating angiotensin converting enzyme 2 (ACE2) are associated with several chronic diseases and mortality risk. Less is known about the prognostic value of ACE2 in patients with sepsis. In the present study, we aimed to investigate the association between plasma ACE2 levels on admission to the ED and 28-day mortality, organ failure, and level of care in a prospectively recruited observational study sample. Six hundred patients with sepsis admitted to the emergency in Malmö 2013-2015 were included in the analysis. Uni- and multivariable binary logistic regression was conducted to investigate the association between ACE2 and 28-day mortality, organ failure, and level of care. Plasma ACE2 levels were increased in patients with male sex, high age, and comorbidities, including diabetes, cardiovascular disease, and cancer. Plasma ACE2 levels associated with hospitalization and intermediate care unit stay in univariate but not multivariate analysis. Plasma ACE2 did neither associate with 28-day mortality, OR 1.19 (95% CI 0.86-1.65, p = 0.29), nor with organ failure, OR 1.08 (95% CI 0.73-1.56. p = 0.72). Future studies investigating the dynamics of circulating ACE2 levels in patients with sepsis longitudinally are warranted.
Collapse
Affiliation(s)
- Felix Forsberg
- Clinical and Molecular Osteoporosis Research Unit, Departments of Orthopedics and Clinical Sciences, Skåne University Hospital, Lund University, 205 02, Malmö, Sweden.
| | - Toralph Ruge
- Department of Clinical Sciences Malmö & Department of Internal Medicine, Skåne University Hospital, Lund University, Malmö, Sweden
- Department of Emergency and Internal Medicine, Skånes University Hospital, Malmö, Sweden
| | - Anders Larsson
- Department of Medical Sciences, Uppsala University, 751 85, Uppsala, Sweden
| | - Per Wändell
- Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Alfred Nobels Allé 23, 141 83, Huddinge, Sweden
| | - Axel C Carlsson
- Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Alfred Nobels Allé 23, 141 83, Huddinge, Sweden
| | - Peter M Nilsson
- Department of Clinical Sciences, Skåne University Hospital, Lund University, 205 02, Malmö, Sweden
| | - Per Swärd
- Clinical and Molecular Osteoporosis Research Unit, Departments of Orthopedics and Clinical Sciences, Skåne University Hospital, Lund University, 205 02, Malmö, Sweden.
| |
Collapse
|
3
|
Zhan JH, Wei J, Liu YJ, Wang PX, Zhu XY. Sepsis-associated endothelial glycocalyx damage: a review of animal models, clinical evidence, and molecular mechanisms. Int J Biol Macromol 2025; 295:139548. [PMID: 39788232 DOI: 10.1016/j.ijbiomac.2025.139548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 12/21/2024] [Accepted: 01/05/2025] [Indexed: 01/12/2025]
Abstract
In the mammalian cardiovascular system, endothelial glycocalyx is a gel-like layer that covers the luminal surface of endothelial cells (ECs) and plays crucial roles in vascular homeostasis, permeability and leukocyte adhesion. Degradation of this structure occurs early in sepsis and becomes accordingly dysfunctional. In severe cases, it is not self-regulated by the organism. However, the relationship between the glycocalyx and the occurrence and development of sepsis remains poorly understood. One possibility is that thinned glycocalyx promotes leukocyte recognition and adhesion, thereby facilitating the elimination of pathogens from infected areas. This may represent a protective mechanism developed by the organism during through evolutionary processes. However, if the damage persists and disrupts the dynamic balance of the microcirculation, interstitial edema or organ failure can occur. Thus, we asked the questions, what is the precise composition and structure of the glycocalyx? How is it degraded? What animal models are available to study the relationship between the glycocalyx and sepsis? What glycocalyx biomarkers are found in the blood of patients with sepsis? To determine whether sepsis can be treated by interfering with the glycocalyx, this study provides a systematic summary and discussion of the latest progress in addressing these questions.
Collapse
Affiliation(s)
- Jun-Hui Zhan
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China; Department of Physiology, Naval Medical University, Shanghai 200433, China
| | - Juan Wei
- School of Sports and Health, Nanjing Sport Institute, Nanjing 210014, China
| | - Yu-Jian Liu
- School of Kinesiology, The Key Laboratory of Exercise and Health Sciences of Ministry of Education, Shanghai University of Sport, Shanghai 200438, China
| | - Peng-Xiang Wang
- Department of Physiology, Naval Medical University, Shanghai 200433, China.
| | - Xiao-Yan Zhu
- Department of Physiology, Naval Medical University, Shanghai 200433, China.
| |
Collapse
|
4
|
Wang X, Wang X, Ma J, Zhang S, Fang W, Xu F, Du J, Liang H, Duan W, Li Z, Liu J. GPR30 Agonist G1 Mitigates Sepsis-Induced Cardiac Dysfunction by Inhibiting ACE2/c-FOS-Mediated Necroptosis in Female Mice. ACS Infect Dis 2024; 10:3797-3809. [PMID: 39377746 DOI: 10.1021/acsinfecdis.4c00319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/09/2024]
Abstract
Sepsis is a severe inflammatory syndrome with high mortality and morbidity. Sepsis-induced myocardial dysfunction (SIMD) is a common cause of death in sepsis. The female sex is less susceptible to sepsis-related organ dysfunction, although the underlying mechanism of this sex difference remains unclear. This study explored the role of estrogen receptor G protein-coupled estrogen receptor 30 (GPR30) in septic cardiac dysfunction. Results from the present study indicated that GPR30 activation by the G1 agonist protected female mouse hearts against SIMD exposed to lipopolysaccharides. However, this beneficial effect was absent in female ACE2-knockout mice, as demonstrated by poorer cardiac contractility, myocardial injury, and necroptosis. We also demonstrated that the Stat6 transcription factor induced ace2 transcription by enhancing its promoter activity under GPR30 activation in septic hearts. The adenovirus-mediated inhibition of ACE2 targeting c-FOS expression reversed the deterioration, restored cardiac function, and improved survival in female ACE2-knockout mice. These results demonstrate the essential role of GPR30/STAT6/ACE2/c-FOS-mediated necroptosis in G1-mediated protection and provide novel insight into the pathogenesis of sepsis-related organ damage.
Collapse
Affiliation(s)
- Xiaowu Wang
- Department of Cardiovascular Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, PR China
| | - Xiaoya Wang
- Department of Cardiovascular Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, PR China
| | - Jipeng Ma
- Department of Cardiovascular Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, PR China
| | - Shuaishuai Zhang
- Department of Cardiovascular Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, PR China
| | - Weiyi Fang
- Department of Cardiovascular Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, PR China
- Graduate School, Xi'an Medical University, Xi'an 710021, PR China
| | - Fujie Xu
- Department of Cardiovascular Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, PR China
- Graduate School, Xi'an Medical University, Xi'an 710021, PR China
| | - Jun Du
- Department of Cardiovascular Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, PR China
- Graduate School, Xi'an Medical University, Xi'an 710021, PR China
| | - Hongliang Liang
- Department of Cardiothoracic Surgery, Stanford University, Stanford, California 94305, United States
- Stanford Cardiovascular Institute, Stanford University, Stanford, California 94305, United States
| | - Weixun Duan
- Department of Cardiovascular Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, PR China
| | - Zilin Li
- Department of Cardiovascular Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, PR China
| | - Jincheng Liu
- Department of Cardiovascular Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, PR China
| |
Collapse
|
5
|
Li Y, Wan TT, Li JX, Xiao X, Liu L, Li HH, Guo SB. ACE2 Rescues Sepsis-Associated Encephalopathy by Reducing Inflammation, Oxidative Stress, and Neuronal Apoptosis via the Nrf2/Sestrin2 Signaling Pathway. Mol Neurobiol 2024; 61:8640-8655. [PMID: 38532242 DOI: 10.1007/s12035-024-04063-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 02/20/2024] [Indexed: 03/28/2024]
Abstract
Neuroinflammation and oxidative stress contribute to the progression of sepsis-associated encephalopathy (SAE). Angiotensin-converting enzyme 2 (ACE2) is considered to be a neuroprotective factor due to its anti-inflammatory and antioxidant properties. However, the role of ACE2 on myeloid cells in regulating SAE and the underlying mechanism warrants further exploration. SAE was induced in ACE2 transgenic (TG), knockout (KO), and bone marrow (BM) chimeric mice by cecal ligation and puncture (CLP). The expression levels of apoptosis-, oxidation- and neuroinflammation-associated mediators and morphological changes were monitored by quantitative real-time PCR analyses and histological examinations in the cortex of septic mice. The contents of angiotensin (Ang) II and Ang-(1-7) along with the activity of ACE2 were examined with commercial kits. The expression of nuclear factor erythroid 2-related factor 2 (Nrf2) and Sestrin2 was detected by immunoblotting analysis. Our results indicated that the expression of cortical ACE2 was significantly reduced in the early phase of CLP-induced sepsis. Moreover, ACE2 overexpression in TG mice conferred neuroprotection against sepsis, as evidenced by alleviated neuronal apoptosis, oxidative stress, and proinflammatory M1-like microglial polarization, accompanied by upregulation of the Ang-(1-7), Nrf2, and Sestrin2 protein levels. Conversely, ACE2 deficiency in KO mice exacerbated SAE. The neuroprotective effects of ACE2 were further confirmed in wild-type mice transplanted with ACE2-TG and KO BM cells. Therefore, our data suggest that myeloid ACE2 exerts a protective role in the pathogenesis of SAE, potentially by activating Ang-(1-7)-Nrf2/sestrin2 signaling pathway, and highlight that upregulating ACE2 expression and activity may represent a promising approach for the treatment of SAE in patients with sepsis.
Collapse
Affiliation(s)
- Ya Li
- Emergency Medicine Clinical Research Center, Key Laboratory of Cardiopulmonary Cerebral Resuscitation, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, 100020, China
| | - Tian-Tian Wan
- Emergency Medicine Clinical Research Center, Key Laboratory of Cardiopulmonary Cerebral Resuscitation, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, 100020, China
| | - Jia-Xin Li
- Emergency Medicine Clinical Research Center, Key Laboratory of Cardiopulmonary Cerebral Resuscitation, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, 100020, China
| | - Xue Xiao
- Emergency Medicine Clinical Research Center, Key Laboratory of Cardiopulmonary Cerebral Resuscitation, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, 100020, China
| | - Lei Liu
- Emergency Medicine Clinical Research Center, Key Laboratory of Cardiopulmonary Cerebral Resuscitation, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, 100020, China
| | - Hui-Hua Li
- Emergency Medicine Clinical Research Center, Key Laboratory of Cardiopulmonary Cerebral Resuscitation, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, 100020, China.
| | - Shu-Bin Guo
- Emergency Medicine Clinical Research Center, Key Laboratory of Cardiopulmonary Cerebral Resuscitation, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, 100020, China.
| |
Collapse
|
6
|
Xiao X, Li JX, Li HH, Teng F. ACE2 alleviates sepsis-induced cardiomyopathy through inhibiting M1 macrophage via NF-κB/STAT1 signals. Cell Biol Toxicol 2024; 40:82. [PMID: 39320524 PMCID: PMC11424656 DOI: 10.1007/s10565-024-09923-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 09/18/2024] [Indexed: 09/26/2024]
Abstract
Angiotensin-converting enzyme 2 (ACE2), a crucial element of the renin-angiotensin system (RAS), metabolizes angiotensin II into Ang (1-7), which then combines with the Mas receptor (MasR) to fulfill its protective role in various diseases. Nevertheless, the involvement of ACE2 in sepsis-induced cardiomyopathy (SIC) is still unexplored. In this study, our results revealed that CLP surgery dramatically impaired cardiac function accompanied with disruption of the balance between ACE2-Ang (1-7) and ACE-Ang II axis in septic heart tissues. Moreover, ACE2 knockin markedly alleviated sepsis induced RAS disorder, cardiac dysfunction and improved survival rate in mice, while ACE2 knockout significantly exacerbates these outcomes. Adoptive transfer of bone marrow cells and in vitro experiments showed the positive role of myeloid ACE2 by mitigating oxidative stress, inflammatory response, macrophage polarization and cardiomyocyte apoptosis by blocking NF-κB and STAT1 signals. However, the beneficial impacts were nullified by MasR antagonist A779. Collectively, these findings showed that ACE2 alleviated SIC by inhibiting M1 macrophage via activating the Ang (1-7)-MasR axis, highlight that ACE2 might be a promising target for the management of sepsis and SIC patients.
Collapse
Affiliation(s)
- Xue Xiao
- Department of Emergency Medicine, Beijing Key Laboratory of Cardiopulmonary Cerebral Resuscitation, Beijing Chao-Yang Hospital, Capital Medical University, No. 8 Worker's Stadium South Roud, Beijing, 100020, China
| | - Jia-Xin Li
- Department of Emergency Medicine, Beijing Key Laboratory of Cardiopulmonary Cerebral Resuscitation, Beijing Chao-Yang Hospital, Capital Medical University, No. 8 Worker's Stadium South Roud, Beijing, 100020, China
| | - Hui-Hua Li
- Department of Emergency Medicine, Beijing Key Laboratory of Cardiopulmonary Cerebral Resuscitation, Beijing Chao-Yang Hospital, Capital Medical University, No. 8 Worker's Stadium South Roud, Beijing, 100020, China.
| | - Fei Teng
- Department of Emergency Medicine, Beijing Key Laboratory of Cardiopulmonary Cerebral Resuscitation, Beijing Chao-Yang Hospital, Capital Medical University, No. 8 Worker's Stadium South Roud, Beijing, 100020, China.
| |
Collapse
|
7
|
Yan S, Ju X, Lao J, Wen Z, Yong Y, Li Y, Li Y. Overexpression of the Mas1 gene mitigated LPS-induced inflammatory injury in mammary epithelial cells by inhibiting the NF-κB/MAPKs signaling pathways. Front Vet Sci 2024; 11:1446366. [PMID: 39071779 PMCID: PMC11274334 DOI: 10.3389/fvets.2024.1446366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 07/02/2024] [Indexed: 07/30/2024] Open
Abstract
Breast infection is the primary etiology of mastitis in dairy cows, leading to a reduction in the quality of dairy products and resulting in substantial economic losses for animal husbandry. Although antibiotic treatment can eliminate the pathogenic microorganisms that induce mastitis, it cannot repair the inflammatory damage of mammary epithelial cells and blood milk barrier. Mas1 is a G protein-coupled receptor, and its role in lipopolysaccharide (LPS) -induced inflammatory injury to mammary epithelial cells has not been studied. LPS treatment of EpH4 EV cells led to a significant downregulation of Mas1 transcript levels, which attracted our great interest, suggesting that Mas1 may be an important target for the treatment of mastitis. Therefore, this study intends to verify the role of Mas1 in the inflammatory injury of EpH4 EV cells by gene overexpression technology and gene silencing technology. The findings demonstrated that the overexpression of the Mas1 gene effectively reversed the activation of the nuclear factor-κB/mitogen-activated protein kinase (NF-κB/MAPK) signaling pathways induced by LPS, while also suppressing the upregulation of pro-inflammatory mediators. Furthermore, overexpression of the Mas1 gene reversed the downregulation of zonula occludens 1 (ZO-1), Occludin, and Claudin-3 caused by LPS, suggesting that Mas1 could promote to repair the blood-milk barrier. However, the silencing of the Mas1 gene using siRNA resulted in a contrasting effect. These results indicated that Mas1 alleviated the inflammatory injury of mammary epithelial cells induced by LPS.
Collapse
Affiliation(s)
- Shuping Yan
- Department of Veterinary Medicine, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, China
| | - Xianghong Ju
- Department of Veterinary Medicine, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, China
- Marine Medical Research and Development Centre, Shenzheng Institute of Guangdong Ocean University, Shenzheng, China
| | - Jianlong Lao
- Department of Veterinary Medicine, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, China
| | - Zhaohai Wen
- Department of Veterinary Medicine, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, China
| | - Yanhong Yong
- Department of Veterinary Medicine, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, China
| | - Yin Li
- Department of Veterinary Medicine, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, China
| | - Youquan Li
- Department of Veterinary Medicine, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, China
| |
Collapse
|