1
|
Chen L, Rao H, Chen N, Li R, Chen D, Jiang H. Geriatric Nutritional Risk Index (GNRI) and Prognostic Nutritional Index (PNI) Before Treatment as the Predictive Indicators for Bone Metastasis in Prostate Cancer Patients. Int J Gen Med 2025; 18:2703-2713. [PMID: 40438419 PMCID: PMC12118491 DOI: 10.2147/ijgm.s516768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Accepted: 05/18/2025] [Indexed: 06/01/2025] Open
Abstract
Objective Inflammation and nutritional status are involved in the occurrence and progression of cancer. The purpose of this study was to investigate the relationship of nutritional status indices (geriatric nutritional risk index (GNRI), neutrophil to albumin ratio (NAR), prognostic nutritional index (PNI)), and comprehensive inflammatory indices (pan-immune inflammation value (PIV), systemic immune inflammation index (SII), and system inflammation response index (SIRI)) and bone metastasis of prostate cancer. Methods A retrospective analysis was performed on 888 prostate cancer patients treated in Meizhou People's Hospital from November 2017 to December 2022. Clinical characteristics were collected, including age, body mass index (BMI), bone metastasis, and GNRI, NAR, PNI, PIV, SII, and SIRI levels. The optimal cutoff values of these indices were calculated by receiver operating characteristic (ROC) curve, and the relationship between these indices and bone metastasis was analyzed. Results There were 836 (94.1%) cases were ≥60 years old, indicating that the majority of prostate cancer patients were elderly men. There were 640 (72.1%) patients without bone metastasis and 248 (27.9%) patients with bone metastasis. The levels of GNRI and PNI in patients with bone metastasis were significantly lower than those without, while NAR, PIV, SII, and SIRI were not statistically significant. And the levels of GNRI and PNI in patients with multiple bone metastasis were significantly lower than those with single bone metastasis. When bone metastasis was taken as the endpoint of GNRI and PNI, the critical value of GNRI was 97.05 (sensitivity 55.2%, specificity 67.5%, area under the ROC curve (AUC) = 0.639), the PNI cutoff value was 44.925 (sensitivity 51.2%, specificity 67.2%, AUC = 0.634), and the AUC of GNRI plus PNI was 0.647. Conclusion Prostate cancer is more common in older men; about a quarter of patients have bone metastasis. GNRI and PNI have predictive efficacy in bone metastasis and multiple bone metastasis of prostate cancer, but NAR, PIV, SII, and SIRI do not.
Collapse
Affiliation(s)
- Libo Chen
- Department of Urology, Meizhou People’s Hospital, Meizhou Academy of Medical Sciences, Meizhou, People’s Republic of China
| | - Hui Rao
- Department of Laboratory Medicine, Meizhou People’s Hospital, Meizhou Academy of Medical Sciences, Meizhou, People’s Republic of China
| | - Nanhui Chen
- Department of Urology, Meizhou People’s Hospital, Meizhou Academy of Medical Sciences, Meizhou, People’s Republic of China
| | - Renyuan Li
- Data Center, Meizhou People’s Hospital, Meizhou Academy of Medical Sciences, Meizhou, People’s Republic of China
| | - Dan Chen
- Surgical Center, Meizhou People’s Hospital, Meizhou Academy of Medical Sciences, Meizhou, People’s Republic of China
| | - Huiming Jiang
- Department of Urology, Meizhou People’s Hospital, Meizhou Academy of Medical Sciences, Meizhou, People’s Republic of China
| |
Collapse
|
2
|
Varol A, Klauck SM, Lees-Miller SP, Efferth T. Comprehensive Transcriptomic Analysis in Wild-type and ATM Knockout Lung Cancer Cells: Influence of Cisplatin on Oxidative Stress-Induced Senescence. Chem Biol Interact 2025:111563. [PMID: 40383470 DOI: 10.1016/j.cbi.2025.111563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2025] [Revised: 04/30/2025] [Accepted: 05/15/2025] [Indexed: 05/20/2025]
Abstract
Genetic mutations and impaired DNA repair mechanisms in cancer not only facilitate tumor progression but also reduce the effectiveness of chemotherapeutic agents, particularly cisplatin. Combination therapy has emerged as a promising strategy to overcome resistance. Comprehensive transcriptomic analyses, supported by integrated comparative bioinformatics and experimental approaches, are essential for identifying biomarkers and novel therapeutic targets underlying drug resistance. In this study, we performed overall survival and mutation analyses, examining 23 double-strand break repair proteins across more than 7,500 tumors spanning 23 distinct cancer types. Our findings identify ATM (ataxia-telangiectasia mutated) as a key protein with the highest mutation frequency. Using CRISPR/Cas9, we investigated the effects of ATM mutations on signalling pathways that influence the cellular response to cisplatin. ATM knockout enhanced cisplatin cytotoxicity by activating alternative cell death pathways, including oxidative stress-induced senescence and necroptosis. Microarray analysis revealed a regulatory interplay between ATM and NRF2 in the activation of oxidative stress-induced senescence. Specifically, ATM knockoutpromoted senescence by increasing reactive oxygen species (ROS) accumulation and downregulating NRF2 expression. To enhance combination therapy, integrating genetic profiling with advanced tools such as CRISPR/Cas9 to target oxidative stress-induced senescence may provide innovative strategies to overcome drug resistance, thereby advancing personalized cancer treatment. These approaches lay the foundation for the development of personalized cancer therapies tailored to the unique mutational landscape of individual patients, offering promising prospects for improving treatment outcomes.
Collapse
Affiliation(s)
- Ayşegül Varol
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University-Mainz, 55128 Mainz, Germany
| | - Sabine M Klauck
- Division of Cancer Genome Research, German Cancer Research Center (DKFZ) Heidelberg, National Center for Tumor Diseases (NCT), NCT Heidelberg, a partnership between DKFZ and University Hospital Heidelberg, 69120 Heidelberg, Germany
| | - Susan P Lees-Miller
- Department of Biochemistry and Molecular Biology, Robson DNA Science Centre, Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, AB T2N 1N4, Canada
| | - Thomas Efferth
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University-Mainz, 55128 Mainz, Germany.
| |
Collapse
|
3
|
Ahmad I, Ahmad S, Samad MA, Adam AM, Zughaibi TA, Alhosin M, Shakil S, Khan MS, Alsaieedi AA, Kumer A, Tabrez S. Synergistic Inhibition of Colon Cancer Cell Proliferation via p53, Bax, and Bcl-2 Modulation by Curcumin and Plumbagin Combination. ACS OMEGA 2025; 10:19045-19060. [PMID: 40385152 PMCID: PMC12079253 DOI: 10.1021/acsomega.5c01258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/12/2025] [Revised: 04/15/2025] [Accepted: 04/24/2025] [Indexed: 05/20/2025]
Abstract
Cancer is a major contributor to global morbidity and mortality. Among the different forms of cancer, colorectal cancer (CRC) is the third most frequently diagnosed cancer in men and the second most common cancer type in women globally. We aimed to explore the possible synergistic anticancer potential of curcumin (Cur) and plumbagin (PL) in the human colon cancer cell line (HCT-116). The 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT)/cytotoxicity assay revealed IC50 values of 7.7 and 7.5 μM for Cur and PL, respectively, as a separate entity. However, the combined treatment of Cur + PL significantly enhanced the cancer cell growth inhibitory potential compared with solitary treatments with an IC50 value of 6.8 μM. The combined treatment also led to the induction of apoptosis by 41%, cell cycle arrest at the G2/M phase, while Bax and p53 genes were found to be upregulated and the Bcl-2 gene was downregulated compared to the untreated/solvent control. Furthermore, combined treatment elevated reactive oxygen species (ROS) production by 59% and resulted a decline in the mitochondrial membrane potential (MMP) compared to the control. Catalase and superoxide dismutase (SOD) activities were significantly reduced, leading to enhanced lipid peroxidation (LPO) and compromised membrane integrity, which were also confirmed by 4',6-diamidino-2-phenylindole (DAPI) + propoidium iodide (PI) staining were also noted. Our in vitro data were further supported by molecular docking, which showed a higher binding energy of the proteins (Bax, Bcl-2, and p53) with Cur + PL. Overall, our findings highlight the potent synergistic effects of the Cur and PL combination, which can be exploited as a combination therapy for CRC.
Collapse
Affiliation(s)
- Iftikhar Ahmad
- Department
of Biochemistry, Faculty of Science, King
Abdulaziz University, Jeddah 21589, Saudi Arabia
- King
Fahd Medical Research Center, King Abdulaziz
University, Jeddah 21589, Saudi Arabia
| | - Sameer Ahmad
- King
Fahd Medical Research Center, King Abdulaziz
University, Jeddah 21589, Saudi Arabia
- Department
of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Md Abdus Samad
- Department
of Biochemistry, Faculty of Science, King
Abdulaziz University, Jeddah 21589, Saudi Arabia
- King
Fahd Medical Research Center, King Abdulaziz
University, Jeddah 21589, Saudi Arabia
| | - Ahmed Mohammed Adam
- Department
of Biochemistry, Faculty of Science, King
Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Torki A. Zughaibi
- King
Fahd Medical Research Center, King Abdulaziz
University, Jeddah 21589, Saudi Arabia
- Department
of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Mahmoud Alhosin
- Department
of Biochemistry, Faculty of Science, King
Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Shazi Shakil
- Department
of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Institute
of Genomic Medicine Sciences, King Abdulaziz
University, Jeddah 21589, Saudi Arabia
| | - Mohd Shahnawaz Khan
- Protein
Research
Chair, Department of Biochemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Ahdab A. Alsaieedi
- King
Fahd Medical Research Center, King Abdulaziz
University, Jeddah 21589, Saudi Arabia
- Department
of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Ajoy Kumer
- Department
of Chemistry, College of Arts and Sciences, International University of Business Agriculture & Technology
(IUBAT), Dhaka 1230, Bangladesh
| | - Shams Tabrez
- King
Fahd Medical Research Center, King Abdulaziz
University, Jeddah 21589, Saudi Arabia
- Department
of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| |
Collapse
|
4
|
Sutkowy P, Czeleń P. Redox Balance in Cancer in the Context of Tumor Prevention and Treatment. Biomedicines 2025; 13:1149. [PMID: 40426975 PMCID: PMC12109055 DOI: 10.3390/biomedicines13051149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2025] [Revised: 05/04/2025] [Accepted: 05/07/2025] [Indexed: 05/29/2025] Open
Abstract
Malignant neoplasms constitute a substantial health concern for the human population, currently ranking as the second leading cause of mortality worldwide. In 2022, approximately 10 million deaths were attributable to cancer, and projections estimate that this number will rise to 35 million in 2050. Consequently, the development of effective cancer treatments and prevention strategies remains a primary focus of medical research. In this context, the impacts on the redox balance are being considered. The objective of this study was to present the current knowledge on oxidation and reduction processes in cancer. This review discloses the intricate and multifaceted interplay of oxidoreductive systems during carcinogenesis, which engenders discordant findings in the domain of tumor prevention and treatment. This study also examines the controversies surrounding the use of antioxidants, including their impact on other therapeutic interventions. The review offers a comprehensive overview of the existing knowledge on the subject, concluding that personalized and precise anticancer therapies targeting the redox processes can serve as both effective diagnostic and therapeutic tools.
Collapse
Affiliation(s)
- Paweł Sutkowy
- Department of Medical Biology and Biochemistry, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, Karlowicza 24, 85-092 Bydgoszcz, Poland
| | - Przemysław Czeleń
- Department of Physical Chemistry, Faculty of Pharmacy, Collegium Medicum, Nicolaus Copernicus University, Kurpinskiego 5, 85-096 Bydgoszcz, Poland;
| |
Collapse
|
5
|
Qiu Z, Li J, Tian M. Identification of oxidative stress-related subgroups and signature genes for the prediction of prognosis and immune microenvironment in thyroid cancer. Mol Genet Genomics 2025; 300:46. [PMID: 40304806 PMCID: PMC12043743 DOI: 10.1007/s00438-025-02252-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Accepted: 04/17/2025] [Indexed: 05/02/2025]
Abstract
Oxidative stress plays a crucial role in cancer progression and tumor immune microenvironment (TIME) modulation. However, its impact on thyroid cancer (THCA) subtypes and prognosis remains unclear. This study aimed to identify oxidative stress-related subgroups and construct a prognostic gene signature to enhance personalized treatment strategies in THCA. Using consensus clustering analysis, we categorized TCGA-THCA patients into two subgroups based on oxidative stress-related genes (OSRGs) expression. Cluster 1 had a poorer prognosis, higher BRAF mutation rates, and a suppressive TIME with fewer CD8 T cells. Kaplan-Meier survival analysis confirmed these findings. Six key OSRGs (BMI1, CDK5, IL1RN, PDP1, TP53, UCN) that significantly predicted THCA prognosis were identified. A risk model based on these genes accurately stratified patients into high and low-risk groups, with the high-risk group showing significantly worse outcomes. The model's predictive performance was validated by ROC analysis. Nomogram revealed that higher OSRG-related risk score indicated lower survival probability in THCA patients. In vitro validation confirmed the high expression of six OSRGs in THCA cells and tissues, with most being associated with the Wnt signaling pathway. Additionally, IL1RN knockdown significantly inhibited THCA cell malignant characteristics and reduced ROS generation. This study provided a novel oxidative stress-related classification system for THCA, highlighting key signature genes with prognostic and therapeutic relevance. These results may guide future research on oxidative stress-targeted therapies and immune modulation in THCA.
Collapse
Affiliation(s)
- Zhenwei Qiu
- Breast and Thyroid Surgery, Yidu Central Hospital of Weifang, No. 5168 Jiangjunshan Road, Qingzhou, Shandong, 262500, China.
| | - Jing Li
- Breast and Thyroid Surgery, Yidu Central Hospital of Weifang, No. 5168 Jiangjunshan Road, Qingzhou, Shandong, 262500, China
| | - Mei Tian
- Breast and Thyroid Surgery, Yidu Central Hospital of Weifang, No. 5168 Jiangjunshan Road, Qingzhou, Shandong, 262500, China
| |
Collapse
|
6
|
Bei Y, Wang T, Guan S. Berberine Extends Lifespan in C. elegans Through Multi-Target Synergistic Antioxidant Effects. Antioxidants (Basel) 2025; 14:450. [PMID: 40338239 PMCID: PMC12024168 DOI: 10.3390/antiox14040450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2025] [Revised: 04/03/2025] [Accepted: 04/08/2025] [Indexed: 05/09/2025] Open
Abstract
Aging is a process of gradual functional decline in complex physiological systems and is closely related to the occurrence of various diseases. Berberine, a bioactive alkaloid derived from Coptis chinensis (Huanglian), has emerged as a promising candidate for anti-aging interventions. This study comprehensively investigated the lifespan-extending effects and molecular mechanisms of berberine in C. elegans through integrated approaches including lifespan assays, locomotor activity analysis, oxidative stress challenges, and transcriptomic profiling. Furthermore, genetic models of mutant and transgenic worms were employed to delineate their interactions with the insulin/IGF-1 signaling (IIS) pathway. Our results demonstrate that berberine extended the mean lifespan of wild-type worms by 27%. By activating transcription factors such as DAF-16/FOXO, HSF-1, and SKN-1/NRF2, berberine upregulated antioxidant enzyme expression, reduced lipofuscin accumulation, and improved stress resistance. Transcriptomic analysis revealed significant changes in lipid metabolism-related genes, particularly in pathways involving fatty acid synthesis, degradation, and sphingolipid metabolism. These findings establish that berberine exerts multi-target anti-aging effects through coordinated activation of stress-responsive pathways and metabolic optimization, providing mechanistic insights for developing natural product-based geroprotective strategies.
Collapse
Affiliation(s)
| | | | - Shuwen Guan
- School of Life Sciences, Jilin University, Changchun 130012, China
| |
Collapse
|
7
|
Liu X, Huang L, Zhang X, Xu X. Polysaccharides with antioxidant activity: Extraction, beneficial roles, biological mechanisms, structure-function relationships, and future perspectives: A review. Int J Biol Macromol 2025; 300:140221. [PMID: 39855511 DOI: 10.1016/j.ijbiomac.2025.140221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 01/17/2025] [Accepted: 01/21/2025] [Indexed: 01/27/2025]
Abstract
Polysaccharides are valuable macromolecules due to their multiple bioactivities, safety, and a wide range of sources. Recently, a series of polysaccharides with antioxidant activity have been intensively reported. In this review, the latest advances in polysaccharides with antioxidant activity have been reviewed, primarily based on the investigations of polysaccharides regarding advanced extraction methods, roles in oxidative stress-related diseases, intracellular signaling pathways associated with antioxidant responses, activating pathways in the gut, structure-function relationships, and methods to improve antioxidant activity. The summarized information highlighted that much work needs to be conducted, from laboratory to industry, to understand and fully utilize the antioxidant potential of polysaccharides. Finally, future perspectives, including scaling-up of advanced extraction methods, standardizing the protocols for assessing and screening polysaccharides, bridging gaps on the biological mechanisms underlying antioxidant activity, performing clinical trials, and elucidating structure-antioxidant relationships, have been addressed. The information present in this review will be helpful to the scientific community when studying on polysaccharides with antioxidant potential and provides research directions for a better understanding of the polysaccharides and promotes their successful applications in functional foods and nutraceuticals.
Collapse
Affiliation(s)
- Xiaofei Liu
- College of Food Science and Engineering, Guangdong Ocean University, Yangjiang 529500, China
| | - Liufang Huang
- College of Food Science and Engineering, Guangdong Ocean University, Yangjiang 529500, China
| | - Xuewu Zhang
- College of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Xiaofei Xu
- College of Food Science and Engineering, Guangdong Ocean University, Yangjiang 529500, China; Yangjiang Institute of Guangdong Ocean University, Yangjiang 529500, China.
| |
Collapse
|
8
|
Wang J, Shao F, Yu QX, Ye L, Wusiman D, Wu R, Tuo Z, Wang Z, Li D, Cho WC, Wei W, Feng D. The Common Hallmarks and Interconnected Pathways of Aging, Circadian Rhythms, and Cancer: Implications for Therapeutic Strategies. RESEARCH (WASHINGTON, D.C.) 2025; 8:0612. [PMID: 40046513 PMCID: PMC11880593 DOI: 10.34133/research.0612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Revised: 01/14/2025] [Accepted: 01/24/2025] [Indexed: 03/17/2025]
Abstract
The intricate relationship between cancer, circadian rhythms, and aging is increasingly recognized as a critical factor in understanding the mechanisms underlying tumorigenesis and cancer progression. Aging is a well-established primary risk factor for cancer, while disruptions in circadian rhythms are intricately associated with the tumorigenesis and progression of various tumors. Moreover, aging itself disrupts circadian rhythms, leading to physiological changes that may accelerate cancer development. Despite these connections, the specific interplay between these processes and their collective impact on cancer remains inadequately explored in the literature. In this review, we systematically explore the physiological mechanisms of circadian rhythms and their influence on cancer development. We discuss how core circadian genes impact tumor risk and prognosis, highlighting the shared hallmarks of cancer and aging such as genomic instability, cellular senescence, and chronic inflammation. Furthermore, we examine the interplay between circadian rhythms and aging, focusing on how this crosstalk contributes to tumorigenesis, tumor proliferation, and apoptosis, as well as the impact on cellular metabolism and genomic stability. By elucidating the common pathways linking aging, circadian rhythms, and cancer, this review provides new insights into the pathophysiology of cancer and identifies potential therapeutic strategies. We propose that targeting the circadian regulation of cancer hallmarks could pave the way for novel treatments, including chronotherapy and antiaging interventions, which may offer important benefits in the clinical management of cancer.
Collapse
Affiliation(s)
- Jie Wang
- Department of Urology, Institute of Urology, West China Hospital,
Sichuan University, Chengdu 610041, China
| | - Fanglin Shao
- Department of Rehabilitation,
The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
| | - Qing Xin Yu
- Department of Pathology,
Ningbo Clinical Pathology Diagnosis Center, Ningbo, Zhejiang 315211, China
- Department of Pathology,
Ningbo Medical Centre Lihuili Hospital, Ningbo, Zhejiang 315040, China
| | - Luxia Ye
- Department of Public Research Platform,
Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China
| | - Dilinaer Wusiman
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, West Lafayette, IN 47907, USA
- Purdue Institute for Cancer Research, Purdue University, West Lafayette, IN 47906, USA
| | - Ruicheng Wu
- Department of Urology, Institute of Urology, West China Hospital,
Sichuan University, Chengdu 610041, China
| | - Zhouting Tuo
- Department of Urological Surgery, Daping Hospital, Army Medical Center of PLA,
Army Medical University, Chongqing, China
| | - Zhipeng Wang
- Department of Urology, Sichuan Provincial People’s Hospital,
University of Electronic Science and Technology of China, Chengdu, China
| | - Dengxiong Li
- Department of Urology, Institute of Urology, West China Hospital,
Sichuan University, Chengdu 610041, China
| | - William C. Cho
- Department of Clinical Oncology,
Queen Elizabeth Hospital, Hong Kong SAR, China
| | - Wuran Wei
- Department of Urology, Institute of Urology, West China Hospital,
Sichuan University, Chengdu 610041, China
| | - Dechao Feng
- Department of Urology, Institute of Urology, West China Hospital,
Sichuan University, Chengdu 610041, China
- Division of Surgery and Interventional Science,
University College London, London W1W 7TS, UK
| |
Collapse
|
9
|
El-Shafai NM, Mostafa YS, Alamri SA, Zaghloul A, Emira A, Shukry M, El-Mehasseb I. Chemical and biological investigations on modified gemcitabine by nanoliposome structured on cholesterol, pectin, and phosphatidylcholine as an anticancer drug via a drug delivery system. Int J Biol Macromol 2025; 292:139310. [PMID: 39740707 DOI: 10.1016/j.ijbiomac.2024.139310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 12/16/2024] [Accepted: 12/28/2024] [Indexed: 01/02/2025]
Abstract
Gemcitabine hydrochloride (GEM) mimics one of the building blocks of DNA and RNA, so it indicates possible chemotherapeutic effects. It prevents cancer cells from producing DNA and proteins, which ultimately leads to their death. The goal of this work is to modify the GEM medication by nanoforming nanoliposomes based on the composition of Cholesterol, pectin nanoparticles, and phosphatidylcholine (PhC). The drug in nanoliposome form is made using the precipitation method, and several approaches are employed to characterize it. UV-Vis spectroscopy is used to measure the release process of GEM from the lipids and its integration with them. Results of the combination efficiency for PhC.Pectin@GEM, PhC.GEM@Pectin, and PhC@Cholestrol.GEM were recorded at 78.8 %, 83 %, and 80 %, respectively. A UV-Vis spectrophotometer was used to determine the release efficiency of the nanoliposomes, which was measured at pH values of 3, 6.8, and 7.4. The in-vitro investigation employed SRB (Routine analysis IC50) to determine the modified drug's toxicity on breast adenocarcinoma (MCF-7) cells, while the in-vitro study assessed the produced nanoliposomes' capacity to do so. The conclusion is that to ascertain whether GEM medicine's nanoliposomes can effectively treat breast cancer in place of GEM medication, clinical trials are necessary to prove the ability for treatment.
Collapse
Affiliation(s)
- Nagi M El-Shafai
- Nanotechnology Center, Chemistry Department, Faculty of Science, Kafrelsheikh University, 33516, Egypt.
| | - Yasser S Mostafa
- Department of Biology, College of Science, King Khalid University, Abha, P.O. Box 9004, Saudi Arabia
| | - Saad A Alamri
- Department of Biology, College of Science, King Khalid University, Abha, P.O. Box 9004, Saudi Arabia
| | - Asmaa Zaghloul
- Nanotechnology Center, Chemistry Department, Faculty of Science, Kafrelsheikh University, 33516, Egypt
| | - Amal Emira
- Nanotechnology Center, Chemistry Department, Faculty of Science, Kafrelsheikh University, 33516, Egypt
| | - Mustafa Shukry
- Department of Physiology, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh 33516, Egypt
| | - Ibrahim El-Mehasseb
- Nanotechnology Center, Chemistry Department, Faculty of Science, Kafrelsheikh University, 33516, Egypt
| |
Collapse
|
10
|
Li D, Shao F, Li X, Yu Q, Wu R, Wang J, Wang Z, Wusiman D, Ye L, Guo Y, Tuo Z, Wei W, Yoo KH, Cho WC, Feng D. Advancements and challenges of R-loops in cancers: Biological insights and future directions. Cancer Lett 2025; 610:217359. [PMID: 39613219 DOI: 10.1016/j.canlet.2024.217359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 11/24/2024] [Accepted: 11/25/2024] [Indexed: 12/01/2024]
Abstract
R-loops involve in various biological processes under human normal physiological conditions. Disruption of R-loops can lead to disease onset and affect the progression of illnesses, particularly in cancers. Herein, we summarized and discussed the regulative networks, phenotypes and future directions of R-loops in cancers. In this review, we highlighted the following insights: (1) R-loops significantly influence cancer development, progression and treatment efficiency by regulating key genes, such as PARPs, BRCA1/2, sex hormone receptors, DHX9, and TOP1. (2) Currently, the ATM, ATR, cGAS/STING, and noncanonical pathways are the main pathways that involve in the regulatory network of R-loops in cancer. (3) Cancer biology can be modulated by R-loops-regulated phenotypes, including RNA methylation, DNA and histone methylation, oxidative stress, immune and inflammation regulation, and senescence. (4) Regulation of R-loops induces kinds of drug resistance in various cancers, suggesting that targeting R-loops maybe a promising way to overcome treatment resistance. (5) The role of R-loops in tumorigenesis remains controversial, and senescence may be a crucial research direction to unravel the mechanism of R-loop-induced tumorigenesis. Looking forward, further studies are needed to elucidate the specific mechanisms of R-loops in cancer, laying the groundwork for preclinical and clinical research.
Collapse
Affiliation(s)
- Dengxiong Li
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Fanglin Shao
- Department of Rehabilitation, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China
| | - Xinrui Li
- Department of Rehabilitation, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China
| | - Qingxin Yu
- Department of Pathology, Ningbo Clinical Pathology Diagnosis Center, Ningbo City, Zhejiang Province, 315211, China
| | - Ruicheng Wu
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Jie Wang
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Zhipeng Wang
- Department of Urology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Dilinaer Wusiman
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, West Lafayette, IN, 47907, USA; Purdue Institute for Cancer Research, Purdue University, West Lafayette, IN, USA
| | - Luxia Ye
- Department of Public Research Platform, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China
| | - Yiqing Guo
- Department of Public Research Platform, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China
| | - Zhouting Tuo
- Department of Urological Surgery, Daping Hospital, Army Medical Center of PLA, Army Medical University, Chongqing, China
| | - Wuran Wei
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Koo Han Yoo
- Department of Urology, Kyung Hee University, South Korea.
| | - William C Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, Hong Kong Special Administrative Region of China.
| | - Dechao Feng
- Division of Surgery & Interventional Science, University College London, London, W1W 7TS, UK.
| |
Collapse
|
11
|
Wang X, Cao Y. A Narrative Review: Relationship Between Glycemic Variability and Emerging Complications of Diabetes Mellitus. Biomolecules 2025; 15:188. [PMID: 40001491 PMCID: PMC11853042 DOI: 10.3390/biom15020188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2024] [Revised: 01/24/2025] [Accepted: 01/26/2025] [Indexed: 02/27/2025] Open
Abstract
A growing body of evidence emphasizes the role of glycemic variability (GV) in the development of conventional diabetes-related complications. Furthermore, advancements in diabetes management and increased life expectancy have led to the emergence of new complications, such as cancer, liver disease, fractures, infections, and cognitive dysfunction. GV is considered to exacerbate oxidative stress and inflammation, acting as a major mechanism underlying these complications. However, few reviews have synthesized the association between GV and these emerging complications or examined their underlying mechanisms. Hence, this narrative review provides a comprehensive discussion of the burden, risks, and mechanisms of GV in these complications, offering further evidence supporting GV as a potential therapeutic target for diabetes management.
Collapse
Affiliation(s)
| | - Yanli Cao
- Department of Endocrinology and Metabolism, Institute of Endocrinology, NHC Key Laboratory of Diagnosis and Treatment of Thyroid Diseases, The First Affiliated Hospital of China Medical University, Shenyang 110001, China;
| |
Collapse
|
12
|
Shao F, Wang Z, Ye L, Wu R, Wang J, Yu QX, Wusiman D, Tuo Z, Yoo KH, Shu Z, Wei W, Li D, Cho WC, Liu Z, Feng D. Basic helix-loop-helix ARNT like 1 regulates the function of immune cells and participates in the development of immune-related diseases. BURNS & TRAUMA 2025; 13:tkae075. [PMID: 39830193 PMCID: PMC11741524 DOI: 10.1093/burnst/tkae075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 10/26/2024] [Accepted: 11/01/2024] [Indexed: 01/22/2025]
Abstract
The circadian clock is an internal timekeeper system that regulates biological processes through a central circadian clock and peripheral clocks controlling various genes. Basic helix-loop-helix ARNT-like 1 (BMAL1), also known as aryl hydrocarbon receptor nuclear translocator-like protein 1 (ARNTL1), is a key component of the circadian clock. The deletion of BMAL1 alone can abolish the circadian rhythms of the human body. BMAL1 plays a critical role in immune cell function. Dysregulation of BMAL1 is linked to immune-related diseases such as autoimmune diseases, infectious diseases, and cancer, and vice versa. This review highlights the significant role of BMAL1 in governing immune cells, including their development, differentiation, migration, homing, metabolism, and effector functions. This study also explores how dysregulation of BMAL1 can have far-reaching implications and potentially contribute to the onset of immune-related diseases such as autoimmune diseases, infectious diseases, cancer, sepsis, and trauma. Furthermore, this review discusses treatments for immune-related diseases that target BMAL1 disorders. Understanding the impact of BMAL1 on immune function can provide insights into the pathogenesis of immune-related diseases and help in the development of more effective treatment strategies. Targeting BMAL1 has been demonstrated to achieve good efficacy in immune-related diseases, indicating its promising potential as a targetable therapeutic target in these diseases.
Collapse
Affiliation(s)
- Fanglin Shao
- Chengdu Basebio Company, Tianfu Third Street, High-Tech Zone, Chengdu 610041, China
| | - Zhipeng Wang
- Department of Urology, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, First Ring Road, Qingyang District, Chengdu 610041, China
| | - Luxia Ye
- Department of Public Research Platform, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, West Gate Street, Linhai City 317000, Zhejiang Province, China
| | - Ruicheng Wu
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Renmin South Road, Wuhou District, Chengdu 610041, China
| | - Jie Wang
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Renmin South Road, Wuhou District, Chengdu 610041, China
| | - Qing-Xin Yu
- Department of Pathology, Ningbo Clinical Pathology Diagnosis Center, Huancheng North Road, Jiangbei District, Ningbo, Zhejiang Province, 315211, China
| | - Dilinaer Wusiman
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, 625 Harrison Street, West Lafayette, IN 47907, USA
- Purdue Institute for Cancer Research, Purdue University, 615 W. State Street, West Lafayette, IN 47907, USA
| | - Zhouting Tuo
- Chengdu Basebio Company, Tianfu Third Street, High-Tech Zone, Chengdu 610041, China
- Department of Urology, The Second Affiliated Hospital of Anhui Medical University, Jinzhai South Road, Shushan District, Hefei, Anhui 230032, China
| | - Koo Han Yoo
- Department of Urology, Kyung Hee University, 26 Kyungheedae-Ro, Dongdaemun-Gu, South Korea
| | - Ziyu Shu
- Department of Earth Science and Engineering, Imperial College London, Exhibition Road, South Kensington, London SW7 2AZ, UK
- Joint International Research Laboratory of Green Buildings and Built Environments (Ministry of Education), Chongqing University, Shapingba Street, Shapingba District, Chongqing 400044, China
| | - Wuran Wei
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Renmin South Road, Wuhou District, Chengdu 610041, China
| | - Dengxiong Li
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Renmin South Road, Wuhou District, Chengdu 610041, China
| | - William C Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, Gascoigne Road, Yau Ma Tei, Kowloon, Hong Kong SAR, China
| | - Zhihong Liu
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Renmin South Road, Wuhou District, Chengdu 610041, China
| | - Dechao Feng
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Renmin South Road, Wuhou District, Chengdu 610041, China
- Division of Surgery & Interventional Science, University College London, Gower Street, London W1T 6JF, London W1W 7TS, UK
| |
Collapse
|
13
|
Dubey S, Virmani T, Yadav SK, Kumar G, Sharma A, Gugulothu D. Utilizing Plant Phytoconstituents in Metal Oxide Nanoparticle Synthesis for Cancer Therapies. Curr Pharm Des 2025; 31:1270-1289. [PMID: 39781736 DOI: 10.2174/0113816128329342241120105041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 10/04/2024] [Accepted: 10/09/2024] [Indexed: 01/12/2025]
Abstract
BACKGROUND The metal oxide nanoparticles possess unique properties such as biological compatibility, superior reactivity, and capacity to develop reactive oxygen species, due to this they have drawn significant interest in cancer treatment. The various MONPs such as Cerium oxide, Copper oxide, Iron oxide, Titanium dioxide, and Zinc oxide have been investigated for several types of cancers including brain, breast, cervical, colon, leukemia, liver, lung, melanoma, ovarian, and prostate cancers. However, traditional physiochemical synthetic methods for MONPs commonly include toxic materials, a major concern that raises questions regarding their biocompatibility and safety. OBJECTIVE This study aims to investigate the role of plant phytoconstituents in the development of MONPs via green synthesis and explore the therapeutic effectiveness of MONPs in treating several types of cancer. Primarily, it examines the potential of plant phytoconstituents (phenolic compounds, flavonoids, glycosides, alkaloids, etc.) in the development of MONPs as well as their improved ability to target numerous types of cancer. METHODS A systemic search was conducted on recent literature, focusing on developing green MONPs by utilizing plants' phytoconstituents (plant extracts). The study of plant phytochemicals (present in different parts of a plant such as leaves, flowers, stems, peels, and roots) and their role in the synthesis of green metal oxide nanoparticles as well as their anticancer activity against several types of cancers was analyzed. Also focusing on their anticancer mechanism that involves ROS production, generates oxidative stress, and apoptosis leads to cancer inhibition. RESULTS Phytochemicals-mediated metal oxide nanoparticle synthesis revealed many advantages such as improved biological compatibility and enhanced sensitivity towards cancer cells. Phytochemicals present in plant extracts act as natural capping, reducing, and stabilizing agents, enhancing nanoparticle synthesis which leads to synergistic anticancer activity. Additionally, the natural antioxidant and anticancer activity of various phytochemicals enhances the therapeutic potential of metal oxide nanoparticles, producing them more effective against ROS-generated apoptosis and showing negligible toxicity towards normal cells. CONCLUSION The utilization of plant phytochemicals in metal oxide nanoparticle production presents a safe, eco-friendly, sustainable, and effective approach to developing effective and safer cancer nanomedicines. Green synthesis not only increases anticancer activity but also decreases the biocompatibility problems associated with the physiochemical synthetic approach. Further research needs to concentrate on improving this synergy to create a targeted phytochemical-based metal oxide nanoparticle for cancer therapeutics.
Collapse
Affiliation(s)
- Swati Dubey
- Department of Pharmacy, School of Pharmaceutical Sciences, MVN University, Palwal, Haryana, India
| | - Tarun Virmani
- Department of Pharmacy, School of Pharmaceutical Sciences, MVN University, Palwal, Haryana, India
| | - Shiv Kumar Yadav
- Department of Pharmacy, B.S. Anangpuria Institute of Pharmacy, Faridabad, India
| | - Girish Kumar
- Department of Pharmacy, School of Pharmaceutical Sciences, MVN University, Palwal, Haryana, India
| | - Ashwani Sharma
- Department of Pharmacology, Delhi Pharmaceutical Sciences and Research University, New Delhi, India
| | - Dalapathi Gugulothu
- Department of Pharmacy, Delhi Pharmaceutical Sciences and Research University, New Delhi, India
| |
Collapse
|
14
|
Li D, Wu R, Yu Q, Tuo Z, Wang J, Yoo KH, Wei W, Yang Y, Ye L, Guo Y, Chaipanichkul P, Okoli UA, Poolman TM, Burton JP, Cho WC, Heavey S, Feng D. Microbiota and urinary tumor immunity: Mechanisms, therapeutic implications, and future perspectives. Chin J Cancer Res 2024; 36:596-615. [PMID: 39802902 PMCID: PMC11724181 DOI: 10.21147/j.issn.1000-9604.2024.06.03] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Accepted: 11/22/2024] [Indexed: 01/16/2025] Open
Affiliation(s)
- Dengxiong Li
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Ruicheng Wu
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Qingxin Yu
- Department of Pathology, Ningbo Clinical Pathology Diagnosis Center, Ningbo 315211, China
| | - Zhouting Tuo
- Department of Urology, the Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China
| | - Jie Wang
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Koo Han Yoo
- Department of Urology, Kyung Hee University, Seoul 100-744, Republic of Korea
| | - Wuran Wei
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yubo Yang
- Department of Urology, Three Gorges Hospital, Chongqing University, Chongqing 404000, China
| | - Luxia Ye
- Department of Public Research Platform, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai 317000, China
| | - Yiqing Guo
- Department of Public Research Platform, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai 317000, China
| | | | - Uzoamaka Adaobi Okoli
- Division of Surgery & Interventional Science, University College London, London W1W 7TS, UK
- Basic and Translational Cancer Research Group, Department of Pharmacology and Therapeutics, College of Medicine, University of Nigeria, Eastern part of Nigeria, Nsukka 410001, Enugu State, Nigeria
| | - Toryn M Poolman
- Structural & Molecular Biology Faculty of Life Sciences, UCL, London W1W 7TS, UK
| | - Jeremy P Burton
- Centre for Human Microbiome and Probiotic Research, Lawson Health Research Institute, London ON N6A 3K7, Canada
- Department of Microbiology & Immunology, the University of Western Ontario, London ON N6C 2R5, Canada
- Division of Urology, Department of Surgery, the University of Western Ontario, London ON N6A 3K7, Canada
| | - William C. Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, Hong Kong SAR 999077, China
| | - Susan Heavey
- Division of Surgery & Interventional Science, University College London, London W1W 7TS, UK
| | - Dechao Feng
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu 610041, China
- Division of Surgery & Interventional Science, University College London, London W1W 7TS, UK
| |
Collapse
|
15
|
Hong Y, Wang Y, Wang D, Yuan Q, Yang Z, Deng C. Assessing male reproductive toxicity of environmental pollutant di-ethylhexyl phthalate with network toxicology and molecular docking strategy. Reprod Toxicol 2024; 130:108749. [PMID: 39551107 DOI: 10.1016/j.reprotox.2024.108749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 11/10/2024] [Accepted: 11/12/2024] [Indexed: 11/19/2024]
Abstract
Environmental pollutants, especially endocrine-disrupting chemicals (EDCs) like di-ethylhexyl phthalate (DEHP), pose serious threats to human health, with DEHP widely implicated in male reproductive toxicity. However, the complex molecular interactions remain unknown. We employed a network toxicology approach combined with molecular docking analysis to identify potential targets and mechanisms of DEHP's toxic effects. Databases such as ChEMBL, STITCH, OMIM, and GeneCards were utilized to gather data, and Cytoscape software was used to construct protein-protein interaction networks. A total of 51 potential targets were identified, with eight core targets, including PTGS2, CASP3, and ESR1, highlighted for their roles in oxidative stress, apoptosis, and hormonal dysregulation. KEGG pathway enrichment analysis revealed significant associations with pathways in cancer, cytokine-mediated signaling, and the hypothalamic-pituitary-gonadal axis. Additionally, gene expression datasets from the Gene Expression Omnibus (GEO) database were analyzed to identify differentially expressed genes overlapped with DEHP targets in testicular diseases. Molecular docking results confirmed strong binding affinities between DEHP and the core target proteins, suggesting a robust interaction mechanism. This study underscores the need for further investigation into DEHP's toxic mechanisms and its combined effects with other environmental pollutants, paving the way for comprehensive risk assessments and the development of targeted intervention strategies.
Collapse
Affiliation(s)
- Yanggang Hong
- The Second School of Medicine, Wenzhou Medical University, Wenzhou Zhejiang 325035, China.
| | - Yi Wang
- The First School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Deqi Wang
- The First School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Qichao Yuan
- The Second School of Medicine, Wenzhou Medical University, Wenzhou Zhejiang 325035, China
| | - Zihan Yang
- The Second School of Medicine, Wenzhou Medical University, Wenzhou Zhejiang 325035, China
| | - Chuncao Deng
- The Second School of Medicine, Wenzhou Medical University, Wenzhou Zhejiang 325035, China
| |
Collapse
|
16
|
Song DM, Feng K, Luo WF, Lv DS, Zhou LP, He YB, Jin Y. Predicting survival in bladder cancer with a novel apoptotic gene-related prognostic model. Discov Oncol 2024; 15:702. [PMID: 39580765 PMCID: PMC11586327 DOI: 10.1007/s12672-024-01575-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Accepted: 11/12/2024] [Indexed: 11/26/2024] Open
Abstract
BACKGROUND Apoptosis and apoptotic genes play a critical role in the carcinogenesis and progression of bladder cancer. However, there is no prognostic model established by apoptotic genes. METHODS Messenger RNA (mRNA), Expression data, and related clinical data were obtained from The Cancer Genome Atlas (TCGA) database and Gene Expression Omnibus (GEO) database. After extracting the apoptosis-related genes, the survival-related apoptosis genes were screened by univariate Cox regression analysis in the TCGA cohort. Following the Least Absolute Shrinkage and Selection Operator (LASSO) regression method, these genes were modeled by multivariate Cox analysis. The predictive abilities of the Apoptosis-Related Gene Model (ARGM) for overall survival (OS) rate, disease-specific survival (DSS) measures, and progression-free survival (PFS) were verified by the Kaplan-Meier(K-M)survival analysis and time-dependent Receiver Operating Characteristic (ROC) curve. Functional enrichment analyses were performed by Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genome (KEGG). CIBERSORT and Single-Sample Gene Set Enrichment Analysis (ssGSEA) were used to calculate the type of immune cell infiltration and immune functions. The model's predictive ability for immunotherapy were evaluated using Tumor Immune Dysfunction and Exclusion (TIDE) and the Imvigor210 study.The single-cell sequencing was used to display the expression level of the ARGM.Finally,qRT-PCR was executed to validate the expression level of ARGM. RESULTS Several apoptosis genes were identified through the model, including ANXA1, CASP6, CD2, F2, PDGFRB, SATB1, and TSPO. The prognostic value of the model for OS, DSS, and PFS were verified using the TCGA and GEO cohort. The model can predict patient response to immunotherapy treatment as established through the model's score which was linked to different types of immune cell infiltration and identified significant differences in the signal pathways between high-risk and low-risk groups. Nomogram variables, prompted from ARGM and clinical parameters, also generate a high predictive value for patient survival. CONCLUSION Ourestablished apoptosis-related gene model (ARGM) has a substantial predictive value for prognosis and immunotherapy of bladder cancer. It may help with clinical consultation, clinical stratification, and treatment selection. The immune infiltration status and signal pathway of different risk groups also provide direction for further research.
Collapse
Affiliation(s)
- Ding-Ming Song
- Department of Urology, Jinzhou Medical University, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning, China
| | - Kun Feng
- Department of Urology, Jinzhou Medical University, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning, China
| | - Wen-Fei Luo
- Jinzhou Medical University, Jinzhou, Liaoning, China
| | - Dong-Shan Lv
- Department of Urology, Jinzhou Medical University, The Third Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning, China
| | - Li-Po Zhou
- Department of Urology, Jinzhou Medical University, The Third Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning, China
| | - Yi-Bo He
- Department of Clinical Lab, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang, China.
| | - Yanyang Jin
- Department of Urology, Jinzhou Medical University, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning, China.
| |
Collapse
|
17
|
Yu QX, Wu RC, Wang J, Tuo ZT, Yang J, Zhang YP, Jin J, Yuan Q, Wang CN, Feng DC, Li DX. Exploring the role of ADAMTSL2 across multiple cancer types: A pan-cancer analysis and validated in colorectal cancer. Discov Oncol 2024; 15:538. [PMID: 39384622 PMCID: PMC11465020 DOI: 10.1007/s12672-024-01401-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 09/25/2024] [Indexed: 10/11/2024] Open
Abstract
BACKGROUND Recent studies have established a correlation between ADAMTSL2 (ADAMTS-like 2) and the development of various cancers. This study aims to conduct a comprehensive pan-cancer analysis in 37 cancer types and investigate its potential role in colon and rectal adenocarcinoma (COADREAD). METHOD Pan-cancer and mutation data were sourced from The Cancer Genome Atlas (TCGA) database and analyzed using Sangerbox analysis platform. We explored the expression patterns and prognostic implications of ADAMTSL2, and investigated its relationships with tumor heterogeneity, stemness, immune checkpoint genes, immune cell infiltration, RNA modifications, and mutational profiles across different cancers. Additionally, with Ethics Committee approval, we conducted immunohistochemical (IHC) analysis on 120 COADEAD samples to evaluate ADAMTSL2 expression and its association with clinicopathological parameters. RESULTS ADAMTSL2 expression was positively correlated with the hazard ratio of OS, DSS, DFI and PFI for ESCA and COADREAD. A negative correlation was observed between ADAMTSL2 expression and NEO levels in COAD. Gene alterations in ADAMTSL2 were observed, with a mutation frequency of 5.0% in COAD. There is a significant correlation between ADAMTSL2 expression and immune cell infiltration in a variety of cancers. The expression level of ADAMTSL2 protein was associated with T stage, N stage, M stage (p < 0.05). Kaplan‒Meier survival curves demonstrated that the high ADAMTSL2 group had a shorter OS time (p = 0.047) and progression free survival time (p = 0.026) than the low ADAMTSL2 group. CONCLUSION In summary, we conducted a comprehensive pan-cancer analysis of ADAMTSL2 and we demonstrated that ADAMTSL2 may serve as a novel prognostic biomarker and immunotherapy target in COADREAD.
Collapse
Affiliation(s)
- Qing-Xin Yu
- Department of pathology, Ningbo Clinical Pathology Diagnosis center, Ningbo, 315211, Zhejiang, China
- Department of pathology, Ningbo Medical Centre Lihuili Hospital, Ningbo, 315040, Zhejiang, China
| | - Rui-Cheng Wu
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Jie Wang
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Zhou-Ting Tuo
- Department of Urological Surgery, Daping Hospital, Army Medical Center of PLA, Army Medical University, Chongqing, China
| | - Jun Yang
- Department of pathology, Ningbo Clinical Pathology Diagnosis center, Ningbo, 315211, Zhejiang, China
- Department of pathology, Ningbo Medical Centre Lihuili Hospital, Ningbo, 315040, Zhejiang, China
| | - Yong-Ping Zhang
- Department of pathology, Ningbo Clinical Pathology Diagnosis center, Ningbo, 315211, Zhejiang, China
| | - Jing Jin
- Department of pathology, Ningbo Clinical Pathology Diagnosis center, Ningbo, 315211, Zhejiang, China
| | - Quan Yuan
- Department of pathology, Ningbo Clinical Pathology Diagnosis center, Ningbo, 315211, Zhejiang, China
| | - Chun-Nian Wang
- Department of pathology, Ningbo Clinical Pathology Diagnosis center, Ningbo, 315211, Zhejiang, China.
- Department of pathology, Ningbo Medical Centre Lihuili Hospital, Ningbo, 315040, Zhejiang, China.
| | - De-Chao Feng
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China.
- Division of Surgery & Interventional Science, University College London, London, W1W 7TS, UK.
| | - Deng-Xiong Li
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China.
| |
Collapse
|
18
|
Li D, Shao F, Yu Q, Wu R, Tuo Z, Wang J, Ye L, Guo Y, Yoo KH, Ke M, Okoli UA, Premkamon C, Yang Y, Wei W, Heavey S, Cho WC, Feng D. The complex interplay of tumor-infiltrating cells in driving therapeutic resistance pathways. Cell Commun Signal 2024; 22:405. [PMID: 39160622 PMCID: PMC11331645 DOI: 10.1186/s12964-024-01776-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 08/01/2024] [Indexed: 08/21/2024] Open
Abstract
Drug resistance remains a significant challenge in cancer treatment. Recently, the interactions among various cell types within the tumor microenvironment (TME) have deepened our understanding of the mechanisms behind treatment resistance. Therefore, this review aims to synthesize current research focusing on infiltrating cells and drug resistance suggesting that targeting the TME could be a viable strategy to combat this issue. Numerous factors, including inflammation, metabolism, senescence, hypoxia, and angiogenesis, contribute to drug resistance could be a viable strategy to combat this issue. Overexpression of STAT3 is commonly associated with drug-resistant cancer cells or stromal cells. Current research often generalizes the impact of stromal cells on resistance, lacking specificity and statistical robustness. Thus, future research should take notice of this issue and aim to provide high-quality evidence. Despite the existing limitations, targeting the TME to overcome therapy resistance hold promising and valuable potential.
Collapse
Affiliation(s)
- Dengxiong Li
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Fanglin Shao
- Department of Rehabilitation, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China
| | - Qingxin Yu
- Department of Pathology, Ningbo Clinical Pathology Diagnosis Center, Ningbo, 315211, China
- Department of Pathology, Ningbo Medical Centre Lihuili Hospital, Ningbo, China
| | - Ruicheng Wu
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Zhouting Tuo
- Department of Urology, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China
| | - Jie Wang
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Luxia Ye
- Department of Public Research Platform, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, 317000, China
| | - Yiqing Guo
- Department of Public Research Platform, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, 317000, China
| | - Koo Han Yoo
- Department of Urology, Kyung Hee University, Seoul, Republic of Korea
| | - Mang Ke
- Department of Public Research Platform, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, 317000, China
- Department of Urology, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Taizhou, China
| | - Uzoamaka Adaobi Okoli
- Division of Surgery & Interventional Science, University College London, London, W1W 7TS, UK
- Basic and Translational Cancer Research Group, Department of Pharmacology and Therapeutics, College of Medicine, University of Nigeria, Eastern part of Nigeria, Nsukka, Enugu State, Nigeria
| | - Chaipanichkul Premkamon
- Division of Surgery & Interventional Science, University College London, London, W1W 7TS, UK
| | - Yubo Yang
- Department of Urology, Three Gorges Hospital, Chongqing University, Wanzhou, Chongqing, 404000, China
| | - Wuran Wei
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Susan Heavey
- Division of Surgery & Interventional Science, University College London, London, W1W 7TS, UK.
| | - William C Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, Birmingham, Hong Kong SAR, China.
| | - Dechao Feng
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, 610041, China.
- Division of Surgery & Interventional Science, University College London, London, W1W 7TS, UK.
| |
Collapse
|
19
|
Wang Y, Xiao L, Pan Y. Predictive role of oxidative stress-related genes in colon cancer: a retrospective cohort study based on The Cancer Genome Atlas. Discov Oncol 2024; 15:332. [PMID: 39095620 PMCID: PMC11297001 DOI: 10.1007/s12672-024-01216-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 08/01/2024] [Indexed: 08/04/2024] Open
Abstract
PURPOSE This study aimed to elucidate the predictive role of an oxidative stress-related genes (OSRGs) model in colon cancer. MATERIALS AND METHODS First, OSRGs that were differentially expressed between tumor and normal tissues were identified using The Cancer Genome Atlas (TCGA)-(Colorectal Adenocarcinoma) COAD dataset. Then, Lasso COX regression was performed to develop an optimal prognostic model patients were stratified into high- and low-risk groups based on the expression patterns of these genes. The model's validity was confirmed through Kaplan-Meier survival curves and receiver operating characteristic curve (ROC) analysis. Additionally, enrichment analyses were performed using Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), and Gene Set Enrichment Analysis (GSEA) to uncover underlying mechanisms. RESULTS A totally of 115 differentially expressed OSRGs were identified within the TCGA cohort, with 17 significantly linked to overall survival. These 17 genes were used to formulate a prognostic model that differentiated patients into distinct risk groups, with the high-risk group demonstrating a notably inferior overall survival rate. The risk score, when integrated with clinical and pathological data, emerged as an independent prognostic indicator of colon cancer. Further analyses revealed that the disparity in prognostic outcomes between risk groups could be attributed to the reactive oxygen species pathway and the p53 signaling pathway. CONCLUSION A new prediction model was established based on OSRGs. CYP19A1, NOL3 and UCN were found to be highly expressed in tumor tissues and substantial clinical predictive significance. These findings offer new insights into the role of oxidative stress in colon cancer.
Collapse
Affiliation(s)
- Yajie Wang
- Department of Gastrointestinal Surgery, Peking University First Hospital, 8 Xishku Street, Xicheng District, Beijing, 100034, People's Republic of China
| | - Lin Xiao
- Department of Gastrointestinal Surgery, Peking University First Hospital, 8 Xishku Street, Xicheng District, Beijing, 100034, People's Republic of China
| | - Yisheng Pan
- Department of Gastrointestinal Surgery, Peking University First Hospital, 8 Xishku Street, Xicheng District, Beijing, 100034, People's Republic of China.
| |
Collapse
|
20
|
Liu Y, Chen J. Senescence-related genes and proteins in the development of Alzheimer's disease: evidence from transcriptomic and Mendelian randomization analysis. Front Aging Neurosci 2024; 16:1423725. [PMID: 39156738 PMCID: PMC11327092 DOI: 10.3389/fnagi.2024.1423725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 07/23/2024] [Indexed: 08/20/2024] Open
Abstract
Purpose Alzheimer's disease (AD) is a common neurodegenerative disease, which can lead to cognitive impairment and dementia. Since AD is tightly associated with aging and cellular senescence, objective of this study was to investigate the association between senescence-related genes and proteins (SRGs and SRPs) and the development of AD. Design The whole study was based on transcriptomic analysis of control and AD brain tissues and Mendelian randomization (MR) analysis. Methods For transcriptomic analysis, GSE5281 dataset from GEO database contains the transcriptomic data of human brain tissues (n = 161) from control group and AD patients. The expression of SRGs in control and AD brain tissues were compared by Student's t test. For MR analysis, the instrumental single-nucleotide polymorphisms (SNPs) associated with 110 SRPs were filtered and selected from a large genome-wide association study (GWAS) for plasma proteome. The causality between plasma levels of SRPs and AD was explored using GWAS data of AD from Lambert et al. (17,008 cases and 37,154 controls) and further validated by using data from FinnGen consortium (6,489 patients and 170,489 controls). MR estimate was performed using the inverse-variance weighted (IVW) method and the heterogeneity and pleiotropy of results were tested. Results Transcriptomic analysis identified 36 up-regulated (including PLAUR) and 8 down-regulated SRGs in AD brain tissues. In addition, the MR results at both discovery and validation stages supported the causality between plasma levels of PLAUR (IVW-p = 3.04E-2, odds ratio [OR] = 1.15), CD55 (IVW-p = 1.56E-3, OR = 0.86), and SERPINE2 (IVW-p = 2.74E-2, OR = 0.91) and the risk of AD. Conclusion Our findings identified that PLAUR, as an SRG, may take part in the development of AD and found that high plasma levels of PLAUR was associated with increased risk of AD, indicating that this gene was a risk factor for this disease and providing the rationale of existing drugs or new preventative and therapeutic strategies.
Collapse
Affiliation(s)
| | - Jiao Chen
- Department of Gerontology and Geriatrics, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
21
|
Silvestrini A, Mancini A. The Double-Edged Sword of Total Antioxidant Capacity: Clinical Significance and Personal Experience. Antioxidants (Basel) 2024; 13:933. [PMID: 39199179 PMCID: PMC11351343 DOI: 10.3390/antiox13080933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 07/23/2024] [Accepted: 07/30/2024] [Indexed: 09/01/2024] Open
Abstract
Oxidative stress (OS) could be a condition underlying several human diseases, despite the physiological role of reactive oxygen species (oxidative eustress). Therefore, antioxidant compounds could represent a modulatory mechanism for maintaining a proper redox balance and redox signaling. When antioxidants are insufficient or overwhelmed, OS ensues, causing multiple damages at molecular, tissue, and cellular levels. This study focuses on the role of total antioxidant capacity (TAC) as a biomarker to be interpreted according to several clinical scenarios. After a brief description of various assay methods to elucidate terminology and physiopathological roles, we focus on the hormonal influence on TAC in blood plasma and other biological fluids, as different endocrine systems can modulate the antioxidant response. Furthermore, OS characterizes several endocrinopathies through different mechanisms: an inadequate antioxidant response to an increase in reducing equivalents (reductive distress) or a marked consumption of antioxidants (oxidative distress), which leads to low TAC values. An increased TAC could instead represent an adaptive mechanism, suggesting a situation of OS. Hence, the clinical context is fundamental for a correct interpretation of TAC. This review aims to provide the reader with a general overview of oxidative stress in several clinical examples of endocrine relevance, such as metabolic syndrome, non-thyroid illness syndrome, hypopituitarism, and infertility. Finally, the impact of dietary and surgical interventions on TAC in the model of metabolic syndrome is highlighted, along with personal experience.
Collapse
Affiliation(s)
- Andrea Silvestrini
- Dipartimento di Scienze Biotecnologiche di Base, Cliniche Intensivologiche e Perioperatorie, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Antonio Mancini
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Largo Francesco Vito, 1, 00168 Rome, Italy
| |
Collapse
|
22
|
Feng D, Xiao Y, Wang J, Wu R, Tuo Z, Yoo KH, Wei W, Wusiman D, Wang Z, Li D, Yang Y, Cho WC, Ke M. Unraveling links between aging, circadian rhythm and cancer: Insights from evidence-based analysis. Chin J Cancer Res 2024; 36:341-350. [PMID: 38988484 PMCID: PMC11230883 DOI: 10.21147/j.issn.1000-9604.2024.03.09] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 06/10/2024] [Indexed: 07/12/2024] Open
Abstract
Aging and circadian rhythms have been connected for decades, but their molecular interaction has remained unknown, especially for cancers. In this situation, we summarized the current research actuality and problems in this field using the bibliometric analysis. Publications in the PubMed and Web of Science databases were retrieved. Overall, there is a rising trend in the publication volume regarding aging and circadian rhythms in the field of cancer. Researchers from USA, Germany, Italy, China and England have greater studies than others. Top three publication institutions are University of California System, UDICE-French Research Universities and University of Texas System. Current research hotspots include oxidative stress, breast cancer, melatonin, cell cycle, calorie restriction, prostate cancer and NF-KB. In conclusion, results generated by bibliometric analysis indicate that many approaches involve in the complex interactions between aging and circadian rhythm in cancer. These established and emerging research directions guide our exploration of the regulatory mechanisms of aging and circadian rhythms in cancer and provide a reference for developing new research avenues.
Collapse
Affiliation(s)
- Dechao Feng
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu 610041, China
- Division of Surgery & Interventional Science, University College London, London W1W 7TS, UK
- Department of Urology, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Taizhou 317000, China
| | - Yuhan Xiao
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Jie Wang
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Ruicheng Wu
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Zhouting Tuo
- Department of Urology, the Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China
| | - Koo Han Yoo
- Department of Urology, Kyung Hee University, Seoul 130-701, South Korea
| | - Wuran Wei
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Dilinaer Wusiman
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, West Lafayette, IN, 47907, USA
- Purdue Institute for Cancer Research, Purdue University, West Lafayette, IN 47907, USA
| | - Zhipeng Wang
- Department of Urology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 610072, China
| | - Dengxiong Li
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yubo Yang
- Department of Urology, Three Gorges Hospital, Chongqing University, Chongqing 404000, China
| | - William C Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, Hong Kong SAR, China
| | - Mang Ke
- Department of Urology, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Taizhou 317000, China
| |
Collapse
|