1
|
Saharan BS, Dhanda D, Mandal NK, Kumar R, Sharma D, Sadh PK, Jabborova D, Duhan JS. Microbial contributions to sustainable paddy straw utilization for economic gain and environmental conservation. CURRENT RESEARCH IN MICROBIAL SCIENCES 2024; 7:100264. [PMID: 39205828 PMCID: PMC11350505 DOI: 10.1016/j.crmicr.2024.100264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024] Open
Abstract
Paddy straw is a versatile and valuable resource with multifaceted benefits for nutrient cycling, soil health, and climate mitigation. Its role as a rich nutrient source and organic matter significantly enhances soil vitality while improving soil structure and moisture retention. The impact of paddy straw extends beyond traditional agricultural benefits, encompassing the promotion of microbial activity, erosion control, and carbon sequestration, highlighting its crucial role in maintaining ecological balance. Furthermore, the potential of paddy straw in bioenergy is explored, encompassing its conversion into biogas, biofuels, and thermal energy. The inherent characteristics of paddy straw, including its high cellulose, hemicellulose, and lignin content, position it as a viable candidate for bioenergy production through innovative processes like pyrolysis, gasification, anaerobic digestion, and combustion. Recent research has uncovered state-of-the-art techniques and innovative technologies capable of converting paddy straw into valuable products, including sugar, ethanol, paper, and fiber, broadening its potential applications. This paper aims to underscore the possibilities for value creation through paddy straw, emphasizing its potential use in bioenergy, bio-products, and other environmental applications. Therefore, by recognizing and harnessing the value of paddy straw, we can advocate for sustainable farming practices, reduce waste, and pave the way for a resource-efficient circular economy. Incorporating paddy straw utilization into agricultural systems can pave the way for enhanced resource efficiency and a more sustainable circular economy.
Collapse
Affiliation(s)
- Baljeet Singh Saharan
- Department of Microbiology, Chaudhary Charan Singh Haryana Agricultural University, Hisar, 125004, India
- Department of Botany and Plant Physiology (Environmental Science), Chaudhary Charan Singh Haryana Agricultural University, Hisar, 125004, India
| | - Deepika Dhanda
- Department of Microbiology, Chaudhary Charan Singh Haryana Agricultural University, Hisar, 125004, India
- Department of Botany and Plant Physiology (Environmental Science), Chaudhary Charan Singh Haryana Agricultural University, Hisar, 125004, India
| | - Neelam Kumari Mandal
- Department of Botany, Government P.G. College, Panchkula, Haryana, 134112, India
| | - Ramesh Kumar
- Agriculture Extension, Krishi Vigyan Kendra, Ambala, 133104, India
| | - Deepansh Sharma
- Department of Life Sciences, J C Bose University of Science and Technology, YMCA, Faridabad, 121006, India
| | - Pardeep Kumar Sadh
- Department of Biotechnology, Chaudhary Devi Lal University, Sirsa, 125055, India
| | - Dilfuza Jabborova
- Institute of Genetics and Plant Experimental Biology, Uzbekistan Academy of Sciences, Kibray 111208, Uzbekistan
| | - Joginder Singh Duhan
- Department of Biotechnology, Chaudhary Devi Lal University, Sirsa, 125055, India
| |
Collapse
|
2
|
Kewuyemi YO, Kesa H, Meijboom R, Alimi OA, Adebo OA. Comparison of nutritional quality, phenolic compounds, and antioxidant activity of conventional and 3D printed biscuits from wholegrain and multigrain flours. INNOV FOOD SCI EMERG 2022. [DOI: 10.1016/j.ifset.2022.103243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
3
|
Effect of Fungal Fermentation on Enhancement of Nutritional Value and Antioxidant Activity of Defatted Oilseed Meals. Appl Biochem Biotechnol 2022; 195:2172-2195. [PMID: 35819688 DOI: 10.1007/s12010-022-04059-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/24/2022] [Indexed: 11/02/2022]
Abstract
Agro-industrial residues contain high nutritive value. Nowadays, various advanced researches have been done for the production of various value-added products, using these wastes as substrates in the fermentation media. Flaxseed, mustard, and rice bran meal, residues of oil industry, were used as substrates for fermentation. Submerged fermentation with soil-isolated fungal species of the genus Aspergillus sp. was done for oil production by using these substrates in the fermentation media. Effect of fermentation by the oleaginous species of Aspergillus on the nutritive value and functional properties of flaxseed, mustard, and rice bran meal has been discussed for the first time in the present study. After fermentation, the seed meals showed substantial increase in the protein and ash content. The fungal strains utilized the carbohydrate present in the seed meals for the production of highly nutritional metabolites, which decrease the sugar contents of the meals. The fungi also showed extracellular amylase and cellulase activities which helped to hydrolyze the carbohydrates present in these meals, to utilize them for their metabolism. The enhancement was also observed in terms of antioxidant activity of the meals. Increase in the total phenolic and flavonoid contents was observed after fermentation along with radical scavenging activity of 1,1-diphenyl-2-picrylhydrazyl and 2,2-azino-bis-3-ethylbenzthiazoline-6-sulfonic acid reagents and ferric reduction potential. These effects of fermentation modify these cheap waste materials into nutrient dense substrates, which could be further used in the formulation of value-added products.
Collapse
|
4
|
Kewuyemi YO, Kesa H, Adebo OA. Biochemical properties, nutritional quality, colour profile and techno‐functional properties of whole grain sourdough and malted cowpea and quinoa flours. Int J Food Sci Technol 2021. [DOI: 10.1111/ijfs.15512] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Yusuf Olamide Kewuyemi
- School of Tourism and Hospitality College of Business and Economics University of Johannesburg P.O. Box 524, Bunting Road Campus Gauteng South Africa
| | - Hema Kesa
- School of Tourism and Hospitality College of Business and Economics University of Johannesburg P.O. Box 524, Bunting Road Campus Gauteng South Africa
| | - Oluwafemi Ayodeji Adebo
- Department of Biotechnology and Food Technology Faculty of Science University of Johannesburg P.O. Box 17011, Doornfontein Campus Gauteng South Africa
| |
Collapse
|
5
|
Nutritional facts, bio-active components and processing aspects of pseudocereals: A comprehensive review. FOOD BIOSCI 2021. [DOI: 10.1016/j.fbio.2021.101170] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
6
|
Ibarruri J, Cebrián M, Hernández I. Valorisation of fruit and vegetable discards by fungal submerged and solid-state fermentation for alternative feed ingredients production. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 281:111901. [PMID: 33434763 DOI: 10.1016/j.jenvman.2020.111901] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2019] [Revised: 10/09/2020] [Accepted: 12/22/2020] [Indexed: 06/12/2023]
Abstract
The present research describes an integral strategy for valorisation of fruit and vegetable discards (FVd) in feeding application, using solid-state fermentation (SSF) and submerged fermentation (SmF), for both solid and liquid fractions obtained during these by-products handle and processing, using a strain of Rhizopus sp. After SSF, fermented biomass had 1.9 times higher protein content (up to 20.2 ± 1.7% DM) than the original mass and an improved amino acid (AA) profile (45.7 ± 1.8% essential AAs). Fatty acid (FA) profile was also modified during fermentation process, with higher monounsaturated (MUFA) and lower polyunsaturated fatty acid (PUFA) percentage in the final product compared with initial substrate. Phenolic compound concentration was double in final biomass than in initial substrate (up to 8.9 ± 1.5 mg GAE/g DM) and fermented product had higher antioxidant activity (DPPH reduction of 81.3 ± 7.7% and TEAC of 3.6 ± 0.3 mg/g DM). Compared with previously reported results, fruit complementation with vegetables increased the available nitrogen and resulted in higher biomass production. The fruit and vegetable leachate (FVL) obtained by centrifugation was treated by SmF and led, per liter of substrate, to 10.6 ± 1.4 g of fungal biomass and 3.3 g protein after 7 days of fermentation. Obtained fungal biomass was rich in PUFAs (27.1 ± 7.2% of total FA) and had an AA profile comparable to soybean meal, with 45.3 ± 1.5% of essential amino acids (EAA). In conclusion, results demonstrate that combined solid and liquid fermentation is a successful strategy for FVd valorisation to produce valuable alternative feed ingredient due to their high protein and the well-balanced lipid content and amino acid profile.
Collapse
Affiliation(s)
- Jone Ibarruri
- AZTI, Food Research, Basque Research and Technology Alliance (BRTA), Parque Tecnológico de Bizkaia, Astondo Bidea, Edificio 609, 48160, Derio, Bizkaia, Spain.
| | - Marta Cebrián
- AZTI, Food Research, Basque Research and Technology Alliance (BRTA), Parque Tecnológico de Bizkaia, Astondo Bidea, Edificio 609, 48160, Derio, Bizkaia, Spain
| | - Igor Hernández
- Universidad Del País Vasco/ Euskal Herriko Unibertsitatea, Facultad de Farmacia, Paseo de La Facultad 7, 01006, Vitoria-Gasteiz, Spain
| |
Collapse
|
7
|
Duhan JS, Chawla P, Kumar S, Bains A, Sadh PK. Proximate composition, polyphenols, and antioxidant activity of solid state fermented peanut press cake. Prep Biochem Biotechnol 2020; 51:340-349. [PMID: 32907479 DOI: 10.1080/10826068.2020.1815060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
The current research was led to assess the influence of solid-state fermentation (SSF) with Aspergillus oryzae (MTCC 3107) on polyphenols, antioxidant activities, and proximate composition from peanut press cake of variety HNG-10. Total phenolic, flavonoid, and tannin contents were calculated for polyphenols quantification whereas DPPH, ABTS, FRAP, and metal chelating assay were performed for antioxidant activity. Quantification of polyphenols was confirmed by High Performance Liquid Chromatography technique. Maximum value of total phenolic, flavonoid, and tannin content was found to be 25.55 µM/g GAE, 101.17 µM/g QE, and 245.33 µg/g TAE, respectively. The highest inhibition of free radicals scavenging was noticed on the 5th day of fermentation after that decreased gradually with the increase of fermentation time. Significant increase in fat, i.e. 7.05-12.80% and protein content i.e. 44.05-49.60% was observed. Significant difference in proximate composition of fermented and non-fermented press cake concluded that the progressive role of fermentation improved or transformed physico-chemical properties of substrates.
Collapse
Affiliation(s)
| | | | | | | | - Pardeep Kumar Sadh
- Chaudhary Devi Lal University, Sirsa, India.,Department of Paramedical Sciences, Guru Kashi University, Talwandi Sabo, India
| |
Collapse
|
8
|
Rangjaroen C, Lumyong S, Sloan WT, Sungthong R. Herbicide-tolerant endophytic bacteria of rice plants as the biopriming agents for fertility recovery and disease suppression of unhealthy rice seeds. BMC PLANT BIOLOGY 2019; 19:580. [PMID: 31870307 PMCID: PMC6929507 DOI: 10.1186/s12870-019-2206-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 12/17/2019] [Indexed: 05/23/2023]
Abstract
BACKGROUND Dirty panicle disease (DPD) caused by several fungal phytopathogens results in damage and depreciation of rice seeds. Unhealthy rice seeds with DPD are potent reservoirs of pathogens and unable to be used as seed stock as they can spread the disease in the paddy fields leading to the severe loss of rice yield and quality. In this study, we aim to search for beneficial endophytes of commercially cultivated rice plants and utilize them as biostimulants in seed biopriming for fertility recovery and disease suppression of unhealthy rice seeds. RESULTS Forty-three bacterial endophytes were isolated from rice plants grown in the herbicide-treated paddy fields. Five isolates of these endophytes belonging to the genus Bacillus show excellent antifungal activity against fungal pathogens of DPD. Based on germination tests, biopriming unhealthy rice seeds by soaking in bacterial suspensions for 9 or 12 h was optimal as evidenced by the lowest disease incidence and longer shoot and root lengths of seedlings germinated, compared with controls made of non-treated or hydroprimed healthy and unhealthy seeds. Pot experiments were carried out to evaluate the impact of seed biopriming, in which the percentage of healthy rice yield produced by rice plants emerging from bioprimed seeds was not significantly different, compared to the controls originating respectively from non-treated healthy seeds and chemical fungicide-treated unhealthy seeds. CONCLUSION Biopriming of unhealthy rice seeds with herbicide-tolerant endophytic bacteria could recover seed fertility and protect the full life cycle of emerging rice plants from fungal pests. With our findings, seed biopriming is a straightforward approach that farmers can apply to recover unhealthy rice seed stock, which enables them to reduce the cost and use of agrochemicals in the commercial production of rice and to promote green technology in sustainable agriculture.
Collapse
Affiliation(s)
- Chakrapong Rangjaroen
- Department of Agricultural Management Technology, Faculty of Science and Technology, Phranakhon Rajabhat University, Bangkok, 10220 Thailand
| | - Saisamorn Lumyong
- Microbiology Division, Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, 50200 Thailand
- Center of Excellence in Microbial Diversity and Sustainable Utilization, Chiang Mai University, Chiang Mai, 50200 Thailand
- Academy of Science, The Royal Society of Thailand, Bangkok, 10300 Thailand
| | - William T. Sloan
- Infrastructure and Environment Research Division, School of Engineering, University of Glasgow, Glasgow, G12 8LT UK
| | - Rungroch Sungthong
- Infrastructure and Environment Research Division, School of Engineering, University of Glasgow, Glasgow, G12 8LT UK
| |
Collapse
|
9
|
Sadh PK, Kumar S, Chawla P, Duhan JS. Fermentation: A Boon for Production of Bioactive Compounds by Processing of Food Industries Wastes (By-Products). Molecules 2018; 23:E2560. [PMID: 30297619 PMCID: PMC6222923 DOI: 10.3390/molecules23102560] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 09/22/2018] [Accepted: 09/25/2018] [Indexed: 12/27/2022] Open
Abstract
A large number of by-products or wastes are produced worldwide through various food industries. These wastes cause a serious disposable problem with the environment. So, now a day's different approaches are used for alternative use of these wastes because these by-products are an excellent source of various bioactive components such as polyphenols, flavonoids, caffeine, carotenoids, creatine, and polysaccharides etc. which are beneficial for human health. Furthermore, the composition of these wastes depends on the source or type of waste. Approximately half of the waste is lignocellulosic in nature produced from food processing industries. The dissimilar types of waste produced by food industries can be fortified by various processes. Fermentation is one of the oldest approaches and there are three types of fermentation processes that are carried out such as solid state, submerged and liquid fermentation used for product transformation into value added products through microorganisms. Selections of the fermentation process are product specific. Moreover, various studies were performed to obtain or fortified different bioactive compounds that are present in food industries by-products or wastes. Therefore, the current review article discussed various sources, composition and nutritive value (especially bioactive compounds) of these wastes and their management or augmentation of value-added products through fermentation.
Collapse
Affiliation(s)
- Pardeep Kumar Sadh
- Department of Biotechnology, Ch. Devi Lal University, Sirsa 125055, India.
| | - Suresh Kumar
- Department of Biotechnology, Ch. Devi Lal University, Sirsa 125055, India.
| | - Prince Chawla
- School of Bioengineering and Food Technology, Shoolini University, Solan 173229, Himachal Pradesh, India.
| | | |
Collapse
|
10
|
Fermentation approach on phenolic, antioxidants and functional properties of peanut press cake. FOOD BIOSCI 2018. [DOI: 10.1016/j.fbio.2018.01.011] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
11
|
Sadh PK, Duhan S, Duhan JS. Agro-industrial wastes and their utilization using solid state fermentation: a review. BIORESOUR BIOPROCESS 2018. [DOI: 10.1186/s40643-017-0187-z] [Citation(s) in RCA: 325] [Impact Index Per Article: 46.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
|
12
|
Bio-enrichment of functional properties of peanut oil cakes by solid state fermentation using Aspergillus oryzae. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2017. [DOI: 10.1007/s11694-017-9675-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|