1
|
Dong XQ, Zhang YH, Luo J, Li MJ, Ma LQ, Qi YT, Miao YL. Keratin 1 modulates intestinal barrier and immune response via kallikrein kinin system in ulcerative colitis. World J Gastroenterol 2025; 31:102070. [PMID: 39958441 PMCID: PMC11752705 DOI: 10.3748/wjg.v31.i6.102070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 12/06/2024] [Accepted: 12/19/2024] [Indexed: 01/10/2025] Open
Abstract
BACKGROUND External factors in ulcerative colitis (UC) exacerbate colonic epithelial permeability and inflammatory responses. Keratin 1 (KRT1) is crucial in regulating these alterations, but its specific role in the progression of UC remains to be fully elucidated. AIM To explore the role and mechanisms of KRT1 in the regulation of colonic epithelial permeability and inflammation in UC. METHODS A KRT1 antibody concentration gradient test, along with a dextran sulfate sodium (DSS)-induced animal model, was implemented to investigate the role of KRT1 in modulating the activation of the kallikrein kinin system (KKS) and the cleavage of bradykinin (BK)/high molecular weight kininogen (HK) in UC. RESULTS Treatment with KRT1 antibody in Caco-2 cells suppressed cell proliferation, induced apoptosis, reduced HK expression, and increased BK expression. It further downregulated intestinal barrier proteins, including occludin, zonula occludens-1, and claudin, and negatively impacted the coagulation factor XII. These changes led to enhanced activation of BK and HK cleavage, thereby intensifying KKS-mediated inflammation in UC. In the DSS-induced mouse model, administration of KRT1 antibody mitigated colonic injury, increased colon length, alleviated weight loss, and suppressed inflammatory cytokines such as interleukin (IL)-1, IL-6, tumor necrosis factor-α. It also facilitated repair of the intestinal barrier, reducing DSS-induced injury. CONCLUSION KRT1 inhibits BK expression, suppresses inflammatory cytokines, and enhances markers of intestinal barrier function, thus ameliorating colonic damage and maintaining barrier integrity. KRT1 is a viable therapeutic target for UC.
Collapse
Affiliation(s)
- Xiang-Qian Dong
- Department of Gastroenterology, The First Affiliated Hospital of Kunming Medical University, Yunnan Province Clinical Research Center for Digestive Diseases, Kunming 650032, Yunnan Province, China
| | - Ying-Hui Zhang
- Department of Gastroenterology, Affiliated Hospital of Yunnan University, Kunming 650021, Yunnan Province, China
| | - Juan Luo
- Department of Gastroenterology, The First Affiliated Hospital of Kunming Medical University, Yunnan Province Clinical Research Center for Digestive Diseases, Kunming 650032, Yunnan Province, China
| | - Mao-Juan Li
- Department of Gastroenterology, The First Affiliated Hospital of Kunming Medical University, Yunnan Province Clinical Research Center for Digestive Diseases, Kunming 650032, Yunnan Province, China
| | - Lan-Qing Ma
- Department of Gastroenterology, The First Affiliated Hospital of Kunming Medical University, Yunnan Province Clinical Research Center for Digestive Diseases, Kunming 650032, Yunnan Province, China
| | - Ya-Ting Qi
- Department of Gastroenterology, The First Affiliated Hospital of Kunming Medical University, Yunnan Province Clinical Research Center for Digestive Diseases, Kunming 650032, Yunnan Province, China
| | - Ying-Lei Miao
- Department of Gastroenterology, The First Affiliated Hospital of Kunming Medical University, Yunnan Province Clinical Research Center for Digestive Diseases, Kunming 650032, Yunnan Province, China
| |
Collapse
|
2
|
The versatile role of the contact system in cardiovascular disease, inflammation, sepsis and cancer. Biomed Pharmacother 2021; 145:112429. [PMID: 34801854 DOI: 10.1016/j.biopha.2021.112429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 11/09/2021] [Accepted: 11/12/2021] [Indexed: 11/24/2022] Open
Abstract
The human contact system consists of plasma proteins, which - after contact to foreign surfaces - are bound to them, thereby activating the zymogens of the system into enzymes. This activation mechanism gave the system its name - contact system. It is considered as a procoagulant and proinflammatory response mechanism, as activation finally leads to the generation of fibrin and bradykinin. To date, no physiological processes have been described that are mediated by contact activation. However, contact system factors play a pathophysiological role in numerous diseases, such as cardiovascular diseases, arthritis, colitis, sepsis, and cancer. Contact system factors are therefore an interesting target for new therapeutic options in different clinical conditions.
Collapse
|
3
|
Bu-Zhong-Yi-Qi Granule Enhances Colonic Tight Junction Integrity via TLR4/NF- κB/MLCK Signaling Pathway in Ulcerative Colitis Rats. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:6657141. [PMID: 33763148 PMCID: PMC7963908 DOI: 10.1155/2021/6657141] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 01/12/2021] [Accepted: 02/19/2021] [Indexed: 02/06/2023]
Abstract
Background Bu-zhong-yi-qi granule (BZYQ), a sort of Chinese herbal medicine, has exhibited therapeutic effects on ulcerative colitis (UC). However, the mechanism of BZYQ has not been fully clarified. This study was aimed at investigating the effects of BZYQ on UC rats model and at exploring its potential mechanism. Methods The UC rats were established by enema of trinitrobenzene sulfonic acid (TNBS). The therapeutic effects of BZYQ treatment were evaluated by disease activity index (DAI), colon macroscopic damage index (CMDI) scores, and histological observation. The mRNA levels of tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), and interleukin-10 (IL-10) were measured by quantitative real time-polymerase chain reaction (qPCR). The expression of tight junction (TJ) proteins, occludin and claudin-1, in the colon was determined by Western blot and immunofluorescence. The expression of toll-like receptors 4 (TLR4), nuclear factor-kappa B (NF-κB), p-NF-κB, myosin light chain kinase (MLCK), MLC, and p-MLC levels in colon was determined by Western blot or qPCR. Results The results showed that BZYQ could attenuate DAI, CMDI, and histological inflammation. TJ proteins expression was decreased in UC rats, but treatment with BZYQ restored the expression of occludin and claudin-1. In addition, BZYQ administration ameliorated UC-associated increase in the production of TNF-α, IL-1β, and the expression of TLR4, NF-κB, p-NF-κB, MLCK, MLC, and p-MLC, while BZYQ administration increased the production of IL-10. Conclusions The therapeutic effect of BZYQ on UC is at least partially through regulation of the secretion of some inflammatory cytokines and improvement of TJ integrity via TLR4/NF-κB/MLCK pathway.
Collapse
|
4
|
The Proteolytic Fraction From Vasconcellea cundinamarcensis Latex Displays Anti-Inflammatory Effect in A Mouse Model of Acute TNBS-Induced Colitis. Sci Rep 2020; 10:3074. [PMID: 32080277 PMCID: PMC7033115 DOI: 10.1038/s41598-020-59895-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Accepted: 02/03/2020] [Indexed: 11/08/2022] Open
Abstract
The proteolytic fraction (P1G10) from Vasconcellea cundinamarcensis, displays gastric protective and healing activities in different skin lesions in mice and human. In an excisional model, this fraction accelerates resolution of lesions and modulates inflammatory mediators. Based on these data, we assessed its anti-inflammatory activity in murine colitis model, induced by 2,4,6-trinitrobenzenesulfonic acid (TNBS) adopted by its physiopathological similarity with human colitis. Twenty four hours after colitis induction followed by three days of treatment, P1G10 at 0.3 and 3.0 mg/Kg induced 30% increase in body weight (p < 0.0001) and ~80% reduction in colon macroscopic damage score (p < 0.05) compared to the untreated TNBS-induced colitis group. Histological analyses showed that 0.3 mg/Kg P1G10 reduced the inflammatory profile and tissue damage (47%, p < 0.05) when it was proteolytically active. Compared to TNBS group, 0.3 mg/Kg P1G10 reduced MPO activity (80%, p < 0.01), MCP-1 (47%, p < 0.05) and TNF-α (50%, no significant) and increased IL-10 (330%, p < 0.001) levels in the supernatant of colonic tissue homogenate. P1G10 treatment also reduced COX-2 expression (60%, p < 0.05) and metalloprotease-2 activity (39%, p < 0.05) while increased globet cell density (140%, p < 0.01), that contributes to mucus layer protection in colonic tissue. Taken together, these findings suggest that low doses of active P1G10 promotes lesion resolution, at least in part by its anti-inflammatory activity, in TNBS-colitis model.
Collapse
|
5
|
Huang Y, Yin J, Gao JP, Wang Y, Dong L, Zhao JH. Portulacaoleraceal extract alleviates trinitrobenzene sulfonic acid-induced colitis in rats. Biomed Pharmacother 2018; 105:434-439. [DOI: 10.1016/j.biopha.2018.05.133] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 05/28/2018] [Accepted: 05/28/2018] [Indexed: 02/07/2023] Open
|
6
|
Gupta RA, Motiwala MN, Mahajan UN, Sabre SG. Protective effect of Sesbania grandiflora on acetic acid induced ulcerative colitis in mice by inhibition of TNF-α and IL-6. JOURNAL OF ETHNOPHARMACOLOGY 2018; 219:222-232. [DOI: 10.1016/j.jep.2018.02.043] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/30/2023]
|
7
|
The Biased G-Protein-Coupled Receptor Agonism Bridges the Gap between the Insulin Receptor and the Metabolic Syndrome. Int J Mol Sci 2018; 19:ijms19020575. [PMID: 29462993 PMCID: PMC5855797 DOI: 10.3390/ijms19020575] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 02/11/2018] [Accepted: 02/15/2018] [Indexed: 12/14/2022] Open
Abstract
Insulin signaling, as mediated through the insulin receptor (IR), plays a critical role in metabolism. Aberrations in this signaling cascade lead to several pathologies, the majority of which are classified under the umbrella term "metabolic syndrome". Although many of these pathologies are associated with insulin resistance, the exact mechanisms are not well understood. One area of current interest is the possibility of G-protein-coupled receptors (GPCRs) influencing or regulating IR signaling. This concept is particularly significant, because GPCRs have been shown to participate in cross-talk with the IR. More importantly, GPCR signaling has also been shown to preferentially regulate specific downstream signaling targets through GPCR agonist bias. A novel study recently demonstrated that this GPCR-biased agonism influences the activity of the IR without the presence of insulin. Although GPCR-IR cross-talk has previously been established, the notion that GPCRs can regulate the activation of the IR is particularly significant in relation to metabolic syndrome and other pathologies that develop as a result of alterations in IR signaling. As such, we aim to provide an overview of the physiological and pathophysiological roles of the IR within metabolic syndrome and its related pathologies, including cardiovascular health, gut microflora composition, gastrointestinal tract functioning, polycystic ovarian syndrome, pancreatic cancer, and neurodegenerative disorders. Furthermore, we propose that the GPCR-biased agonism may perhaps mediate some of the downstream signaling effects that further exacerbate these diseases for which the mechanisms are currently not well understood.
Collapse
|
8
|
Dutra RC. Kinin receptors: Key regulators of autoimmunity. Autoimmun Rev 2017; 16:192-207. [DOI: 10.1016/j.autrev.2016.12.011] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Accepted: 10/25/2016] [Indexed: 01/06/2023]
|
9
|
Marcon R, Bento AF, Dutra RC, Bicca MA, Leite DFP, Calixto JB. Maresin 1, a proresolving lipid mediator derived from omega-3 polyunsaturated fatty acids, exerts protective actions in murine models of colitis. THE JOURNAL OF IMMUNOLOGY 2013; 191:4288-98. [PMID: 24038091 DOI: 10.4049/jimmunol.1202743] [Citation(s) in RCA: 163] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
It has been previously reported that dietary fish oils, which are rich in the polyunsaturated fatty acids eicosapentaenoic acid and docosahexaenoic acid, can exert beneficial effects in inflammatory bowel disease. In this study, we investigated the effects of docosahexaenoic acid-derived lipid mediator maresin 1 (MaR1) in dextran sulfate sodium (DSS)- and 2,4,6-trinitrobenzenesulfonic acid-induced colitis in mice. Systemic treatment with MaR1 significantly attenuated both DSS- and 2,4,6-trinitrobenzene sulfonic acid-induced colonic inflammation by improving the disease activity index and reducing body weight loss and colonic tissue damage. MaR1 treatment also induced a significant decrease in levels of inflammatory mediators, such as IL-1β, TNF-α, IL-6, and IFN-γ, in the acute protocol, as well as IL-1β and IL-6, but not TNF-α and INF-γ, in the chronic DSS colitis protocol. Additionally, MaR1 decreased ICAM-1 mRNA expression in both the acute and chronic protocols of DSS-induced colitis. Furthermore, the beneficial effects of MaR1 seem to be associated with inhibition of the NF-κB pathway. Moreover, incubation of LPS-stimulated bone marrow-derived macrophage cultures with MaR1 reduced neutrophil migration and reactive oxygen species production, besides decreasing IL-1β, TNF-α, IL-6, and INF-γ production. Interestingly, macrophages incubated only with MaR1 showed a significant upregulation of mannose receptor C, type 1 mRNA expression, an M2 macrophage phenotype marker. These results indicate that MaR1 consistently protects mice against different models of experimental colitis, possibly by inhibiting the NF-κB pathway and consequently multiple inflammatory mediators, as well as by enhancing the macrophage M2 phenotype.
Collapse
Affiliation(s)
- Rodrigo Marcon
- Department of Pharmacology, Federal University of Santa Catarina, Florianópolis, Santa Catarina 88049-900, Brazil
| | | | | | | | | | | |
Collapse
|
10
|
Han XH, Zhong J, Guo JY, Shi R, Wang XH, Wang CH, Wang K, Du GL, Shen YH, Ma YM. Relationships between pharmacokinetics and efficacy of Xie-xin decoction in rats with experimental ulcerative colitis. JOURNAL OF ETHNOPHARMACOLOGY 2013; 148:182-189. [PMID: 23619018 DOI: 10.1016/j.jep.2013.04.008] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2012] [Revised: 04/03/2013] [Accepted: 04/08/2013] [Indexed: 06/02/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Xie-xin decoction (XXD) has been used as a classic formula in China for the treatment of gastrointestinal dysfunction such as ulcerative colitis (UC). However, no potential action mechanisms and active compounds had been systematically investigated. AIM OF THE STUDY To explore the effectiveness and the material basis of XXD in trinitrobenzene sulfonic acid (TNBS)-induced UC rats. MATERIALS AND METHODS XXD was administered orally for 8 days at a dosage of 2 or 4g/kg/day. Plasma pharmacokinetic properties and colon tissue concentrations of multiple compounds from XXD were detected. Tissue damage scores, production of interleukin (IL)-10 and myeloperoxidase (MPO), expression of tumor necrosis factor-alpha (TNF-α) and nuclear factor-kappa Bp65 (NF-κBp65) in colon tissues were examined. Canonical correlation analysis was performed to evaluate the relationships between pharmacokinetics and efficacy to elucidate significantly active compounds of XXD. RESULTS XXD promoted the recovery of colitis and inhibited the colonic inflammation damage in UC rats by reducing the level of MPO and the expression of TNF-α and NF-κBp65, and increasing the production of IL-10 in colon tissues. Efficacy of XXD was positively related with AUC of five plasma compounds (baicalin, berberine, wogonoside, wogonin, and rhein) and concentrations of six colon tissue compounds (coptisine, jatrorrhizine, palmatine, berberine, baicalein and emodin), respectively. CONCLUSIONS The multiple compounds in plasma and colon tissues from XXD might be the main material basis for therapeutic potentials in UC rats.
Collapse
Affiliation(s)
- Xiang-Hui Han
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Marcon R, Claudino RF, Dutra RC, Bento AF, Schmidt EC, Bouzon ZL, Sordi R, Morais RLT, Pesquero JB, Calixto JB. Exacerbation of DSS-induced colitis in mice lacking kinin B(1) receptors through compensatory up-regulation of kinin B(2) receptors: the role of tight junctions and intestinal homeostasis. Br J Pharmacol 2013; 168:389-402. [PMID: 22889120 DOI: 10.1111/j.1476-5381.2012.02136.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2012] [Revised: 07/20/2012] [Accepted: 08/02/2012] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND AND PURPOSE Kinins are pro-inflammatory peptides that are released during tissue injury, including that caused by inflammatory bowel disease. Herein, we assessed the role and underlying mechanisms through which the absence of kinin B(1) receptors exacerbates the development of dextran sulfate sodium (DSS)-induced colitis in mice. EXPERIMENTAL APPROACH B(1) and B(2) receptor antagonists and B(1) receptor knockout mice (B1(-/-) ) were used to assess the involvement of B(1) and B(2) receptor signalling in a DSS-colitis. B(1) receptor, B(2) receptor, occludin and claudin-4 expression, cytokine levels and cell permeability were evaluated in colon from wild-type (WT) and B1(-/-) mice. KEY RESULTS DSS-induced colitis was significantly exacerbated in B1(-/-) compared with WT mice. IL-1β, IFN-γ, keratinocyte-derived chemokine and macrophage inflammatory protein-2 were markedly increased in the colon from DSS-treated B1(-/-) compared with DSS-treated WT mice. Treatment of WT mice with a selective B(1) receptor antagonist, DALBK or SSR240612, had no effect on DSS-induced colitis. Of note, B(2) receptor mRNA expression was significantly up-regulated in colonic tissue from the B1(-/-) mice after DSS administration. Moreover, treatment with a selective B(2) receptor antagonist prevented the exacerbation of colitis in B1(-/-) mice following DSS administration. The water- or DSS-treated B1(-/-) mice showed a decrease in occludin gene expression, which was partially prevented by the B(2) receptor antagonist. CONCLUSIONS AND IMPLICATIONS A loss of B(1) receptors markedly exacerbates the severity of DSS-induced colitis in mice. The increased susceptibility of B1(-/-) may be associated with compensatory overexpression of B(2) receptors, which, in turn, modulates tight junction expression.
Collapse
Affiliation(s)
- R Marcon
- Departamento de Farmacologia, Universidade Federal de Santa Catarina, Florianópolis, Santa Catarina, Brazil
| | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Bento AF, Claudino RF, Dutra RC, Marcon R, Calixto JB. Omega-3 Fatty Acid-Derived Mediators 17(R)-Hydroxy Docosahexaenoic Acid, Aspirin-Triggered Resolvin D1 and Resolvin D2 Prevent Experimental Colitis in Mice. THE JOURNAL OF IMMUNOLOGY 2011; 187:1957-69. [DOI: 10.4049/jimmunol.1101305] [Citation(s) in RCA: 197] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
13
|
Abstract
Tissue kallikrein cleaves kininogens to release kinins. Kinins mediate inflammation by activating constitutive bradykinin receptor-2 (BR2), which are rapidly desensitized, and induced by inflammatory cytokines bradykinin receptor-1 (BR1), resistant to desensitization. Intestinal tissue kallikrein (ITK) may hydrolyze growth factors and peptides, whereas kinins are responsible for capillary permeability, pain, synthesis of cytokines, and adhesion molecule-neutrophil cascade. Our and others results have demonstrated ITK in intestinal goblet cells and its release into interstitial space during inflammation. Kallistatin, an inhibitor of ITK, has been shown in epithelial and goblet cells, and was decreased in inflamed intestine as well as in plasma compared with noninflammatory controls. BR1 was upregulated in patients with inflammatory bowel disease (IBD), and it has expressed in an apical part of enterocytes in inflamed intestine, but in the basal part in normal intestine. ITK and BR1 were visualized in macrophages forming granuloma in Crohn's disease. In animal studies BR2 blockade decreased intestinal contraction, but had limited effect on inflammatory lesions. BR1 was found to be upregulated in animal inflamed intestine, in part dependent on tumor necrosis factor alpha (TNF-α). A selective BR1 receptor antagonist decreased morphological and biochemical features of experimental intestinal inflammation. Both BR1 and BR2 mediate epithelial ion transport that leads to secretory diarrhea. The upregulation of BR1 in inflamed intestine provides a structural basis for the kinins function, suggesting that a selective BR1 antagonist may have potential in therapeutic trial of IBD patients.
Collapse
Affiliation(s)
- Antoni Stadnicki
- Department of Basis Biomedical Sciences, Medical University of Silesia, Katowice, Poland.
| |
Collapse
|
14
|
Lu F, Fernandes SM, Davis AE. The role of the complement and contact systems in the dextran sulfate sodium-induced colitis model: the effect of C1 inhibitor in inflammatory bowel disease. Am J Physiol Gastrointest Liver Physiol 2010; 298:G878-83. [PMID: 20338925 DOI: 10.1152/ajpgi.00400.2009] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The complement and contact systems may be involved in the pathophysiological process of inflammatory bowel disease (IBD). C1 inhibitor (C1INH) is the most important inhibitor of both the complement and contact systems. We evaluated the role of these systems and the effect of both active and inactive forms of C1INH (iC1INH) in dextran sulfate sodium (DSS)-induced colitis mouse model. Three percent DSS was used in drinking water to induce colitis in complement C3-deficient (C3(-/-)) mice, bradykinin type 2 receptor deficient (Bk(2)R(-/-)) mice, and C57BL/6 mice. After ten days DSS exposure, C3(-/-) mice exhibited markedly less weight loss than wild-type (WT) mice (12 +/- 3.3% vs. 30 +/- 1.2%, P < 0.05) and developed a milder disease-activity index (DAI), histological score, colon shortening, and myeloperoxidase (MPO) elevation (P < 0.05, respectively). The Bk(2)R(-/-) mice were not protected from the disease. Seven-day treatment with either native C1INH or iC1INH reduced the severity of the disease in WT mice, as indicated by decreased weight loss (15 +/- 1.8%, 14 +/- 2.1% vs. 30 +/- 1.2%, P < 0.05, respectively), DAI, intestinal tissue damage, and MPO elevation compared with untreated WT DSS control mice (P < 0.05, respectively). These findings suggest that complement plays a role in the development of DSS-induced colitis and that blockade of the complement system might be useful for the acute phase of IBD treatment. C1INH, however, leads to an amelioration of DSS-induced colitis via a mechanism that does not involve the inhibition of complement or contact system activation but does result in significant suppression of leukocyte infiltration.
Collapse
Affiliation(s)
- Fengxin Lu
- Immune Disease Institute, Harvard Medical School, Boston, Massachusetts, USA.
| | | | | |
Collapse
|
15
|
Vitor CE, Figueiredo CP, Hara DB, Bento AF, Mazzuco TL, Calixto JB. Therapeutic action and underlying mechanisms of a combination of two pentacyclic triterpenes, alpha- and beta-amyrin, in a mouse model of colitis. Br J Pharmacol 2009; 157:1034-44. [PMID: 19508397 DOI: 10.1111/j.1476-5381.2009.00271.x] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
BACKGROUND AND PURPOSE alpha- and beta-amyrin are pentacyclic triterpenes found in plants and are known to exhibit pronounced anti-inflammatory effects. Here, we evaluated the effects of a 1:1 mixture of alpha- and beta-amyrin (alpha,beta-amyrin) on an experimental model of colitis in mice. EXPERIMENTAL APPROACH Colitis was induced in Swiss male mice by trinitrobenzene sulphonic acid (TNBS) and followed up to 72 h; animals were treated systemically with alpha,beta-amyrin, dexamethasone or vehicle. Macro- and microscopic damage, myeloperoxidase activity and cytokine levels were assessed in colons. Histological sections were immunostained for cyclooxygenase-2 (COX-2), vascular endothelial growth factor, phospho-p65 nuclear factor-kappaB (NF-kappaB) and phospho-cyclic AMP response element-binding protein (CREB). KEY RESULTS TNBS-induced colitis was associated with tissue damage, neutrophil infiltration and time-dependent increase of inflammatory mediators. Treatment with alpha,beta-amyrin (3 mg x kg(-1), i.p.) or dexamethasone (1 mg x kg(-1), s.c.) consistently improved tissue damage scores and abolished polymorphonuclear cell infiltration. alpha,beta-Amyrin, like dexamethasone, significantly diminished interleukin (IL)-1beta levels and partially restored IL-10 levels in colon tissues 72 h after colitis induction, but only alpha,beta-amyrin reduced vascular endothelial growth factor expression by immunohistochemistry. The colonic expression of COX-2 at 24 h and that of phospho-NF-kappaB and phospho-CREB (peaking at 6 h) after colitis induction were consistently inhibited by both alpha,beta-amyrin and dexamethasone. CONCLUSIONS AND IMPLICATIONS Systemic administration of alpha,beta-amyrin exerted a marked and rapid inhibition of TNBS-induced colitis, related to the local suppression of inflammatory cytokines and COX-2 levels, possibly via inhibition of NF-kappaB and CREB-signalling pathways. Taken together, our data suggest a potential use of alpha,beta-amyrin to control inflammatory responses in bowel disease.
Collapse
Affiliation(s)
- C E Vitor
- Department of Pharmacology, Center of Biological Sciences, Universidade Federal de Santa Catarina, 88049-900, Florianópolis, SC, Brazil
| | | | | | | | | | | |
Collapse
|
16
|
Bento AF, Leite DFP, Claudino RF, Hara DB, Leal PC, Calixto JB. The selective nonpeptide CXCR2 antagonist SB225002 ameliorates acute experimental colitis in mice. J Leukoc Biol 2008; 84:1213-21. [PMID: 18653784 DOI: 10.1189/jlb.0408231] [Citation(s) in RCA: 112] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Although neutrophils are strongly implicated in eliminating pathogens, excessive recruitment may cause tissue damage. Therefore, reducing cell influx during an inflammatory process may be a potential target for treating inflammatory bowel diseases (IBD). As CXCR2 is involved in neutrophil migration, this study aimed to evaluate whether the systemic therapeutic treatment with selective CXCR2 antagonist SB225002 ameliorates experimental colitis, which was induced in mice by 2,4,6-trinitrobenzene sulfonic acid (TNBS). After colitis establishment (24 h), mice were treated with SB225002. At later time-points, up to 72 h, mice were monitored for body weight loss and overall mortality. At the time of sacrifice, colonic tissues were scored for macro- and microscopic damage, and cytokine levels, myeloperoxidase (MPO) activity, and protein expression were analyzed. TNBS administration induced macro- and microscopic damage in colon tissue, leading in most cases to animal death. Curative treatment with SB225002 significantly reduced all of the parameters analyzed, leading to an improvement of inflammatory signs. SB225002 reduced neutrophil influx, MPO activity, IL-1beta, MIP-2, and keratinocyte-derived chemokine (KC) levels and the expression of vascular endothelial growth factor, inducible NO synthase, and cyclooxygenase-2 proteins into the colon tissue. Levels of IL-4 and IL-10 were increased significantly in the colons of animals treated with SB225002. Additionally, curative treatment with mouse anti-KC significantly reduced MPO activity and colonic damage. These results taken together demonstrate that a selective blockade of CXCR2 consistently reduced TNBS-induced colitis, suggesting that the use of SB225002 is a potential therapeutic approach for the treatment of IBD and other related inflammatory disorders.
Collapse
Affiliation(s)
- Allisson Freire Bento
- Universidade Federal de Santa Catarina, Campus Universitário, CEP 88049-900, Florianópolis, SC, Brazil
| | | | | | | | | | | |
Collapse
|
17
|
Baird AW, Skelly MM, O'Donoghue DP, Barrett KE, Keely SJ. Bradykinin regulates human colonic ion transport in vitro. Br J Pharmacol 2008; 155:558-66. [PMID: 18604228 DOI: 10.1038/bjp.2008.288] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND AND PURPOSE Kinins are acknowledged as important regulators of intestinal function during inflammation; however, their effects on human intestinal ion transport have not been reported. Here, we used muscle-stripped human colonic tissue and cultured T(84)-cell monolayers to study bradykinin (BK) actions on human intestinal ion transport. EXPERIMENTAL APPROACH Ion transport was measured as changes in short-circuit current (I(sc)) across colonic epithelia mounted in Ussing chambers. KEY RESULTS In intact tissue, there was a distinct polarity to BK-elicited I(sc) responses. Whereas basolateral BK stimulated sustained responses (EC(50)=0.5+/-0.1 microM), those to apical BK were more rapid and transient (EC(50)=4.1+/-1.2 nM). In T(84) cells, responses to both apical and basolateral BK were similar to those seen upon apical addition to intact tissues. Cross-desensitization between apical and basolateral domains was not observed. BK-induced responses were largely due to Cl(-) secretion as shown by their sensitivity to bumetanide and removal of Cl(-) from the bathing solution. Studies using selective agonists and antagonists indicate responses to BK are mediated by B(2) receptors. Finally, responses to basolateral BK in intact tissues were inhibited by tetrodotoxin (1 microM), atropine (1 microM), capsaicin (100 microM) and piroxicam (10 microM). BK-stimulated prostaglandin (PG)E(2) release from colonic tissue. CONCLUSIONS BK stimulates human colonic Cl(-) secretion by activation of apical and basolateral B(2) receptors. Responses to apical BK reflect a direct action on epithelial cells, whereas those to basolateral BK are amplified by stimulation of enteric nerves and PG synthesis.
Collapse
Affiliation(s)
- A W Baird
- School of Agriculture, Food Science and Veterinary Medicine and Conway Institute, University College Dublin, Belfield, Dublin, Ireland
| | | | | | | | | |
Collapse
|
18
|
Hara DB, Leite DFP, Fernandes ES, Passos GF, Guimarães AO, Pesquero JB, Campos MM, Calixto JB. The relevance of kinin B1 receptor upregulation in a mouse model of colitis. Br J Pharmacol 2008; 154:1276-86. [PMID: 18536758 PMCID: PMC2483382 DOI: 10.1038/bjp.2008.212] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2008] [Revised: 04/16/2008] [Accepted: 05/06/2008] [Indexed: 11/08/2022] Open
Abstract
BACKGROUND AND PURPOSE Kinins are implicated in many pathophysiological conditions, and recent evidence has suggested their involvement in colitis. This study assessed the role of the kinin B1 receptors in a mouse model of colitis. EXPERIMENTAL APPROACH Colitis was induced in mice by 2,4,6-trinitrobenzene sulphonic acid (TNBS), and tissue damage and myeloperoxidase activity were assessed. B1 receptor induction was analysed by organ bath studies, binding assay and reverse transcription PCR. KEY RESULTS TNBS-induced colitis was associated with tissue damage, neutrophil infiltration and time-dependent increase of colon B1 receptor-mediated contraction, with the maximal response observed at 72 h. The upregulation of the B1 receptor at this time point was also confirmed by means of binding studies. B1 receptor mRNA levels were elevated as early as 6 h after colitis induction and remained high for up to 48 h. TNBS-evoked tissue damage and neutrophil influx were reduced by the selective B1 receptor antagonist SSR240612, and in B1 receptor knockout mice. In vivo treatment with inhibitors of protein synthesis, nuclear factor-kappaB activation, inducible nitric oxide synthase (iNOS) or tumour necrosis factor alpha (TNFalpha) significantly reduced B1 receptor agonist-induced contraction. Similar results were observed in iNOS and TNF receptor 1-knockout mice. CONCLUSIONS AND IMPLICATIONS These results provide convincing evidence on the role of B1 receptors in the pathogenesis of colitis. Therefore, the blockade of kinin B1 receptors might represent a new therapeutic option for treating inflammatory bowel diseases.
Collapse
Affiliation(s)
- D B Hara
- Department of Pharmacology, Center of Biological Sciences, Universidade Federal de Santa Catarina Florianópolis, SC, Brazil
| | - D F P Leite
- Department of Pharmacology, Center of Biological Sciences, Universidade Federal de Santa Catarina Florianópolis, SC, Brazil
| | - E S Fernandes
- Department of Pharmacology, Center of Biological Sciences, Universidade Federal de Santa Catarina Florianópolis, SC, Brazil
| | - G F Passos
- Department of Pharmacology, Center of Biological Sciences, Universidade Federal de Santa Catarina Florianópolis, SC, Brazil
| | - A O Guimarães
- Department of Biophysics, Universidade Federal de São Paulo SP, Brazil
| | - J B Pesquero
- Department of Biophysics, Universidade Federal de São Paulo SP, Brazil
| | - M M Campos
- Department of Surgery, Faculty of Dentistry, Pontifícia Universidade Católica do Rio Grande do Sul Porto Alegre, RS, Brazil
| | - J B Calixto
- Department of Pharmacology, Center of Biological Sciences, Universidade Federal de Santa Catarina Florianópolis, SC, Brazil
| |
Collapse
|
19
|
Therapeutic options in inflammatory bowel disease: experimental evidence of a beneficial effect of kinin B1 receptor blockade. Br J Pharmacol 2008; 154:1163-5. [PMID: 18536746 DOI: 10.1038/bjp.2008.233] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
A surprising proportion of patients with inflammatory bowel disease (IBD) remain refractory to all classes of drugs presently in clinical use. Kinins are inflammatory mediators of potential relevance in IBD, because at least the kinin B1 receptor subtype is upregulated in human or animal intestinal inflammation and also both B1 and B2 receptors for kinins support inflammation and epithelial electrogenic ion transport that leads to secretory diarrhoea. In this issue of the BJP, Hara et al. report the therapeutic effect of a modern and selective nonpeptide kinin B1 receptor antagonist, SSR240612 ((2R)-2-(((3R)-3-(1,3-benzodioxol-5-yl)-3-(((6-methoxy-2-naphthyl)sulphonyl)amino)propanoyl)amino)-3-(4-((2R,6S)-2,6-dimethylpiperidinyl)methyl)phenyl)-N-isopropyl-N-methylpropanamide hydrochloride), with benefits such as decreased neutrophil influx and improved macroscopic tissue scoring. The results were corroborated using kinin B1 receptor gene-knockout mice. Further, kinin B1 receptor upregulation in this inflammatory model is partially dependent on TNF-alpha, a recognized target for IBD pharmacotherapy. More work is warranted to evaluate the value of the kinin B1 receptor antagonists as a novel anti-inflammatory therapeutic option for IBD.
Collapse
|