1
|
Wang H, Li H, Lee CK, Mat Nanyan NS, Tay GS. A systematic review on utilization of biodiesel-derived crude glycerol in sustainable polymers preparation. Int J Biol Macromol 2024; 261:129536. [PMID: 38278390 DOI: 10.1016/j.ijbiomac.2024.129536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 01/08/2024] [Accepted: 01/14/2024] [Indexed: 01/28/2024]
Abstract
With the rapid development of biodiesel, biodiesel-derived glycerol has become a promising renewable bioresource. The key to utilizing this bioresource lies in the value-added conversion of crude glycerol. While purifying crude glycerol into a pure form allows for diverse applications, the intricate nature of this process renders it costly and environmentally stressful. Consequently, technology facilitating the direct utilization of unpurified crude glycerol holds significant importance. It has been reported that crude glycerol can be bio-transformed or chemically converted into high-value polymers. These technologies provide cost-effective alternatives for polymer production while contributing to a more sustainable biodiesel industry. This review article describes the global production and quality characteristics of biodiesel-derived glycerol and investigates the influencing factors and treatment of the composition of crude glycerol including water, methanol, soap, matter organic non-glycerol, and ash. Additionally, this review also focused on the advantages and challenges of various technologies for converting crude glycerol into polymers, considering factors such as the compatibility of crude glycerol and the control of unfavorable factors. Lastly, the application prospect and value of crude glycerol conversion were discussed from the aspects of economy and environmental protection. The development of new technologies for the increased use of crude glycerol as a renewable feedstock for polymer production will be facilitated by the findings of this review, while promoting mass market applications.
Collapse
Affiliation(s)
- Hong Wang
- Bioresource Technology Division, School of Industrial Technology, Universiti Sains Malaysia, Penang USM 11800, Malaysia
| | - Hongpeng Li
- Tangshan Jinlihai Biodiesel Co. Ltd., 063000 Tangshan, China
| | - Chee Keong Lee
- Bioprocess Technology Division, School of Industrial Technology, Universiti Sains Malaysia, Penang USM 11800, Malaysia; School of Industrial Technology, Universiti Sains Malaysia, Penang USM 11800, Malaysia
| | - Noreen Suliani Mat Nanyan
- Bioprocess Technology Division, School of Industrial Technology, Universiti Sains Malaysia, Penang USM 11800, Malaysia; School of Industrial Technology, Universiti Sains Malaysia, Penang USM 11800, Malaysia
| | - Guan Seng Tay
- Bioresource Technology Division, School of Industrial Technology, Universiti Sains Malaysia, Penang USM 11800, Malaysia; Green Biopolymer, Coatings & Packaging Cluster, School of Industrial Technology, Universiti Sains Malaysia, Penang USM 11800, Malaysia.
| |
Collapse
|
2
|
Chopra M, Kumar V, Singh M, Aggarwal NK. An overview about the approaches used in the production of alpha-ketoglutaric acid with their applications. PHYSICAL SCIENCES REVIEWS 2022. [DOI: 10.1515/psr-2022-0162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
Alpha ketoglutaric acid is a biological compound found naturally in the human body. It plays an important role in the cell metabolism and has a role in various metabolic pathways including Kreb’s cycle, protein metabolism and so on. Keto glutaric acid is chemically prepared from succinic acid and oxalic acid. It is a direct precursor of glutamic acid and triazines. It can be produced by oxidative decarboxylation of isocitrate by isocitrate dehydrogenase. The yeast Yarrowia lipolytica is used as a prospective producer of alpha ketoglutaric acid from ethanol. The capability to synthesize Keto glutaric acid has so far been investigated for many microorganisms such as Pseudomonas fluoroscens
, Bacillus subtilis
etc. P. fluoroscens have the ability to synthesize a huge amount of alpha ketoglutaric acid in a glycerol medium supplemented with manganese (Mn). The Mangnese has a significant impact on glycerol metabolism resulting in the buildup of alpha ketoglutaric acid. The metabolism of succinate may result in the production of alpha ketoglutarate. Despite its importance in TCA cycle, alpha ketoglutaric acid buildup as an intermediate product of bacterial glucose oxidation. Along with chemical synthesis and microbial fermentation, enzymatic transformation can also be used to produce alpha ketoglutaric acid. Biodiesel waste is considered as cheap and renewable carbon source for the development of alpha ketoglutaric acid. Alpha ketoglutarate is used for kidney disease, intestinal and stomach disorders and many other conditions. It also plays an important role in the food industry as food and nutrient enhancers. The review is covering all the aspects related with the Alpha ketoglutaric acid production, utilization and product recovery.
Collapse
Affiliation(s)
- Monika Chopra
- Department of Biotechnology , Maharishi Markandeshwar (Deemed to be University), Mullana , Ambala , 133207 , India
| | - Vikas Kumar
- Department of Biotechnology , Maharishi Markandeshwar (Deemed to be University), Mullana , Ambala , 133207 , India
| | - Manoj Singh
- Department of Biotechnology , Maharishi Markandeshwar (Deemed to be University), Mullana , Ambala , 133207 , India
| | - Neeraj K. Aggarwal
- Department of Microbiology , Kurukshetra University , Kurukshetra , 136119 , India
| |
Collapse
|
3
|
Abstract
Utilization of biofuels generated from renewable sources has attracted broad attention due to their benefits such as reducing consumption of fossil fuels, sustainability, and consequently prevention of global warming. The production of biodiesel causes a huge amount of by-product, crude glycerol, to accumulate. Glycerol, because of its unique structure having three hydroxyl groups, can be converted to a variety of industrially valuable products. In recent decades, increasing studies have been carried out on different catalytic pathways to selectively produce a wide range of glycerol derivatives. In the current review, the main routes including carboxylation, oxidation, etherification, hydrogenolysis, esterification, and dehydration to convert glycerol to value-added products are investigated. In order to achieve more glycerol conversion and higher desired product selectivity, acquisition of knowledge on the catalysts, the type of acidic or basic, the supports, and studying various reaction pathways and operating parameters are necessary. This review attempts to summarize the knowledge of catalytic reactions and mechanisms leading to value-added derivatives of glycerol. Additionally, the application of main products from glycerol are discussed. In addition, an overview on the market of glycerol, its properties, applications, and prospects is presented.
Collapse
|
4
|
Mitrović I, Grahovac J, Hrustić J, Jokić A, Dodić J, Mihajlović M, Grahovac M. Utilization of waste glycerol for the production of biocontrol agents nigericin and niphimycin by Streptomyces hygroscopicus: bioprocess development. ENVIRONMENTAL TECHNOLOGY 2022; 43:3000-3013. [PMID: 33820481 DOI: 10.1080/09593330.2021.1913241] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 03/02/2021] [Indexed: 06/12/2023]
Abstract
Search for more environment-friendly methods for controlling plant diseases that would contribute to the goal of sustainability in agriculture is in focus. In the present study, the potential of Streptomyces hygroscopicus isolated from soil sample in the production of biocontrol agents, nigericin and niphimycin, effective against Alternaria alternata storage apple pathogen was examined. Also, modelling and optimization of medium composition for biocontrol agent biosynthesis was performed. The results showed that the optimum amount of C3H8O3, (NH4)2SO4 and K2HPO4 in the medium for Streptomyces hygroscopicus biosynthesis is 20, 0.25 and 1.46 g/L, respectively. Scale-up and validation of the obtained results performed in the 3 L laboratory-scale bioreactor showed that on the optimized medium at an aeration rate of 0.7 vvm and an agitation speed of 200 rpm, produced nigericin and niphimycin, showed high activity. Under the same conditions, cultivation of S. hygroscopicus was performed in a 7 L laboratory bioreactor in a medium with waste glycerol instead of pure glycerol. Results showed that the methanol extract of S. hygroscopicus cultivation liquid, containing nigericin and niphimycin, was high effective against two Alternaria isolates. This was confirmed in vitro by obtaining large inhibition zone diameters on A. alternata KA10 (47 mm) and T1Jg3 (44.33 mm) isolates. After successful in vitro analysis, in planta testing was performed. It was found that necrosis diameters that were measured on artificially inoculated apple fruits with A. alternata compared to necrosis diameter measured on untreated, control fruits, were 4.47 and 3.56 times smaller.
Collapse
Affiliation(s)
- Ivana Mitrović
- Faculty of Technology Novi Sad, University of Novi Sad, Novi Sad, Serbia
| | - Jovana Grahovac
- Faculty of Technology Novi Sad, University of Novi Sad, Novi Sad, Serbia
| | - Jovana Hrustić
- Institute of Pesticides and Environmental Protection, Beograd-Zemun, Serbia
| | - Aleksandar Jokić
- Faculty of Technology Novi Sad, University of Novi Sad, Novi Sad, Serbia
| | - Jelena Dodić
- Faculty of Technology Novi Sad, University of Novi Sad, Novi Sad, Serbia
| | - Milica Mihajlović
- Institute of Pesticides and Environmental Protection, Beograd-Zemun, Serbia
| | - Mila Grahovac
- Faculty of Agriculture, University of Novi Sad, Novi Sad, Serbia
| |
Collapse
|
5
|
CuAl2O4–CuO–Al2O3 catalysts prepared by flame-spray pyrolysis for glycerol hydrogenolysis. MOLECULAR CATALYSIS 2022. [DOI: 10.1016/j.mcat.2021.111426] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
6
|
Alves R, Fidalgo-Marijuan A, Campos-Arias L, Gonçalves R, Silva MM, del Campo FJ, Costa CM, Lanceros-Mendez S. Solid Polymer Electrolytes Based on Gellan Gum and Ionic Liquid for Sustainable Electrochromic Devices. ACS APPLIED MATERIALS & INTERFACES 2022; 14:15494-15503. [PMID: 35324148 PMCID: PMC9773178 DOI: 10.1021/acsami.2c01658] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Materials sustainability is becoming increasingly relevant in every developed technology and, consequently, environmentally friendly solid polymer electrolytes (SPEs) based on gellan gum and different quantities of ionic liquid (IL) 1-ethyl-3-methyl-imidazolium-thiocyanate [Emim][SCN] have been prepared and applied in electrochromic devices (ECDs). The addition of the IL does not affect the crystalline phase of gellan gum, and the samples show a compact morphology, surface uniformity, no phase separation, and good distribution of the IL within the carrageenan matrix. The developed SPE are thermally stable up to ∼100 °C and show suitable mechanical properties. The most concentrated sample (39 wt % IL content) reaches a maximum ionic conductivity value of 6.0 × 10-3 S cm-1 and 1.8 × 10-2 S cm-1 at 30 and 90 °C, respectively. The electrochromic device (ECD) was fabricated with poly(3,4-ethylenedioxythiophene) polystyrenesulfonate (PEDOT:PSS) as working electrode and the developed SPE was compared with an aqueous 0.1 M KNO3 solution. The electrochromic performance of the electrolyte was assessed in terms of spectroelectrochemistry, demonstrating a fully flexible ECD operating at voltages below 1.0 V. This novel electrolyte opens the door to the preparation of high performance sustainable ECD.
Collapse
Affiliation(s)
- Raquel Alves
- Physics
Centre of Minho and Porto Universities (CF-UM-UP), University of Minho, 4710-057 Braga, Portugal
| | - Arkaitz Fidalgo-Marijuan
- BCMaterials, Basque Center for Materials,
Applications and Nanostructures, UPV/EHU Science Park, 48940 Leioa, Spain
- Department
of Organic and Inorganic Chemistry, University
of the Basque Country (UPV/EHU), 01006 Vitoria-Gasteiz, Spain
| | - Lia Campos-Arias
- BCMaterials, Basque Center for Materials,
Applications and Nanostructures, UPV/EHU Science Park, 48940 Leioa, Spain
| | - Renato Gonçalves
- Center
of Chemistry, University of Minho, 4710-057 Braga, Portugal
| | | | - Francisco Javier del Campo
- BCMaterials, Basque Center for Materials,
Applications and Nanostructures, UPV/EHU Science Park, 48940 Leioa, Spain
- Ikerbasque, Basque
Foundation for Science, 48009 Bilbao, Spain
| | - Carlos M. Costa
- Physics
Centre of Minho and Porto Universities (CF-UM-UP), University of Minho, 4710-057 Braga, Portugal
- Institute
of Science and Innovation for Bio-Sustainability (IB-S), University of Minho, 4710-057 Braga, Portugal
- Laboratory
of Physics for Materials and Emergent Technologies, LapMET, University of Minho, Braga 4710-057, Portugal
| | - Senentxu Lanceros-Mendez
- BCMaterials, Basque Center for Materials,
Applications and Nanostructures, UPV/EHU Science Park, 48940 Leioa, Spain
- Ikerbasque, Basque
Foundation for Science, 48009 Bilbao, Spain
| |
Collapse
|
7
|
Lin Z, Ammal SC, Denny SR, Rykov SA, You KE, Heyden A, Chen JG. Unraveling Unique Surface Chemistry of Transition Metal Nitrides in Controlling Selective C-O Bond Scission Pathways of Glycerol. JACS AU 2022; 2:367-379. [PMID: 35252987 PMCID: PMC8889611 DOI: 10.1021/jacsau.1c00403] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Indexed: 05/24/2023]
Abstract
Controlled C-O bond scission is an important step for upgrading glycerol, a major byproduct from the continuously increasing biodiesel production. Transition metal nitride catalysts have been identified as promising hydrodeoxygenation (HDO) catalysts, but fundamental understanding regarding the active sites of the catalysts and reaction mechanism remains unclear. This work demonstrates a fundamental surface science study of Mo2N and Cu/Mo2N for the selective HDO reaction of glycerol, using a combination of model surface experiments and first-principles calculations. Temperature-programmed desorption (TPD) experiments showed that clean Mo2N cleaved two or three C-O bonds of glycerol to produce allyl alcohol, propanal, and propylene. The addition of Cu to Mo2N changed the reaction pathway to one C-O bond scission to produce acetol. High-resolution electron energy loss spectroscopy (HREELS) results identified the surface intermediates, showing a facile C-H bond activation on Mo2N. Density functional theory (DFT) calculations revealed that the surface N on Mo2N interacted with the H atoms in glycerol and blocked some Mo sites to enable selective C-O bond scission. This work shows that Mo2N and Cu/Mo2N are active and selective for the controlled C-O bond scission of glycerol and in turn provides insights into the rational catalyst design for selective oxygen removal of relevant biomass-derived oxygenates.
Collapse
Affiliation(s)
- Zhexi Lin
- Department
of Chemical Engineering, Columbia University, New York, New York 10027, United States
| | - Salai C. Ammal
- Department
of Chemical Engineering, University of South
Carolina, Columbia, South Carolina 29208, United States
| | - Steven R. Denny
- Department
of Chemical Engineering, Columbia University, New York, New York 10027, United States
| | - Sergei A. Rykov
- Department
of Semiconductors Physics and Nano-electronics, Peter the Great St. Petersburg Polytechnic University 195251 St. Petersburg, Russia
| | - Kyung-Eun You
- Department
of Chemical Engineering, University of South
Carolina, Columbia, South Carolina 29208, United States
| | - Andreas Heyden
- Department
of Chemical Engineering, University of South
Carolina, Columbia, South Carolina 29208, United States
| | - Jingguang G. Chen
- Department
of Chemical Engineering, Columbia University, New York, New York 10027, United States
- Chemistry
Division, Brookhaven National Laboratory, Upton, New York 11973, United States
| |
Collapse
|
8
|
Assessment on the Effect of Sulfuric Acid Concentration on Physicochemical Properties of Sulfated-Titania Catalyst and Glycerol Acetylation Performance. Catalysts 2021. [DOI: 10.3390/catal11121542] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
In this research, a solid acid catalyst was synthesized to catalyse glycerol acetylation into acetins. The sulphated-titania catalysts were prepared via the wet impregnation method at different sulfuric acid concentrations (5%, 10%, 15%, and 20%) and denoted as 5SA, 10SA, 15SA, and 20SA, respectively. The synthesized catalysts were characterized using FTIR, XRD, TGA, BET, NH3-TPD, XRF, and SEM-EDX. The synthesized catalysts were tested on glycerol acetylation reaction at conditions: 0.5 g catalyst loading, 100–120 °C temperature, 1:6 glycerol/acetic acid molar ratios, and 2–4 h reaction time. The final product obtained was analysed using GC-FID. An increment in sulfuric acid concentration reduces the surface area, pore volume, and particles size. However, the increment has increased the number of active sites (Lewis acid) and strong acid strength. 15SA catalyst exhibited excellent glycerol conversion (>90%) and the highest selectivity of triacetin (42%). Besides sufficient surface area (1.9 m2 g−1) and good porosity structure, the great performance of the 15SA catalyst was attributed to its high acid site density (342.6 µmol g−1) and the high active site of metal oxide (95%).
Collapse
|
9
|
Phung Hai TA, Tessman M, Neelakantan N, Samoylov AA, Ito Y, Rajput BS, Pourahmady N, Burkart MD. Renewable Polyurethanes from Sustainable Biological Precursors. Biomacromolecules 2021; 22:1770-1794. [PMID: 33822601 DOI: 10.1021/acs.biomac.0c01610] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Due to the depletion of fossil fuels, higher oil prices, and greenhouse gas emissions, the scientific community has been conducting an ongoing search for viable renewable alternatives to petroleum-based products, with the anticipation of increased adaptation in the coming years. New academic and industrial developments have encouraged the utilization of renewable resources for the development of ecofriendly and sustainable materials, and here, we focus on those advances that impact polyurethane (PU) materials. Vegetable oils, algae oils, and polysaccharides are included among the major renewable resources that have supported the development of sustainable PU precursors to date. Renewable feedstocks such as algae have the benefit of requiring only sunshine, carbon dioxide, and trace minerals to generate a sustainable biomass source, offering an improved carbon footprint to lessen environmental impacts. Incorporation of renewable content into commercially viable polymer materials, particularly PUs, has increasing and realistic potential. Biobased polyols can currently be purchased, and the potential to expand into new monomers offers exciting possibilities for new product development. This Review highlights the latest developments in PU chemistry from renewable raw materials, as well as the various biological precursors being employed in the synthesis of thermoset and thermoplastic PUs. We also provide an overview of literature reports that focus on biobased polyols and isocyanates, the two major precursors to PUs.
Collapse
Affiliation(s)
- Thien An Phung Hai
- Department of Chemistry and Biochemistry, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92093-0358, United States
| | - Marissa Tessman
- Algenesis Materials Inc., 1238 Sea Village Drive, Cardiff, California 92007, United States
| | - Nitin Neelakantan
- Algenesis Materials Inc., 1238 Sea Village Drive, Cardiff, California 92007, United States
| | - Anton A Samoylov
- Department of Chemistry and Biochemistry, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92093-0358, United States
| | - Yuri Ito
- Department of Chemistry and Biochemistry, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92093-0358, United States
| | - Bhausaheb S Rajput
- Food and Fuel for the 21st Century, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92093-0435, United States
| | - Naser Pourahmady
- Department of Chemistry and Biochemistry, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92093-0358, United States
| | - Michael D Burkart
- Department of Chemistry and Biochemistry, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92093-0358, United States.,Algenesis Materials Inc., 1238 Sea Village Drive, Cardiff, California 92007, United States.,Food and Fuel for the 21st Century, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92093-0435, United States
| |
Collapse
|
10
|
A Focus on the Transformation Processes for the Valorization of Glycerol Derived from the Production Cycle of Biofuels. Catalysts 2021. [DOI: 10.3390/catal11020280] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Glycerol is a valuable by-product in the biodiesel industries. However, the increase in biodiesel production resulted in an excess production of glycerol, with a limited market compared to its availability. Precisely because glycerol became a waste to be disposed of, the costs of biodiesel production have reduced. From an environmental point of view, identifying reactions that can convert glycerol into new products that can be reused in different applications has become a real necessity. According to the unique structural characteristics of glycerol, transformation processes can lead to different chemical functionalities through redox reactions, dehydration, esterification, and etherification, with the formation of products that can be applied both at the finest chemical level and to bulk chemistry.
Collapse
|
11
|
Abstract
Energy policies in the US and in the EU during the last decades have been focused on enhanced oil and gas recovery, including the so-called tertiary extraction or enhanced oil recovery (EOR), on one hand, and the development and implementation of renewable energy vectors, on the other, including biofuels as bioethanol (mainly in US and Brazil) and biodiesel (mainly in the EU) [...]
Collapse
|
12
|
Souza BCD, Bossardi FF, Furlan GR, Folle AB, Reginatto C, Polidoro TA, Carra S, Silveira MMD, Malvessi E. Validated High-Performance Liquid Chromatographic (HPLC) Method for the Simultaneous Quantification of 2,3-Butanediol, Glycerol, Acetoin, Ethanol, and Phosphate in Microbial Cultivations. ANAL LETT 2021. [DOI: 10.1080/00032719.2020.1869754] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Bruna Campos de Souza
- Instituto de Biotecnologia, Laboratório de Bioprocessos, Universidade de Caxias do Sul (UCS), Caxias do Sul, RS, Brazil
| | - Flávia Frozza Bossardi
- Instituto de Biotecnologia, Laboratório de Bioprocessos, Universidade de Caxias do Sul (UCS), Caxias do Sul, RS, Brazil
| | - Greice Ribeiro Furlan
- Instituto de Biotecnologia, Laboratório de Bioprocessos, Universidade de Caxias do Sul (UCS), Caxias do Sul, RS, Brazil
| | - Analia Borges Folle
- Instituto de Biotecnologia, Laboratório de Bioprocessos, Universidade de Caxias do Sul (UCS), Caxias do Sul, RS, Brazil
| | - Caroline Reginatto
- Instituto de Biotecnologia, Laboratório de Bioprocessos, Universidade de Caxias do Sul (UCS), Caxias do Sul, RS, Brazil
| | - Tomás Augusto Polidoro
- Instituto de Biotecnologia, Laboratório de Bioprocessos, Universidade de Caxias do Sul (UCS), Caxias do Sul, RS, Brazil
| | - Sabrina Carra
- Instituto de Biotecnologia, Laboratório de Bioprocessos, Universidade de Caxias do Sul (UCS), Caxias do Sul, RS, Brazil
- Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Mauricio Moura da Silveira
- Instituto de Biotecnologia, Laboratório de Bioprocessos, Universidade de Caxias do Sul (UCS), Caxias do Sul, RS, Brazil
| | - Eloane Malvessi
- Instituto de Biotecnologia, Laboratório de Bioprocessos, Universidade de Caxias do Sul (UCS), Caxias do Sul, RS, Brazil
| |
Collapse
|
13
|
Jiang LL, Liu FY, Yang W, Li CL, Zhu BW, Zhu XH. Production of 1,3-propanediol and lactic acid from crude glycerol by a microbial consortium from intertidal sludge. Biotechnol Lett 2021; 43:711-717. [PMID: 33386498 DOI: 10.1007/s10529-020-03063-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 12/12/2020] [Indexed: 12/01/2022]
Abstract
OBJECTIVES To select a microbial consortium from intertidal sludge and evaluate its ability to convert crude glycerol from biodisel to high value-added products such as 1,3-propanediol (1,3-PDO) and lactic acid (LA). RESULTS A microbial consortium named CJD-S was selected from intertidal sludge and exhibited excellent performance for the conversion of crude glycerol to 1,3-PDO and LA. The composition of CJD-S was determined to be 85.99% Enterobacteriaceae and 13.75% Enterococcaceae by 16S rRNA gene amplicon high-throughput sequencing. In fed-batch fermentation with crude glycerol under nonsterile conditions, the highest concentrations of 1,3-PDO and LA were 41.47 g/L and 45.86 g/L, respectively. CONCLUSIONS The selected microbial consortium, CJD-S, effectively converted crude glycerol to 1,3-PDO and LA under nonsterile conditions and can contribute to the sustainable development of the biodiesel industry.
Collapse
Affiliation(s)
- Li-Li Jiang
- School of Chemical and Environmental Engineering, Yingkou Institute of Technology, Yingkou, 115014, Liaoning Province, China. .,Jiangsu Key Laboratory for Biomass Energy and Material, Nanjing, 210042, Jiangsu Province, China. .,Liaoning Key Laboratory of Additive Synthesis and Separation, Yingkou Institute of Technology, Yingkou, 115014, Liaoning Province, China.
| | - Feng-Yi Liu
- School of Chemical and Environmental Engineering, Yingkou Institute of Technology, Yingkou, 115014, Liaoning Province, China
| | - Wei Yang
- School of Chemical and Environmental Engineering, Yingkou Institute of Technology, Yingkou, 115014, Liaoning Province, China
| | - Chang-Li Li
- School of Chemical and Environmental Engineering, Yingkou Institute of Technology, Yingkou, 115014, Liaoning Province, China.,Liaoning Key Laboratory of Additive Synthesis and Separation, Yingkou Institute of Technology, Yingkou, 115014, Liaoning Province, China
| | - Bao-Wei Zhu
- School of Chemical and Environmental Engineering, Yingkou Institute of Technology, Yingkou, 115014, Liaoning Province, China
| | - Xiu-Hui Zhu
- School of Chemical and Environmental Engineering, Yingkou Institute of Technology, Yingkou, 115014, Liaoning Province, China.,Liaoning Key Laboratory of Additive Synthesis and Separation, Yingkou Institute of Technology, Yingkou, 115014, Liaoning Province, China
| |
Collapse
|
14
|
Bhatt C, Nielsen PM, Rancke-Madsen A, Woodley JM. Combining technology with liquid-formulated lipases for in-spec biodiesel production. Biotechnol Appl Biochem 2020; 69:7-19. [PMID: 33179313 DOI: 10.1002/bab.2074] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 10/15/2020] [Indexed: 01/02/2023]
Abstract
Enzymatic biodiesel production has been at the forefront of biofuels research in recent decades because of the significant environmental advantages it offers, while having the potential to be as effective as conventional chemically catalyzed biodiesel production. However, the higher capital cost, longer reaction time, and sensitivity of enzyme processes have restricted their widespread industrial adoption so far. It is also posited that the lack of research to bring the biodiesel product into final specification has scuppered industrial confidence in the viability of the enzymatic process. Furthermore, the vast majority of literature has focused on the development of immobilized enzyme processes, which seem too costly (and risky) to be used industrially. There has been little focus on liquid lipase formulations such as the Eversa Transform 2.0, which is in fact already used commercially for triglyceride transesterification. It is the objective of this review to highlight new research that focuses on bringing enzymatically produced biodiesel into specification via a liquid lipase polishing process, and the process considerations that come with it.
Collapse
Affiliation(s)
- Chinmayi Bhatt
- Department of Chemical and Biochemical Engineering, Technical University of Denmark (DTU), Kgs Lyngby, Denmark
| | | | | | - John M Woodley
- Department of Chemical and Biochemical Engineering, Technical University of Denmark (DTU), Kgs Lyngby, Denmark
| |
Collapse
|
15
|
Application of freeze-dried Yarrowia lipolytica biomass in the synthesis of lipophilic antioxidants. Biotechnol Lett 2020; 43:601-612. [PMID: 33104936 PMCID: PMC7873097 DOI: 10.1007/s10529-020-03033-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 10/20/2020] [Indexed: 11/04/2022]
Abstract
Objective The aim of the study was to evaluate the possibility of using Y. lipolytica biomass as a whole-cell catalyst in the synthesis of lipophilic antioxidants, with the example of esterification of five phenolic acids with 1-butanol. Results Freeze-dried Y. lipolytica biomass was successfully applied as a biocatalyst in the synthesis of esters of phenylpropanoic acid derivatives with 75–98% conversion. However, in the case of phenylacetic acid derivatives, results below 10% were obtained. The biological activity of phenolic acid esters was strongly associated with their chemical structures. Butyl 3-(4-hydroxyphenyl)propanoate showed an IC50 value of 19 mg/ml (95 mM) and TEAC value of 0.427. Among the compounds tested, butyl esters of 3-(4-hydroxyphenyl)propanoic and 4-hydroxyphenylacetic acids exhibited the highest antifungal activity. Conclusions Lipophilization of phenolic acids achieved by enzymatic esterification creates prospects for using these compounds as food additives with antioxidant properties in lipid-rich food matrices.
Collapse
|
16
|
B. Aziz S, Brza MA, Brevik I, Hafiz MH, Asnawi AS, Yusof YM, Abdulwahid RT, Kadir MF. Blending and Characteristics of Electrochemical Double-Layer Capacitor Device Assembled from Plasticized Proton Ion Conducting Chitosan:Dextran:NH 4PF 6 Polymer Electrolytes. Polymers (Basel) 2020; 12:polym12092103. [PMID: 32947829 PMCID: PMC7570255 DOI: 10.3390/polym12092103] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Revised: 09/13/2020] [Accepted: 09/14/2020] [Indexed: 12/28/2022] Open
Abstract
This research paper investigates the electrochemical performance of chitosan (CS): dextran (DX) polymer-blend electrolytes (PBEs), which have been developed successfully with the incorporation of ammonium hexafluorophosphate (NH4PF6). X-ray diffraction (XRD) analysis indicates that the plasticized electrolyte system with the highest value of direct current (DC) ionic conductivity is the most amorphous system. The glycerol addition increased the amorphous phase and improved the ionic dissociation, which contributed to the enhancement of the fabricated device’s performance. Transference number analysis (TNM) has shown that the charge transport process is mainly by ions rather than electrons, as tion = 0.957. The CS:DX:NH4PF6 system was found to decompose as the voltage goes beyond 1.5 V. Linear sweep voltammetry (LSV) revealed that the potential window for the most plasticized system is 1.5 V. The fabricated electrochemical double-layer capacitor (EDLC) was analyzed with cyclic voltammetry (CV) and charge-discharge analysis. The results from CV verify that the EDLC in this work holds the characteristics of a capacitor. The imperative parameters of the fabricated EDLC such as specific capacitance and internal resistance were found to be 102.9 F/g and 30 Ω, respectively. The energy stored and power delivered by the EDLC were 11.6 Wh/kg and 2741.2 W/kg, respectively.
Collapse
Affiliation(s)
- Shujahadeen B. Aziz
- Hameed Majid Advanced Polymeric Materials Research Lab., Physics, College of Science, University of Sulaimani, Qlyasan Street, Kurdistan Regional Government, Sulaimani 46001, Iraq;
- Department of Civil engineering, College of Engineering, Komar University of Science and Technology, Kurdistan Regional Government, Sulaimani 46001, Iraq
- Correspondence: (S.B.A.); (I.B.)
| | - Mohamad A. Brza
- Manufacturing and Materials Engineering Department, Faculty of Engineering, International Islamic University of Malaysia, Kuala Lumpur 50603, Malaysia;
| | - Iver Brevik
- Department of Energy and Process Engineering, Norwegian University of Science and Technology, N-7491 Trondheim, Norway
- Correspondence: (S.B.A.); (I.B.)
| | - Muhamad H. Hafiz
- Institute for Advanced Studies, University of Malaya, Kuala Lumpur 50603, Malaysia;
| | - Ahmad S.F.M. Asnawi
- Chemical Engineering Section, Universiti Kuala Lumpur, Malaysian Institute of Chemical & Bioengineering Technology (UniKL MICET), Alor Gajah 78000, Malacca, Malaysia; (A.S.F.M.A.); (Y.M.Y.)
| | - Yuhanees M. Yusof
- Chemical Engineering Section, Universiti Kuala Lumpur, Malaysian Institute of Chemical & Bioengineering Technology (UniKL MICET), Alor Gajah 78000, Malacca, Malaysia; (A.S.F.M.A.); (Y.M.Y.)
| | - Rebar T. Abdulwahid
- Hameed Majid Advanced Polymeric Materials Research Lab., Physics, College of Science, University of Sulaimani, Qlyasan Street, Kurdistan Regional Government, Sulaimani 46001, Iraq;
- Department of Physics, College of Education, University of Sulaimani, Old Campus, Kurdistan Regional Government, Sulaimani 46001, Iraq
| | - Mohd F.Z. Kadir
- Centre for Foundation Studies in Science, University of Malaya, Kuala Lumpur 50603, Malaysia;
| |
Collapse
|
17
|
Kaur J, Sarma AK, Jha MK, Gera P. Valorisation of crude glycerol to value-added products: Perspectives of process technology, economics and environmental issues. BIOTECHNOLOGY REPORTS (AMSTERDAM, NETHERLANDS) 2020; 27:e00487. [PMID: 32642454 PMCID: PMC7334398 DOI: 10.1016/j.btre.2020.e00487] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 04/09/2020] [Accepted: 06/08/2020] [Indexed: 12/28/2022]
Abstract
The enormous production of glycerol, a waste stream from biodiesel industries, as a low-value product has been causing a threat to both the environment and the economy. Therefore, it needs to be transformed effectively and efficiently into valued products for contributing positively towards the biodiesel economy. It can either be converted directly into competent chemicals or can be used as a feedstock/precursor for deriving valuable derivatives. In this review article, a technical evaluation has been stirred up, various factors and technologies used for producing value-added products from crude glycerol, Environmental and economic aspects of different conversion routes, cost factors and challenges of integration of the different routes for biorefinery have been reviewed and elaborated. There are tremendous environmental benefits in the conversion of crude glycerol via the biochemical route, the product and residue become eco-friendly. However, chemical conversions are faster processes, and economically viable if environmental aspects are partially ignored.
Collapse
Affiliation(s)
- Jaspreet Kaur
- Department of Chemical Engineering, Dr. B. R. Ambedkar National Institute of Technology, Jalandhar, Punjab, India
- Chemical Conversion Division, Sardar Swaran Singh National Institute of Bio-Energy (An Autonomous Institute of MNRE Government of India), Kapurthala, Punjab, India
| | - Anil Kumar Sarma
- Chemical Conversion Division, Sardar Swaran Singh National Institute of Bio-Energy (An Autonomous Institute of MNRE Government of India), Kapurthala, Punjab, India
| | - Mithilesh Kumar Jha
- Department of Chemical Engineering, Dr. B. R. Ambedkar National Institute of Technology, Jalandhar, Punjab, India
| | - Poonam Gera
- Department of Chemical Engineering, Dr. B. R. Ambedkar National Institute of Technology, Jalandhar, Punjab, India
| |
Collapse
|
18
|
Wang X, Policarpio L, Prajapati D, Li Z, Zhang H. Developing E. coli-E. coli co-cultures to overcome barriers of heterologous tryptamine biosynthesis. Metab Eng Commun 2020; 10:e00110. [PMID: 31853442 PMCID: PMC6911970 DOI: 10.1016/j.mec.2019.e00110] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 10/28/2019] [Accepted: 11/13/2019] [Indexed: 11/29/2022] Open
Abstract
Tryptamine is an alkaloid compound with demonstrated bioactivities and is also a precursor molecule to many important hormones and neurotransmitters. The high efficiency biosynthesis of tryptamine from inexpensive and renewable carbon substrates is of great research and application significance. In the present study, a tryptamine biosynthesis pathway was established in a metabolically engineered E. coli-E. coli co-culture. The upstream and downstream strains of the co-culture were dedicated to tryptophan provision and conversion to tryptamine, respectively. The constructed co-culture was cultivated using either glucose or glycerol as carbon source for de novo production of tryptamine. The manipulation of the co-culture strains' inoculation ratio was adapted to balance the biosynthetic strengths of the pathway modules for bioproduction optimization. Moreover, a biosensor-assisted cell selection strategy was adapted to improve the pathway intermediate tryptophan provision by the upstream strain, which further enhanced the tryptamine biosynthesis. The resulting biosensor-assisted modular co-culture produced 194 mg/L tryptamine with a yield of 0.02 g/g glucose using shake flask cultivation. The findings of this work demonstrate that the biosensor-assisted modular co-culture engineering offers a new perspective for conducting microbial biosynthesis.
Collapse
Affiliation(s)
| | | | | | | | - Haoran Zhang
- Department of Chemical and Biochemical Engineering, Rutgers, The State University of New Jersey, 98 Brett Rd, Piscataway, NJ, 08854, USA
| |
Collapse
|
19
|
Clostridium sp. as Bio-Catalyst for Fuels and Chemicals Production in a Biorefinery Context. Catalysts 2019. [DOI: 10.3390/catal9110962] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Clostridium sp. is a genus of anaerobic bacteria capable of metabolizing several substrates (monoglycerides, diglycerides, glycerol, carbon monoxide, cellulose, and more), into valuable products. Biofuels, such as ethanol and butanol, and several chemicals, such as acetone, 1,3-propanediol, and butyric acid, can be produced by these organisms through fermentation processes. Among the most well-known species, Clostridium carboxidivorans, C. ragsdalei, and C. ljungdahlii can be highlighted for their ability to use gaseous feedstocks (as syngas), obtained from the gasification or pyrolysis of waste material, to produce ethanol and butanol. C. beijerinckii is an important species for the production of isopropanol and butanol, with the advantage of using hydrolysate lignocellulosic material, which is produced in large amounts by first-generation ethanol industries. High yields of 1,3 propanediol by C. butyricum are reported with the use of another by-product from fuel industries, glycerol. In this context, several Clostridium wild species are good candidates to be used as biocatalysts in biochemical or hybrid processes. In this review, literature data showing the technical viability of these processes are presented, evidencing the opportunity to investigate them in a biorefinery context.
Collapse
|
20
|
Photocatalytic Hydrogen Production from Glycerol Aqueous Solution Using Cu-Doped ZnO under Visible Light Irradiation. APPLIED SCIENCES-BASEL 2019. [DOI: 10.3390/app9132741] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Cu-doped ZnO photocatalysts at different Cu loadings were prepared by a precipitation method. The presence of Cu in the ZnO crystal lattice led to significant enhancement in photocatalytic activity for H2 production from an aqueous glycerol solution under visible light irradiation. The best Cu loading was found to be 1.08 mol %, which allowed achieving hydrogen production equal to 2600 μmol/L with an aqueous glycerol solution at 5 wt % initial concentration, the photocatalyst dosage equal to 1.5 g/L, and at the spontaneous pH of the solution (pH = 6). The hydrogen production rate was increased to about 4770 μmol/L by increasing the initial glycerol concentration up to 10 wt %. The obtained results evidenced that the optimized Cu-doped ZnO could be considered a suitable visible-light-active photocatalyst to be used in photocatalytic hydrogen production without the presence of noble metals in sample formulation.
Collapse
|
21
|
Zhou Y, Li Z, Wang X, Zhang H. Establishing microbial co-cultures for 3-hydroxybenzoic acid biosynthesis on glycerol. Eng Life Sci 2019; 19:389-395. [PMID: 32625017 DOI: 10.1002/elsc.201800195] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 02/25/2019] [Accepted: 03/22/2019] [Indexed: 12/25/2022] Open
Abstract
Converting renewable feedstocks to aromatic compounds using engineered microbes offers a robust approach for sustainable, environment-friendly, and cost-effective production of these value-added products without the reliance on petroleum. In this study, rationally designed E. coli-E. coli co-culture systems were established for converting glycerol to 3-hydroxybenzoic acid (3HB). Specifically, the 3HB pathway was modularized and accommodated by two metabolically engineered E. coli strains. The co-culture biosynthesis was optimized by using different cultivation temperatures, varying the inoculum ratio between the co-culture strains, recruitment of a key pathway intermediate transporter, strengthening the critical pathway enzyme expression, and adjusting the timing for inducing pathway gene expression. Compared with the E. coli mono-culture, the optimized co-culture showed 5.3-fold improvement for 3HB biosynthesis. This study demonstrated the applicability of modular co-culture engineering for addressing the challenges of aromatic compound biosynthesis.
Collapse
Affiliation(s)
- Yiyao Zhou
- Department of Chemical and Biochemical Engineering Rutgers the State University of New Jersey Piscataway NJ USA
| | - Zhenghong Li
- Department of Chemical and Biochemical Engineering Rutgers the State University of New Jersey Piscataway NJ USA
| | - Xiaonan Wang
- Department of Chemical and Biochemical Engineering Rutgers the State University of New Jersey Piscataway NJ USA
| | - Haoran Zhang
- Department of Chemical and Biochemical Engineering Rutgers the State University of New Jersey Piscataway NJ USA
| |
Collapse
|
22
|
Dulf EH, Vodnar DC, Dulf FV. Modeling tool using neural networks for L(+)-lactic acid production by pellet-form Rhizopus oryzae NRRL 395 on biodiesel crude glycerol. Chem Cent J 2018; 12:124. [PMID: 30499033 PMCID: PMC6768043 DOI: 10.1186/s13065-018-0491-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Accepted: 11/13/2018] [Indexed: 12/12/2022] Open
Abstract
Most chemical reactions produce unwanted by-products. In an effort to reduce environmental problems these by-products could be used to produce valuable organic chemicals. In biodiesel industry a huge amount of glycerol is generated, approximately 10% of the final product. The research group from University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca developed opportunities to produce l(+) lactic acid from the glycerol. The team is using the Rhizopus oryzae NRRL 395 bacteria for the fermentation of the glycerol. The purpose of the research is to improve the production of l(+) lactic acid in order to optimize the process. A predictive model obtained by neural networks is useful in this case. The main objective of the present work is to present the developed user-friendly application useful in modeling this fermentation process, in order to be used by people who are inexperienced with neural networks or specific software. Besides the interface for training of a new neural network in order to develop the model in some characteristic condition, the software also provides an interface for visualization of the results, useful in interpretation and as a tool for prediction.
Collapse
Affiliation(s)
- Eva-H Dulf
- Automation Department, Technical University of Cluj-Napoca, Cluj-Napoca, Romania.
| | - Dan Cristian Vodnar
- Food Science and Technology Department, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Cluj-Napoca, Romania
| | - Francisc-V Dulf
- Department of Environmental and Plant Protection, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Cluj-Napoca, Romania.
| |
Collapse
|
23
|
The Effect of pH and Temperature on Arachidonic Acid Production by Glycerol-Grown Mortierella alpina NRRL-A-10995. FERMENTATION-BASEL 2018. [DOI: 10.3390/fermentation4010017] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|