1
|
Luo L, Liu S, Zhang D, Wei F, Gu N, Zeng Y, Chen X, Xu S, Liu S, Xiang T. Chromogranin A (CGA)-derived polypeptide (CGA 47-66) inhibits TNF-α-induced vascular endothelial hyper-permeability through SOC-related Ca 2+ signaling. Peptides 2020; 131:170297. [PMID: 32380199 DOI: 10.1016/j.peptides.2020.170297] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Revised: 03/05/2020] [Accepted: 03/08/2020] [Indexed: 02/01/2023]
Abstract
CGA1-78 (Vasostatin-1, VS-1) a N-terminal Chromogranin A (CGA)-derived peptide, has been shown to have a protective effect against TNF-α-induced impairment of endothelial cell integrity. However, the mechanisms of this effect have not yet been clarified. CGA47-66 (Chromofungin, CHR) is an important bioactive fragment of CGA1-78. The present study aims to explore the protective effects of CHR on the vascular endothelial cell barrier response to TNF-α and its related Ca2+ signaling mechanisms. EA.hy926 cells were used as a vascular endothelial culture model. The synthetic peptides CHR and CGA4-16 were assessed for their ability to suppress TNF-α-induced EA.hy926 cells hyper-permeability through Transwell® and TEER assays. Changes in [Ca2+]i were measured through confocal laser scanning microscopy. SOC channel currents (Isoc) were measured via patch-clamp analysis. RT-PCR and western blot were used to analyze mRNA and protein expression of the transient receptor potential channels TRPC1 and TRPC4, respectively. FITC and rhodamine-phalloidin fluorescence were used to assess cell morphology and the distribution of MyPT-1 and F-actin. Compared to untreated cells, TNF-α increased the permeability of EA.hy926 cells that was inhibited by pre-treatment with CHR (10-1000 nM) in concentration-dependent manner, and the effect was most obvious at 100 nM, but CGA4-16 (100 nM) had no effect. TNF-α treatment increased the phosphorylation of MyPT-1 and stress fiber formation. CHR (10-1000 nM) pretreatment inhibited the cytoskeletal rearrangements and increased [Ca2+]i in response to TNF-α treatment. CHR also reduced TRPC1 expression following TNF-α induction. Similar to SOC inhibitor 2-APB, CHR suppressed IP3 mediated SOC activation. These findings suggest that CHR inhibits TNF-α-induced Ca2+ influx and protects the barrier function of vascular endothelial cells, and that these effects are related to the inhibition of SOC and Ca2+ signaling by CHR.
Collapse
Affiliation(s)
- Li Luo
- Department of Emergency, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, PR China; Department of Emergency, The Third People's Hospital of Chengdu, The Second Affiliated Chengdu Clinical College of Chongqing Medical University, Chengdu, Sichuan 610031, PR China
| | - SiYi Liu
- Department of Emergency, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, PR China
| | - Dan Zhang
- Department of Emergency, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, PR China.
| | - Fu Wei
- Department of Emergency, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, PR China
| | - NiNa Gu
- Department of Emergency, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, PR China
| | - Yan Zeng
- Department of Emergency, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, PR China
| | - XiaoYing Chen
- Department of Emergency, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, PR China
| | - Shan Xu
- Department of Emergency, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, PR China
| | - ShuKe Liu
- Department of Emergency, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, PR China
| | - Tao Xiang
- Department of Emergency, The Third People's Hospital of Chengdu, The Second Affiliated Chengdu Clinical College of Chongqing Medical University, Chengdu, Sichuan 610031, PR China
| |
Collapse
|
2
|
Schneider F, Castelain V, Herbrecht JE, Hellé S, Metz-Boutigue MH. Adrenal gland-released vasostatin-I is a myocardial depressant factor. Br J Clin Pharmacol 2019; 86:825-828. [PMID: 31726481 DOI: 10.1111/bcp.14173] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 10/18/2019] [Accepted: 11/04/2019] [Indexed: 01/23/2023] Open
Abstract
Pheochromocytoma crisis is an exceptional consequence of the release of storage vesicles of the adrenal medulla. It is complicated by fulminant adrenergic myocarditis. It offers a unique opportunity to detect inotropic negative factors from neuroendocrine origin. Our objectives were (a) to describe a pheochromocytoma crisis, (b) to investigate in vivo myocardial depressant activities for the N-terminal 1-76 Chromogranin A-derived peptide, vasostatin-I (VS-I). A patient with a pheochromocytoma crisis was treated, including extracorporeal membrane oxygenation, until mass resection. Plasma concentrations of VS-I were time-dependently assessed with a specific immunoassay; correlations with invasive cardiovascular parameters were investigated. Increased VS-I concentrations were observed over 7 days until tumour resection. VS-I concentrations correlated positively with Chromogranin A levels, negatively with cardiac output and left ventricular stroke work index, but not with heart rate. This case illustrates the pharmacokinetics of VS-I in a pheochromocytoma crisis. It highlights myocardial depressant activity for this peptide at high concentrations.
Collapse
Affiliation(s)
- Francis Schneider
- Service de Médecine Intensive-Réanimation, Hôpital de Hautepierre, Hôpitaux Universitaires de Strasbourg, France.,Inserm UMR 1121, Faculté de Chirurgie Dentaire, Hôpital Civil, 1 Place de l'Hôpital, Strasbourg, France.,Fédération de Médecine Translationnelle de Strasbourg, Faculté de Médecine, Rue Kirchleger, 67000, Strasbourg, France
| | - Vincent Castelain
- Service de Médecine Intensive-Réanimation, Hôpital de Hautepierre, Hôpitaux Universitaires de Strasbourg, France
| | - Jean-Etienne Herbrecht
- Service de Médecine Intensive-Réanimation, Hôpital de Hautepierre, Hôpitaux Universitaires de Strasbourg, France
| | - Sophie Hellé
- Inserm UMR 1121, Faculté de Chirurgie Dentaire, Hôpital Civil, 1 Place de l'Hôpital, Strasbourg, France.,Fédération de Médecine Translationnelle de Strasbourg, Faculté de Médecine, Rue Kirchleger, 67000, Strasbourg, France
| | - Marie-Hélène Metz-Boutigue
- Inserm UMR 1121, Faculté de Chirurgie Dentaire, Hôpital Civil, 1 Place de l'Hôpital, Strasbourg, France.,Fédération de Médecine Translationnelle de Strasbourg, Faculté de Médecine, Rue Kirchleger, 67000, Strasbourg, France
| |
Collapse
|
3
|
Kakoki M, Bahnson EM, Hagaman JR, Siletzky RM, Grant R, Kayashima Y, Li F, Lee EY, Sun MT, Taylor JM, Rice JC, Almeida MF, Bahr BA, Jennette JC, Smithies O, Maeda-Smithies N. Engulfment and cell motility protein 1 potentiates diabetic cardiomyopathy via Rac-dependent and Rac-independent ROS production. JCI Insight 2019; 4:127660. [PMID: 31217360 DOI: 10.1172/jci.insight.127660] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Accepted: 05/08/2019] [Indexed: 01/31/2023] Open
Abstract
Engulfment and cell motility protein 1 (ELMO1) is part of a guanine nucleotide exchange factor for Ras-related C3 botulinum toxin substrate (Rac), and ELMO1 polymorphisms were identified to be associated with diabetic nephropathy in genome-wide association studies. We generated a set of Akita Ins2C96Y diabetic mice having 5 graded cardiac mRNA levels of ELMO1 from 30% to 200% of normal and found that severe dilated cardiomyopathy develops in ELMO1-hypermorphic mice independent of renal function at age 16 weeks, whereas ELMO1-hypomorphic mice were completely protected. As ELMO1 expression increased, reactive oxygen species indicators, dissociation of the intercalated disc, mitochondrial fragmentation/dysfunction, cleaved caspase-3 levels, and actin polymerization increased in hearts from Akita mice. Cardiomyocyte-specific overexpression in otherwise ELMO1-hypomorphic Akita mice was sufficient to promote cardiomyopathy. Cardiac Rac1 activity was positively correlated with the ELMO1 levels, and oral administration of a pan-Rac inhibitor, EHT1864, partially mitigated cardiomyopathy of the ELMO1 hypermorphs. Disrupting Nox4, a Rac-independent NADPH oxidase, also partially mitigated it. In contrast, a pan-NADPH oxidase inhibitor, VAS3947, markedly prevented cardiomyopathy. Our data demonstrate that in diabetes mellitus ELMO1 is the "rate-limiting" factor of reactive oxygen species production via both Rac-dependent and Rac-independent NADPH oxidases, which in turn trigger cellular signaling cascades toward cardiomyopathy.
Collapse
Affiliation(s)
- Masao Kakoki
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Edward M Bahnson
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA.,Department of Surgery, Division of Vascular Surgery, and Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - John R Hagaman
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Robin M Siletzky
- Department of Surgery, Division of Vascular Surgery, and Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Ruriko Grant
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Yukako Kayashima
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Feng Li
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Esther Y Lee
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Michelle T Sun
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Joan M Taylor
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Jessica C Rice
- Biotechnology Research and Training Center, University of North Carolina at Pembroke, Pembroke, North Carolina, USA
| | - Michael F Almeida
- Biotechnology Research and Training Center, University of North Carolina at Pembroke, Pembroke, North Carolina, USA
| | - Ben A Bahr
- Biotechnology Research and Training Center, University of North Carolina at Pembroke, Pembroke, North Carolina, USA
| | - J Charles Jennette
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Oliver Smithies
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Nobuyo Maeda-Smithies
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| |
Collapse
|
4
|
Pasqua T, Corti A, Gentile S, Pochini L, Bianco M, Metz-Boutigue MH, Cerra MC, Tota B, Angelone T. Full-length human chromogranin-A cardioactivity: myocardial, coronary, and stimulus-induced processing evidence in normotensive and hypertensive male rat hearts. Endocrinology 2013; 154:3353-65. [PMID: 23751870 DOI: 10.1210/en.2012-2210] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Plasma chromogranin-A (CgA) concentrations correlate with severe cardiovascular diseases, whereas CgA-derived vasostatin-I and catestatin elicit cardiosuppression via an antiadrenergic/nitric oxide-cGMP mediated mechanism. Whether these phenomena are related is unknown. We here investigated whether and to what extent full-length CgA directly influences heart performance and may be subjected to stimulus-elicited intracardiac processing. Using normotensive and hypertensive rats, we evaluated the following: 1) direct myocardial and coronary effects of full-length CgA; 2) the signal-transduction pathway involved in its action mechanism; and 3) CgA intracardiac processing after β-adrenergic [isoproterenol (Iso)]- and endothelin-1(ET-1)-dependent stimulation. The study was performed by using a Langendorff perfusion apparatus, Western blotting, affinity chromatography, and ELISA. We found that CgA (1-4 nM) dilated coronaries and induced negative inotropism and lusitropism, which disappeared at higher concentrations (10-16 nM). In spontaneously hypertensive rats (SHRs), negative inotropism and lusitropism were more potent than in young normotensive rats. We found that perfusion itself, Iso-, and endothelin-1 stimulation induced intracardiac CgA processing in low-molecular-weight fragments in young, Wistar Kyoto, and SHR rats. In young normotensive and adult hypertensive rats, CgA increased endothelial nitric oxide synthase phosphorylation and cGMP levels. Analysis of the perfusate from both Wistar rats and SHRs of untreated and treated (Iso) hearts revealed CgA absence. In conclusion, in normotensive and hypertensive rats, we evidenced the following: 1) full-length CgA directly affects myocardial and coronary function by AkT/nitric oxide synthase/nitric oxide/cGMP/protein kinase G pathway; and 2) the heart generates intracardiac CgA fragments in response to hemodynamic and excitatory challenges. For the first time at the cardiovascular level, our data provide a conceptual link between systemic and intracardiac actions of full-length CgA and its fragments, expanding the knowledge on the sympathochromaffin/CgA axis under normal and physiopathological conditions.
Collapse
Affiliation(s)
- Teresa Pasqua
- Department of Biology, Ecology, and Earth Sciences, University of Calabria, 87036 Arcavacata di Rende (CS), Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Quintieri AM, Baldino N, Filice E, Seta L, Vitetti A, Tota B, De Cindio B, Cerra MC, Angelone T. Malvidin, a red wine polyphenol, modulates mammalian myocardial and coronary performance and protects the heart against ischemia/reperfusion injury. J Nutr Biochem 2012; 24:1221-31. [PMID: 23266283 DOI: 10.1016/j.jnutbio.2012.09.006] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2012] [Revised: 09/12/2012] [Accepted: 09/19/2012] [Indexed: 12/12/2022]
Abstract
A moderate red wine consumption and a colored fruit-rich diet protect the cardiovascular system, thanks to the presence of several polyphenols. Malvidin-3-0-glucoside (malvidin), an anthocyanidine belonging to polyphenols, is highly present in red grape skin and red wine. Its biological activity is poorly characterized, although a role in tumor cell inhibition has been found. To analyze whether and to which extent, like other food-derived polyphenols, malvidin affects the cardiovascular function, in this study, we have performed a quantitative analysis by high-performance liquid chromatography of polyphenolic content of red grape skins extract, showing that it contains a high malvidin amount (63.93 ±12.50 mg/g of fresh grape skin). By using the isolated and Langendorff perfused rat heart, we found that the increasing doses (1-1000 ng/ml) of the extract induced positive inotropic and negative lusitropic effects associated with coronary dilation. On the same cardiac preparations, we observed that malvidin (10(-10)-10(-6) mol/L) elicited negative inotropism and lusitropism and coronary dilation. Analysis of mechanism of action revealed that malvidin-dependent cardiac effects require the activation of the phosphatidylinositol 3-kinase (PI3K)/nitric oxide (NO)/cGMP/PKG pathway and are associated with increased intracellular cGMP and the phosphorylation of endothelial NO synthase (eNOS), PI3K-AKT, ERK1/2, and GSK-3β. AKT and eNOS phosphorylation was confirmed in human umbilical vein endothelial cell. We also found that malvidin act as a postconditioning agent, being able to elicit cardioprotection against ischemia/reperfusion damages. Our results show the cardioactivity of polyphenols-rich red grape extracts and indicate malvidin as a new cardioprotective principle. This is of relevance not only for a better clarification of the beneficial cardiovascular effects of food-derived polyphenols but also for nutraceutical research.
Collapse
Affiliation(s)
- Anna Maria Quintieri
- Department of Cell Biology, University of Calabria, Arcavacata di Rende, CS, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Stavrakis S, Scherlag BJ, Fan Y, Liu Y, Liu Q, Mao J, Cai H, Lazzara R, Po SS. Antiarrhythmic effects of vasostatin-1 in a canine model of atrial fibrillation. J Cardiovasc Electrophysiol 2012; 23:771-7. [PMID: 22487376 DOI: 10.1111/j.1540-8167.2012.02317.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
BACKGROUND We examined the antiarrhythmic effects of vasostatin-1, a recently identified cardioregulatory peptide, in canine models of atrial fibrillation (AF). METHODS AND RESULTS In 13 pentobarbital-anesthetized dogs bilateral thoracotomies allowed the attachment of multielectrode catheters to superior and inferior pulmonary veins and atrial appendages (AA). Rapid atrial pacing (RAP) was maintained for 6 hours. Each hour, programmed stimulation was performed to determine the window of vulnerability (WOV), a measure of AF inducibility, at all sites. During the last 3 hours, vasostatin-1, 33 nM, was injected into the anterior right (AR) ganglionated plexus (GP) and inferior right (IR) GP every 30 minutes (n = 6). Seven dogs underwent 6 hours of RAP only (controls). At baseline, acetylcholine, 100 mM, was applied on the right AA and AF duration was recorded before and after injection of vasostatin-1, 33 nM, into the ARGP and IRGP. In separate experiments (n = 8), voltage-sinus rate response curves (surrogate for GP function) were constructed by applying high-frequency stimulation to the ARGP with incremental voltages with or without vasostatin-1. Vasostatin-1 significantly decreased the duration of acetylcholine-induced AF (11.0 ± 4.1 vs 5.5 ± 2.6 min, P = 0.02). The cumulative WOV (the sum of individual WOVs) significantly increased (P < 0.0001) during the first 3 hours and decreased toward baseline in the presence of vasostatin-1 (P < 0.0001). Cumulative WOV in controls steadily increased. Vasostatin-1 blunted the slowing of sinus rate with increasing stimulation voltage of ARGP. CONCLUSIONS Vasostatin-1 suppresses AF inducibility, likely by inhibiting GP function. These data may provide new insights into the role of peptide neuromodulators for AF therapy.
Collapse
Affiliation(s)
- Stavros Stavrakis
- Heart Rhythm Institute, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Bartolomucci A, Possenti R, Mahata SK, Fischer-Colbrie R, Loh YP, Salton SRJ. The extended granin family: structure, function, and biomedical implications. Endocr Rev 2011; 32:755-97. [PMID: 21862681 PMCID: PMC3591675 DOI: 10.1210/er.2010-0027] [Citation(s) in RCA: 238] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The chromogranins (chromogranin A and chromogranin B), secretogranins (secretogranin II and secretogranin III), and additional related proteins (7B2, NESP55, proSAAS, and VGF) that together comprise the granin family subserve essential roles in the regulated secretory pathway that is responsible for controlled delivery of peptides, hormones, neurotransmitters, and growth factors. Here we review the structure and function of granins and granin-derived peptides and expansive new genetic evidence, including recent single-nucleotide polymorphism mapping, genomic sequence comparisons, and analysis of transgenic and knockout mice, which together support an important and evolutionarily conserved role for these proteins in large dense-core vesicle biogenesis and regulated secretion. Recent data further indicate that their processed peptides function prominently in metabolic and glucose homeostasis, emotional behavior, pain pathways, and blood pressure modulation, suggesting future utility of granins and granin-derived peptides as novel disease biomarkers.
Collapse
Affiliation(s)
- Alessandro Bartolomucci
- Department of Integrative Biology and Physiology, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | | | | | | | | | | |
Collapse
|
8
|
Portela-Gomes GM, Grimelius L, Wilander E, Stridsberg M. Granins and granin-related peptides in neuroendocrine tumours. ACTA ACUST UNITED AC 2010; 165:12-20. [PMID: 20211659 DOI: 10.1016/j.regpep.2010.02.011] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2009] [Revised: 02/06/2010] [Accepted: 02/25/2010] [Indexed: 10/19/2022]
Abstract
This review focus on neuroendocrine tumours (NETs), with special reference to the immunohistochemical analysis of granins and granin-related peptides and their usefulness in identifying and characterizing the great diversity of NET types. Granins, their derived peptides, and complex protein-processing enzyme systems that cleave granins and prohormones, have to some extent cell-specific expression patterns in normal and neoplastic NE cells. The marker most commonly used in routine histopathology to differentiate between non-NETs and NETs is chromogranin (Cg) A, to some extent CgB. Other members of the granin family may also be of diagnostic value by identifying special NET types, e.g. secretogranin (Sg) VI was only found in pancreatic NETs and phaeochromocytomas. SgIII has recently arisen as an important NET marker; it was strongly expressed in NETs, with some exceptions--phaeochromocytomas expressed few cells and parathyroid adenomas none. Some expression patterns of granin-related peptides seem valuable in differentiating between some benign and malignant NETs, some may also provide prognostic information, among which: well-differentiated NET types expressed more CgA epitopes than the poorly differentiated ones, except insulinomas, where the opposite was noted; medullary thyroid carcinomas containing few cells immunoreactive to a CgB antibody were related to a bad prognosis; C-terminal secretoneurin visualized a cell type related to malignancy in phaeochromocytomas. Further research will probably establish new staining patterns with marker functions for granins in NETs which may be of histopathological diagnostic value.
Collapse
|