1
|
Nugent WH, Carr DA, Friedman J, Song BK. Novel transdermal curcumin therapeutic preserves endothelial barrier function in a high-dose LPS rat model. ARTIFICIAL CELLS, NANOMEDICINE, AND BIOTECHNOLOGY 2023; 51:33-40. [PMID: 36656591 DOI: 10.1080/21691401.2022.2164584] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Sepsis is a devastating complication of infection and injury that, through widespread endothelial dysfunction, can cause perfusion deficits and multi-organ failure. To address the recognised need for therapeutics targetting the endothelial barrier, a topical formulation (CUR; VASCEPTOR™; Vascarta Inc, Summit, NJ) was developed to transdermally deliver bio-active concentrations of curcumin-an anti-inflammatory and nitric oxide promoter. Male, Sprague Dawley rats were treated daily with lipopolysaccharide (LPS, 10 mg/kg, IP) to induce endotoxemia, and topical applications of Vehicle Control (LPS + VC; N = 7) or Curcumin (LPS + CUR; N = 7). A third group received neither LPS nor treatment (No-LPS; N = 8). After 72 h, animals were surgically prepared for measurements of physiology and endothelial dysfunction in the exteriorised spinotrapezius muscle through the extravasation of 67 kDa TRITC-BSA (albumin) and 500 kDa FITC-dextran (dextran). At 72 h, LPS + VC saw weight loss, and increases to pulse pressure, lactate, pCO2, CXCL5 (vs No-LPS) and IL-6 (vs 0 h; p < 0.05). LPS + CUR was similar to No-LPS, but with hypotension. Phenylephrine response was increased in LPS + CUR. Regarding endothelial function, LPS + CUR albumin and dextran extravasation were significantly reduced versus LPS + VC suggesting that Curcumin mitigated endotoxemic endothelial dysfunction. The speculated mechanisms are nitric oxide modulation of the endothelium and/or an indirect anti-inflammatory effect.
Collapse
Affiliation(s)
| | | | - Joel Friedman
- Department of Physiology and Biophysics, Albert Einstein College of Medicine, Bronx, NY, USA.,Vascarta, Inc, Summit, NJ, USA
| | - Bjorn K Song
- Song Biotechnologies LLC, Cockeysville, MD, USA.,Vascarta, Inc, Summit, NJ, USA
| |
Collapse
|
2
|
Qiao J, Cui L. Multi-Omics Techniques Make it Possible to Analyze Sepsis-Associated Acute Kidney Injury Comprehensively. Front Immunol 2022; 13:905601. [PMID: 35874763 PMCID: PMC9300837 DOI: 10.3389/fimmu.2022.905601] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Accepted: 06/10/2022] [Indexed: 12/29/2022] Open
Abstract
Sepsis-associated acute kidney injury (SA-AKI) is a common complication in critically ill patients with high morbidity and mortality. SA-AKI varies considerably in disease presentation, progression, and response to treatment, highlighting the heterogeneity of the underlying biological mechanisms. In this review, we briefly describe the pathophysiology of SA-AKI, biomarkers, reference databases, and available omics techniques. Advances in omics technology allow for comprehensive analysis of SA-AKI, and the integration of multiple omics provides an opportunity to understand the information flow behind the disease. These approaches will drive a shift in current paradigms for the prevention, diagnosis, and staging and provide the renal community with significant advances in precision medicine in SA-AKI analysis.
Collapse
Affiliation(s)
- Jiao Qiao
- Department of Laboratory Medicine, Peking University Third Hospital, Beijing, China
- Core Unit of National Clinical Research Center for Laboratory Medicine, Peking University Third Hospital, Beijing, China
- Institute of Medical Technology, Peking University Health Science Center, Beijing, China
| | - Liyan Cui
- Department of Laboratory Medicine, Peking University Third Hospital, Beijing, China
- Core Unit of National Clinical Research Center for Laboratory Medicine, Peking University Third Hospital, Beijing, China
- *Correspondence: Liyan Cui,
| |
Collapse
|
3
|
Ebihara I, Hirayama K, Nagai M, Shiina E, Koda M, Gunji M, Okubo Y, Sato C, Usui J, Yamagata K, Kobayashi M. Angiopoietin Balance in Septic Shock Patients With Acute Kidney Injury: Effects of Direct Hemoperfusion With Polymyxin B-Immobilized Fiber. Ther Apher Dial 2017; 20:368-75. [PMID: 27523077 DOI: 10.1111/1744-9987.12468] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Indexed: 02/06/2023]
Abstract
Acute kidney injury (AKI) occurs in approximately 50% of patients in septic shock, and mortality from septic AKI is extremely high. Angiopoietin levels may play a role in the pathogenesis of vascular permeability. It was reported that direct hemoperfusion with a polymyxin B-immobilized fiber column (DHP-PMX) therapy ameliorates the angiopoietin balance in patients with sepsis. Although dysregulated angiopoietin balance in sepsis has been demonstrated, mechanisms underlying the development of AKI in sepsis have not been identified. We investigated angiopoietin levels in septic patients with/without AKI treated with DHP-PMX therapy. We used an enzyme-linked immunoassay to measure serum angiopoietin-1 and -2 levels in 38 septic shock patients treated with DHP-PMX. The renal function of all patients was normal for less than 3 months. Twenty-seven of the patients were diagnosed with AKI. The angiopoietin-1 level of the AKI group was significantly lower than that of the non-AKI group at the initiation of DHP-PMX therapy, but there was no significant difference between the two groups at the end of DHP-PMX therapy. In the AKI group with recovery, the mean angiopoietin-1 level at the end of DHP-PMX therapy was significantly elevated compared to the level before DHP-PMX therapy, and the mean angiopoietin-2 level at the end of DHP-PMX therapy was significantly decreased compared to the level before DHP-PMX therapy. These results suggest that angiopoietins may play a role in the pathogenesis of AKI and that DHP-PMX therapy may ameliorate the angiopoietin balance in AKI patients with sepsis.
Collapse
Affiliation(s)
- Itaru Ebihara
- Department of Nephrology, Mito Saiseikai General Hospital, Mito, Ibaraki, Japan
| | - Kouichi Hirayama
- Department of Nephrology, Tokyo Medical University Ibaraki Medical Center, Ami, Ibaraki, Japan
| | - Miho Nagai
- Department of Nephrology, Tokyo Medical University, Tokyo, Japan
| | - Eri Shiina
- Department of Nephrology, Mito Saiseikai General Hospital, Mito, Ibaraki, Japan
| | - Megumi Koda
- Department of Nephrology, Mito Saiseikai General Hospital, Mito, Ibaraki, Japan
| | - Masanobu Gunji
- Department of Nephrology, Mito Saiseikai General Hospital, Mito, Ibaraki, Japan
| | - Yuki Okubo
- Department of Nephrology, Mito Saiseikai General Hospital, Mito, Ibaraki, Japan
| | - Chihiro Sato
- Department of Nephrology, Mito Saiseikai General Hospital, Mito, Ibaraki, Japan
| | - Joichi Usui
- Department of Nephrology, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Kunihiro Yamagata
- Department of Nephrology, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Masaki Kobayashi
- Department of Nephrology, Tokyo Medical University Ibaraki Medical Center, Ami, Ibaraki, Japan
| |
Collapse
|
4
|
Barzegar E, Nouri M, Mousavi S, Ahmadi A, Mojtahedzadeh M. Vasopressin in Septic Shock; Assessment of Sepsis Biomarkers: A Randomized, Controlled Trial. Indian J Crit Care Med 2017; 21:578-584. [PMID: 28970657 PMCID: PMC5613609 DOI: 10.4103/ijccm.ijccm_258_17] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Background and Aims: Vasopressin (VP) in sepsis apart from vasoconstrictive effect may have some immunomodulatory effects. The aim of this study was to evaluate the effect of VP on different aspect of sepsis by measuring of sepsis biomarkers. Materials and Methods: In this trial, a total number of 42 septic shock patients were included. The first group received norepinephrine (NE) infusion to reach the target mean arterial pressure (MAP) of ≥ 65 mm Hg and the second group received arginine vasopressin (AVP) infusion in addition to NE. Serum lactate, C-reactive protein (CRP), interleukin-6 (IL-6), IL-10, pentraxin 3 (PTX3), angiopoietin 1 and 2 (Ang 1 and 2) levels were assessed. Results: Level of IL-6 and IL-10 decreased, but there was no significant difference between the two groups after 48 h. CRP and PTX3 levels were not also significantly different between groups. Although Angs were not statistically different, there was a trend toward higher Ang-1 in and lower Ang 2 in AVP group after 24 and 48 h. In addition, lactate level did not differ between NE and AVP groups. There was no interaction between VP and hydrocortisone use on IL-6, IL-10, and PTX3, but a significant statistical interaction on Ang 1 and Ang 2 were observed. Conclusions: Although analysis of sepsis biomarkers showed no significant difference between two groups, no immunomodulatory effect for VP alone, subgroup analysis of hydrocortisone used in this study showed that the combination of glucocorticoids and AVP had a significant effect on Angs level which eventually causes less endothelial permeability and higher MAP in this group of patients.
Collapse
Affiliation(s)
- Elchin Barzegar
- Department of Clinical Pharmacy (Pharmacotherapy), School of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Masoumeh Nouri
- Department of Clinical Pharmacy (Pharmacotherapy), School of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Sarah Mousavi
- Department of Clinical Pharmacy and Pharmacy Practice, School of Pharmacy, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Arezoo Ahmadi
- Department of Anaesthesiology and Critical Care, Sina Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Mojtaba Mojtahedzadeh
- Department of Clinical Pharmacy (Pharmacotherapy), School of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
5
|
Zeng H, He X, Tuo QH, Liao DF, Zhang GQ, Chen JX. LPS causes pericyte loss and microvascular dysfunction via disruption of Sirt3/angiopoietins/Tie-2 and HIF-2α/Notch3 pathways. Sci Rep 2016; 6:20931. [PMID: 26868537 PMCID: PMC4751495 DOI: 10.1038/srep20931] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Accepted: 01/13/2016] [Indexed: 12/17/2022] Open
Abstract
Recent studies reveal a crucial role of pericyte loss in sepsis-associated microvascular dysfunction. Sirtuin 3 (SIRT3) mediates histone protein post-translational modification related to aging and ischemic disease. This study investigated the involvement of SIRT3 in LPS-induced pericyte loss and microvascular dysfunction. Mice were exposed to LPS, expression of Sirt3, HIF-2α, Notch3 and angiopoietins/Tie-2, pericyte/endothelial (EC) coverage and vascular permeability were assessed. Mice treated with LPS significantly reduced the expression of SIRT3, HIF-2α and Notch3 in the lung. Furthermore, exposure to LPS increased Ang-2 while inhibited Ang-1/Tie-2 expression with a reduced pericyte/EC coverage. Intriguingly, knockout of Sirt3 upregulated Ang-2, but downregulated Tie-2 and HIF-2α/Notch3 expression which resulted in a dramatic reduction of pericyte/EC coverage and exacerbation of LPS-induced vascular leakage. Conversely, overexpression of Sirt3 reduced Ang-2 expression and increased Ang-1/Tie-2 and HIF-2α/Notch3 expression in the LPS treated mice. Overexpression of Sirt3 further prevented LPS-induced pericyte loss and vascular leakage. This was accompanied by a significant reduction of the mortality rate. Specific knockout of prolyl hydroxylase-2 (PHD2) increased HIF-2α/Notch3 expression, improved pericyte/EC coverage and reduced the mortality rate in the LPS-treated mice. Our study demonstrates the importance of SIRT3 in preserving vascular integrity by targeting pericytes in the setting of LPS-induced sepsis.
Collapse
Affiliation(s)
- Heng Zeng
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, School of Medicine, Jackson, MS, 39216, USA
| | - Xiaochen He
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, School of Medicine, Jackson, MS, 39216, USA
| | - Qin-Hui Tuo
- School of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, China
| | - Duan-Fang Liao
- School of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, China
| | - Guo-Qiang Zhang
- Emergency Department of China-Japan Friendship Hospital, Beijing, 100029, China
| | - Jian-Xiong Chen
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, School of Medicine, Jackson, MS, 39216, USA
| |
Collapse
|
6
|
Angiopoietin-1 regulates microvascular reactivity and protects the microcirculation during acute endothelial dysfunction: role of eNOS and VE-cadherin. Pharmacol Res 2014; 80:43-51. [PMID: 24407281 DOI: 10.1016/j.phrs.2013.12.008] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2013] [Revised: 12/23/2013] [Accepted: 12/24/2013] [Indexed: 01/05/2023]
Abstract
The growth factor angiopoietin-1 (Ang-1) plays an essential role in angiogenesis and vascular homeostasis. Nevertheless, the role of Ang-1 in regulating vascular tone and blood flow is largely unexplored. Endothelial nitric oxide synthase (eNOS) and the junctional protein VE-cadherin are part of the complex signalling cascade initiated by Ang-1 in endothelial cells. In this study, we aimed to investigate the mechanisms underlying acute effects of Ang-1 on microvascular reactivity, permeability and blood flow, and hypothesise that eNOS and VE-cadherin underpin Ang-1 mediated vascular effects that are independent of angiogenesis and proliferation. Myography of isolated microarterioles from male C3H/HeN mice (7-10 weeks) was employed to measure vascular reactivity in vitro. Microcirculatory function in vivo was evaluated by intravital microscopy and Doppler fluximetry in dorsal window chambers. Ang-1 and its stable variant MAT.Ang-1 induced a concentration-dependent vasodilation of arterioles in vitro, which was blocked with nitric oxide (NO) synthesis inhibitor l-NAME. In vivo, MAT.Ang-1 restored to control levels l-NAME induced peripheral vasoconstriction, decreased blood flow and microvascular hyperpermeability. Tissue protein expression of VE-cadherin was reduced by NOS inhibition and restored to control levels by MAT.Ang-1, whilst VE-cadherin phosphorylation was increased by l-NAME and subsequently reduced by MAT.Ang-1 administration. Moreover, MAT.Ang-1 alone did not modulate systemic levels of angiogenetic factors. Our novel findings report that Ang-1 induces arteriolar vasodilation via release of NO, suggesting that Ang-1 is an important regulator of microvascular tone. As MAT.Ang-1 ameliorates detrimental effects on the microcirculation induced by inhibition of NO synthesis and stabilizes the endothelial barrier function through VE-cadherin, we propose that this Ang-1 variant may serve as a novel therapeutic agent to protect the microcirculation against endothelial dysfunction.
Collapse
|
7
|
David S, Kümpers P, van Slyke P, Parikh SM. Mending leaky blood vessels: the angiopoietin-Tie2 pathway in sepsis. J Pharmacol Exp Ther 2013; 345:2-6. [PMID: 23378191 DOI: 10.1124/jpet.112.201061] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Sepsis is a systemic inflammatory response to infection. A common end-feature, these patients regularly suffer from is the so-called multiple organ dysfunction syndrome, an often fatal consequence of organ hypoperfusion, coagulopathy, immune dysregulation,and mitochondrial dysfunction. Microvascular dysfunction critically contributes to the morbidity and mortality of this disease. The angiopoietin (Angpt)/Tie2 system consists of the transmembrane endothelial tyrosine kinase Tie2 and its circulating ligands (Angpt-1,-2, and -3/4). The balance between the canonical agonist Angpt-1 and its competitive inhibitor, Angpt-2, regulates basal endothelial barrier function and the leakage and vascular inflammation that develop in response to pathogens and cytokines. Here we summarize recent work in mice and men to highlight the therapeutic potential in this pathway to prevent or even reverse microvascular dysfunction in this deadly disease.
Collapse
Affiliation(s)
- Sascha David
- Department of Nephrology & Hypertension, Medical School Hannover, Hannover, Germany.
| | | | | | | |
Collapse
|
8
|
Ehrentraut SF, Dörr A, Ehrentraut H, Lohner R, Lee SH, Hoeft A, Baumgarten G, Knuefermann P, Boehm O, Meyer R. Vascular dysfunction following polymicrobial sepsis: role of pattern recognition receptors. PLoS One 2012; 7:e44531. [PMID: 22970242 PMCID: PMC3436884 DOI: 10.1371/journal.pone.0044531] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2012] [Accepted: 08/03/2012] [Indexed: 12/26/2022] Open
Abstract
AIMS Aim was to elucidate the specific role of pattern recognition receptors in vascular dysfunction during polymicrobial sepsis (colon ascendens stent peritonitis, CASP). METHODS AND RESULTS Vascular contractility of C57BL/6 (wildtype) mice and mice deficient for Toll-like receptor 2/4/9 (TLR2-D, TLR4-D, TLR9-D) or CD14 (CD14-D) was measured 18 h following CASP. mRNA expression of pro- (Tumor Necrosis Factor-α (TNFα), Interleukin (IL)-1β, IL-6) and anti-inflammatory cytokines (IL-10) and of vascular inducible NO-Synthase (iNOS) was determined using RT-qPCR. Wildtype mice exhibited a significant loss of vascular contractility after CASP. This was aggravated in TLR2-D mice, blunted in TLR4-D animals and abolished in TLR9-D and CD14-D animals. TNF-α expression was significantly up-regulated after CASP in wildtype and TLR2-D animals, but not in mice deficient for TLR4, -9 or CD14. iNOS was significantly up-regulated in TLR2-D animals only. TLR2-D animals showed significantly higher levels of TLR4, -9 and CD14. Application of H154-ODN, a TLR9 antagonist, attenuated CASP-induced cytokine release and vascular dysfunction in wildtype mice. CONCLUSIONS Within our model, CD14 and TLR9 play a decisive role for the development of vascular dysfunction and thus can be effectively antagonized using H154-ODN. TLR2-D animals are more prone to polymicrobial sepsis, presumably due to up-regulation of TLR4, 9 and CD14.
Collapse
Affiliation(s)
- Stefan Felix Ehrentraut
- Department of Anaesthesiology and Intensive Care Medicine, University Hospital Bonn, Bonn, Germany
| | - Anne Dörr
- Institute of Physiology II, University of Bonn, Bonn, Germany
| | - Heidi Ehrentraut
- Department of Anaesthesiology and Intensive Care Medicine, University Hospital Bonn, Bonn, Germany
| | - Ralph Lohner
- Institute of Physiology II, University of Bonn, Bonn, Germany
| | - Sun-Hee Lee
- Institute of Physiology II, University of Bonn, Bonn, Germany
| | - Andreas Hoeft
- Department of Anaesthesiology and Intensive Care Medicine, University Hospital Bonn, Bonn, Germany
| | - Georg Baumgarten
- Department of Anaesthesiology and Intensive Care Medicine, University Hospital Bonn, Bonn, Germany
| | - Pascal Knuefermann
- Department of Anaesthesiology and Intensive Care Medicine, University Hospital Bonn, Bonn, Germany
| | - Olaf Boehm
- Department of Anaesthesiology and Intensive Care Medicine, University Hospital Bonn, Bonn, Germany
| | - Rainer Meyer
- Institute of Physiology II, University of Bonn, Bonn, Germany
- * E-mail:
| |
Collapse
|
9
|
Acute administration of recombinant Angiopoietin-1 ameliorates multiple-organ dysfunction syndrome and improves survival in murine sepsis. Cytokine 2011; 55:251-9. [PMID: 21531574 DOI: 10.1016/j.cyto.2011.04.005] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2011] [Revised: 03/22/2011] [Accepted: 04/05/2011] [Indexed: 11/22/2022]
Abstract
INTRODUCTION Endothelial activation leading to vascular barrier breakdown plays an essential role in the pathophysiology of multiple-organ dysfunction syndrome (MODS) in sepsis. Increasing evidence suggests that the function of the vessel-protective factor Angiopoietin-1 (Ang-1), a ligand of the endothelial-specific Tie2 receptor, is inhibited by its antagonist Angiopoietin-2 (Ang-2) during sepsis. In order to reverse the effects of the sepsis-induced suppression of Ang-1 and elevation of Ang-2 we aimed to investigate whether an intravenous injection of recombinant human (rh) Ang-1 protects against MODS in murine sepsis. METHODS Polymicrobiological abdominal sepsis was induced by cecal ligation and puncture (CLP). Mice were treated with either 1 μg of intravenous rhAng-1 or control buffer immediately after CLP induction and every 8h thereafter. Sham-operated animals served as time-matched controls. RESULTS Compared to buffer-treated controls, rhAng-1 treated septic mice showed significant improvements in several hematologic and biochemical indicators of MODS. Moreover, rhAng-1 stabilized endothelial barrier function, as evidenced by inhibition of protein leakage from lung capillaries into the alveolar compartment. Histological analysis revealed that rhAng-1 treatment attenuated leukocyte infiltration in lungs and kidneys of septic mice, probably due to reduced endothelial adhesion molecule expression in rhAng-1 treated mice. Finally, the protective effects of rhAng-1 treatment were reflected by an improved survival time in a lethal CLP model. CONCLUSIONS In a clinically relevant murine sepsis model, intravenous rhAng-1 treatment alone is sufficient to significantly improve a variety of sepsis-associated organ dysfunctions and survival time, most likely by preserving endothelial barrier function. Further studies are needed to pave the road for clinical application of this therapy concept.
Collapse
|
10
|
Mansart A, Ruff LJ, Ariaans MP, Ross JJ, Reilly CS, Brown NJ, Kaufman S, Brookes ZLS. Constriction of rat extra-splenic veins to lipopolysaccharide involves endothelin-1. Naunyn Schmiedebergs Arch Pharmacol 2010; 381:555-62. [PMID: 20397012 DOI: 10.1007/s00210-010-0514-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2009] [Accepted: 03/11/2010] [Indexed: 11/30/2022]
Abstract
The spleen has an important role in blood volume regulation and increased resistance of post-capillary hilar veins (in mesentery adjoining the spleen) can regulate this. This study investigated whether venular constriction to lipopolysaccharide (LPS) involved endothelin-1 (ET-1). Pressure myography was used to study isolated extra-splenic (hilar) vessels from male Wistar rats (n = 111). Arteries and veins were treated with LPS (50 microg ml(-1)) for 4 h. Extra-splenic veins constricted to LPS (p < 0.05), but there was no effect on arteries. Denudation did not abolish venular constriction to LPS, indicating an endothelial independent mechanism. However, the dual ET-1 receptor antagonist bosentan (10(-5) M) and specific ET(A) and ET(B) antagonists ABT-627 (atrasentan, 6.3 x 10(-6) M) and A-192621(1.45 x 10(-6) M) completely abolished constriction of LPS-treated veins. ET-1 alone also constricted the extra-splenic arteries and veins (p < 0.05), with a greater response observed in veins (p < 0.05). ELISA also confirmed that serum and spleen levels of ET-1 increased in response to LPS (p < 0.05). That LPS-induced constriction of extra-splenic veins is mediated by ET-1. Greater constriction of post- versus pre-capillary extra-splenic vessels to LPS would result in increased intra-splenic fluid extravasation and hypovolaemia in vivo.
Collapse
Affiliation(s)
- Arnaud Mansart
- Academic Unit of Anaesthesia, University of Sheffield, Royal Hallamshire Hospital, Sheffield, S10 2RX, UK
| | | | | | | | | | | | | | | |
Collapse
|
11
|
COMP-Angiopoietin-1 decreases lipopolysaccharide-induced acute kidney injury. Kidney Int 2009; 76:1180-91. [DOI: 10.1038/ki.2009.387] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
12
|
Salmon AH, Neal CR, Sage LM, Glass CA, Harper SJ, Bates DO. Angiopoietin-1 alters microvascular permeability coefficients in vivo via modification of endothelial glycocalyx. Cardiovasc Res 2009; 83:24-33. [PMID: 19297368 PMCID: PMC2695703 DOI: 10.1093/cvr/cvp093] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2008] [Revised: 02/23/2009] [Accepted: 03/11/2009] [Indexed: 11/12/2022] Open
Abstract
AIMS In this study, we wished to determine whether angiopoietin-1 (Ang1) modified the permeability coefficients of non-inflamed, intact continuous, and fenestrated microvessels in vivo and to elucidate the underlying cellular mechanisms. METHODS AND RESULTS Permeability coefficients were measured using the Landis-Michel technique (in frog and rat mesenteric microvessels) and an oncopressive permeability technique (in glomeruli). Ang1 decreased water permeability (L(P): hydraulic conductivity) in continuous and fenestrated microvessels and increased the retention of albumin (sigma: reflection coefficient) in continuous microvessels. Endothelial glycocalyx is common to these anatomically distinct microvascular beds, and contributes to the magnitude of both L(P) and sigma. Ang1 treatment increased the depth of endothelial glycocalyx in intact microvessels and increased the content of glycosaminoglycan of cultured microvascular endothelial cell supernatant. Ang1 also prevented the pronase-induced increase in L(P) (attributable to selective removal of endothelial glycocalyx by pronase) by restoration of glycocalyx at the endothelial cell surface. The reduction in permeability was inhibited by a cell transport inhibitor, Brefeldin. CONCLUSION Ang1 modifies basal microvessel permeability coefficients, in keeping with previous reports demonstrating reduced solute flux in inflamed vessels. Anatomical, biochemical, and physiological evidence indicates that modification of endothelial glycocalyx is a novel mechanism of action of Ang1 that contributes to these effects.
Collapse
Affiliation(s)
- Andrew H.J. Salmon
- Department of Physiology and Pharmacology, Preclinical Veterinary School, Microvascular Research Laboratories, Bristol Heart Institute, University of Bristol, Southwell Street, Bristol BS2 8EJ, UK
- Academic Renal Unit, Department of Clinical Science @ North Bristol, University of Bristol, Bristol, UK
| | - Christopher R. Neal
- Department of Physiology and Pharmacology, Preclinical Veterinary School, Microvascular Research Laboratories, Bristol Heart Institute, University of Bristol, Southwell Street, Bristol BS2 8EJ, UK
| | - Leslie M. Sage
- Department of Physiology and Pharmacology, Preclinical Veterinary School, Microvascular Research Laboratories, Bristol Heart Institute, University of Bristol, Southwell Street, Bristol BS2 8EJ, UK
| | - Catherine A. Glass
- Department of Physiology and Pharmacology, Preclinical Veterinary School, Microvascular Research Laboratories, Bristol Heart Institute, University of Bristol, Southwell Street, Bristol BS2 8EJ, UK
| | - Steven J. Harper
- Department of Physiology and Pharmacology, Preclinical Veterinary School, Microvascular Research Laboratories, Bristol Heart Institute, University of Bristol, Southwell Street, Bristol BS2 8EJ, UK
| | - David O. Bates
- Department of Physiology and Pharmacology, Preclinical Veterinary School, Microvascular Research Laboratories, Bristol Heart Institute, University of Bristol, Southwell Street, Bristol BS2 8EJ, UK
| |
Collapse
|
13
|
Kümpers P, van Meurs M, David S, Molema G, Bijzet J, Lukasz A, Biertz F, Haller H, Zijlstra JG. Time course of angiopoietin-2 release during experimental human endotoxemia and sepsis. CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2009; 13:R64. [PMID: 19416526 PMCID: PMC2717419 DOI: 10.1186/cc7866] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/12/2009] [Revised: 04/21/2009] [Accepted: 05/05/2009] [Indexed: 02/06/2023]
Abstract
Introduction Endothelial activation leading to vascular barrier breakdown denotes a devastating event in sepsis. Angiopoietin (Ang)-2, a circulating antagonistic ligand of the endothelial specific Tie2 receptor, is rapidly released from Weibel-Palade and has been identified as a non-redundant gatekeeper of endothelial activation. We aimed to study: the time course of Ang-2 release during human experimental endotoxemia; the association of Ang-2 with soluble adhesion molecules and inflammatory cytokines; and the early time course of Ang-2 release during sepsis in critically ill patients. Methods In 22 healthy volunteers during a 24-hour period after a single intravenous injection of lipopolysaccharide (LPS; 4 ng/kg) the following measurement were taken by immuno luminometric assay (ILMA), ELISA, and bead-based multiplex technology: circulating Ang-1, Ang-2, soluble Tie2 receptor, the inflammatory molecules TNF-alpha, IL-6, IL-8 and C-reactive protein, and the soluble endothelial adhesion molecules inter-cellular adhesion molecule-1 (ICAM-1), E-selectin, and P-selectin. A single oral dose of placebo or the p38 mitogen activated protein (MAP) kinase inhibitor drug, RWJ-67657, was administered 30 minutes before the endotoxin infusion. In addition, the course of circulating Ang-2 was analyzed in 21 septic patients at intensive care unit (ICU) admission and after 24 and 72 hours, respectively. Results During endotoxemia, circulating Ang-2 levels were significantly elevated, reaching peak levels 4.5 hours after LPS infusion. Ang-2 exhibited a kinetic profile similar to early pro-inflammatory cytokines TNF-alpha, IL-6, and IL-8. Ang-2 levels peaked prior to soluble endothelial-specific adhesion molecules. Finally, Ang-2 correlated with TNF-alpha levels (r = 0.61, P = 0.003), soluble E-selectin levels (r = 0.64, P < 0.002), and the heart rate/mean arterial pressure index (r = 0.75, P < 0.0001). In septic patients, Ang-2 increased in non-survivors only, and was significantly higher compared with survivors at baseline, 24 hours, and 72 hours. Conclusions LPS is a triggering factor for Ang-2 release in men. Circulating Ang-2 appears in the systemic circulation during experimental human endotoxemia in a distinctive temporal sequence and correlates with TNF-alpha and E-selectin levels. In addition, not only higher baseline Ang-2 concentrations, but also a persistent increase in Ang-2 during the early course identifies septic patients with unfavorable outcome.
Collapse
Affiliation(s)
- Philipp Kümpers
- Department of Nephrology & Hypertension, Hannover Medical School, Carl-Neuberg-Strasse 1, 30625 Hannover, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
van der Heijden M, van Nieuw Amerongen GP, Chedamni S, van Hinsbergh VWM, Johan Groeneveld AB. The angiopoietin-Tie2 system as a therapeutic target in sepsis and acute lung injury. Expert Opin Ther Targets 2009; 13:39-53. [PMID: 19063705 DOI: 10.1517/14728220802626256] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
BACKGROUND Sepsis and acute lung injury (ALI)/acute respiratory distress syndrome (ARDS) are life-threatening syndromes characterised by inflammation and increased vascular permeability. Amongst other factors, the angiopoietin-tyrosine kinase with immunoglobulin-like and EGF-like domains 2 (Tie2) system is involved. OBJECTIVE To explore whether the angiopoietin-Tie2 system provides suitable targets for the treatment of sepsis and ALI/ARDS. METHODS Original experimental and patient studies on angiopoietins and sepsis/endotoxemia, inflammation, lung injury, hyperpermeability, apoptosis, organ functions and vital outcomes were reviewed. RESULTS/CONCLUSION The angiopoietin-Tie2 system controls the responsiveness of the endothelium to inflammatory, hyperpermeability, apoptosis and vasoreactive stimuli. Angiopoietin-2 provokes inflammation and vascular hyperpermeability, while angiopoietin-1 has a protective effect. Targeted angiopoietin-2 inhibition with RNA aptamers or blocking antibodies is a potential anti-inflammatory and anti-vascular hyperpermeability strategy in the treatment of sepsis and ALI/ARDS.
Collapse
Affiliation(s)
- Melanie van der Heijden
- VU University Medical Center, Institute for Cardiovascular Research, Department of Intensive Care, van der Boechorststraat 7, 1081 BT Amsterdam, The Netherlands.
| | | | | | | | | |
Collapse
|
15
|
Mansart A, Ross JJ, Reilly CS, Brown NJ, Brookes ZLS. LPS abolishes extrasplenic vasoconstriction to atrial natriuretic peptide: the role of NO and endothelin 1. Shock 2008; 29:675-80. [PMID: 17885645 DOI: 10.1097/shk.0b013e31815811a3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Sepsis causes changes in vascular resistance and hypovolemia. Previous studies have demonstrated that the spleen regulates blood volume via atrial natiuretic peptide (ANP). We hypothesized that LPS alters extrasplenic responses to ANP via endothelial-dependent mechanisms and studied the role of NO and endothelin 1 (ET-1). Isolated extrasplenic arteries and veins (vessels in mesentery adjoining spleen) were obtained from male Wistar rats weighing 200 to 280 g (n = 102) and mounted on a pressure myograph to determine intraluminal diameter for 4 h. Isolated vessels constricted in response to the half-maximum response of ANP (veins, 30% +/- 1.7%; arteries, 34.5 +/- 1.7%; P < 0.05), and this was abolished by the NO donor S-nitroso-N-acetylpenicillamine (SNAP 75 microM). Arteries and veins incubated with LPS (50 microg mL(-1) for 4 h) were unresponsive to ANP, and constriction was not restored by the NOS inhibitor N omega-nitro-L-arginine methyl ester (L-NAME 100 microM). However, venular constriction returned in the presence of the ET-1 antagonist Bosentan, increasing from -1.5 +/- 1.2 (10 min) to -10 +/- 2.5% (4 h) with LPS + Bosentan (3 x 10(-6) M) compared with -2.3 +/- 1.2 and 0% with LPS alone. In conclusion, LPS abolished endothelial-dependent extrasplenic venular constriction to ANP partially due to increased ET-1, whereas NO seemed to modulate vascular responses to ANP.
Collapse
Affiliation(s)
- Arnaud Mansart
- Academic Unit of Anaesthesia, University of Sheffield, Royal Hallamshire Hospital, Sheffield, United Kingdom
| | | | | | | | | |
Collapse
|
16
|
|