1
|
Ge W, Hou C, Zhang W, Guo X, Gao P, Song X, Gao R, Liu Y, Guo W, Li B, Zhao H, Wang J. Mep1a contributes to Ang II-induced cardiac remodeling by promoting cardiac hypertrophy, fibrosis and inflammation. J Mol Cell Cardiol 2020; 152:52-68. [PMID: 33301800 DOI: 10.1016/j.yjmcc.2020.11.015] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 11/20/2020] [Accepted: 11/26/2020] [Indexed: 01/12/2023]
Abstract
Pathological cardiac remodeling, characterized by excessive deposition of extracellular matrix proteins and cardiac hypertrophy, leads to the development of heart failure. Meprin α (Mep1a), a zinc metalloprotease, previously reported to participate in the regulation of inflammatory response and fibrosis, may also contribute to cardiac remodeling, although whether and how it participates in this process remains unknown. Here, in this work, we investigated the role of Mep1a in pathological cardiac remodeling, as well as the effects of the Mep1a inhibitor actinonin on cardiac remodeling-associated phenotypes. We found that Mep1a deficiency or chemical inhibition both significantly alleviated TAC- and Ang II-induced cardiac remodeling and dysfunction. Mep1a deletion and blocking both attenuated TAC- and Ang II-induced heart enlargement and increases in the thickness of the left ventricle anterior and posterior walls, and reduced expression of pro-hypertrophic markers, including atrial natriuretic peptide (ANP), brain natriuretic peptide (BNP), and myosin heavy chain beta (β-MHC). In addition, Mep1a deletion and blocking significantly inhibited TAC- and Ang II-induced cardiac fibroblast activation and production of extracellular matrix (ECM). Moreover, in Mep1a-/- mice and treatment with actinonin significantly reduced Ang II-induced infiltration of macrophages and proinflammatory cytokines. Notably, we found that in vitro, Mep1a is expressed in cardiac myocytes and fibroblasts and that Mep1a deletion or chemical inhibition both markedly suppressed Ang II-induced hypertrophy of rat or mouse cardiac myocytes and activation of rat or mouse cardiac fibroblasts. In addition, blocking Mep1a in macrophages reduced Ang II-induced expression of interleukin (IL)-6 and IL-1β, strongly suggesting that Mep1a participates in cardiac remodeling processes through regulation of inflammatory cytokine expression. Mechanism studies revealed that Mep1a mediated ERK1/2 activation in cardiac myocytes, fibroblasts and macrophages and contributed to cardiac remodeling. In light of our findings that blocking Mep1a can ameliorate cardiac remodeling via inhibition of cardiac hypertrophy, fibrosis, and inflammation, Mep1a may therefore serve as a strong potential candidate for therapeutic targeting to prevent cardiac remodeling.
Collapse
Affiliation(s)
- Weipeng Ge
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Institute of Basic Medical Sciences, Department of Pathophysiology, Peking Union Medical College, Beijing, China
| | - Cuiliu Hou
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Institute of Basic Medical Sciences, Department of Pathophysiology, Peking Union Medical College, Beijing, China
| | - Wei Zhang
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Institute of Basic Medical Sciences, Department of Pathophysiology, Peking Union Medical College, Beijing, China
| | - Xiaoxiao Guo
- Department of Cardiology, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Pan Gao
- Department of Geriatrics, Southwest Hospital, The First Affiliate Hospital to Army Medical University, Chongqing, China
| | - Xiaomin Song
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Institute of Basic Medical Sciences, Department of Pathophysiology, Peking Union Medical College, Beijing, China
| | - Ran Gao
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Institute of Basic Medical Sciences, Department of Pathophysiology, Peking Union Medical College, Beijing, China
| | - Ying Liu
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Department of Physiology, Peking Union Medical College, Beijing, China
| | - Wenjun Guo
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Institute of Basic Medical Sciences, Department of Pathophysiology, Peking Union Medical College, Beijing, China
| | - Bolun Li
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Institute of Basic Medical Sciences, Department of Pathophysiology, Peking Union Medical College, Beijing, China
| | - Hongmei Zhao
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Institute of Basic Medical Sciences, Department of Pathophysiology, Peking Union Medical College, Beijing, China.
| | - Jing Wang
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Institute of Basic Medical Sciences, Department of Pathophysiology, Peking Union Medical College, Beijing, China.
| |
Collapse
|
2
|
Gao R, Liu D, Guo W, Ge W, Fan T, Li B, Gao P, Liu B, Zheng Y, Wang J. Meprin-α (Mep1A) enhances TNF-α secretion by mast cells and aggravates abdominal aortic aneurysms. Br J Pharmacol 2020; 177:2872-2885. [PMID: 32072633 DOI: 10.1111/bph.15019] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 01/03/2020] [Accepted: 01/29/2020] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND AND PURPOSE Abdominal aorticaneurysm (AAA) rupture is mainly due to elastic lamina degradation. As a metalloendopeptidase, meprin-α (Mep1A) critically modulates the activity of proteins and inflammatory cytokines in various diseases. Here, we sought to investigate the functional role of Mep1A in AAA formation and rupture. EXPERIMENTAL APPROACH AAA tissues were detected by using real-time PCR (RT-PCR), western blotting (WB), and immunohistochemistry. Further mechanistic studies used RT-PCR, WB, and enzyme-linked immunosorbent assays. KEY RESULTS Mep1A mediated AAA formation by regulating the mast cell (MC) secretion of TNF-α, which promoted matrix metalloproteinase (MMP) expression and apoptosis in smooth muscle cells (SMCs). Importantly, increased Mep1A expression was found in human AAA tissues and in angiotensin II-induced mouse AAA tissues. Mep1A deficiency reduced AAA formation and increased the survival rate of AAA mice. Pathological analysis showed that Mep1A deletion decreased elastic lamina degradation and SMC apoptosis in AAA tissues. Furthermore, Mep1A was expressed mainly in MCs, wherein it mediated TNF-α expression. Mep1A inhibitor actinonin significantly inhibited TNF-α secretion in MCs. TNF-α secreted by MCs enhanced MMP2 expression in SMCs and promoted SMC apoptosis. CONCLUSION AND IMPLICATIONS Taken together, these data suggest that Mep1A may be vital in AAA pathophysiology by regulating TNF-α production by MCs. Knocking out Mep1A significantly decreased AAA diameter and improved AAA stability in mice. Therefore, Mep1A is a potential new therapeutic target in the development of AAA.
Collapse
Affiliation(s)
- Ran Gao
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Department of Pathophysiology, Peking Union Medical College, Beijing, China
| | - Duan Liu
- Peking Union Medical College Hospital, Beijing, China
| | - Wenjun Guo
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Department of Pathophysiology, Peking Union Medical College, Beijing, China
| | - Weipeng Ge
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Department of Pathophysiology, Peking Union Medical College, Beijing, China
| | - Tianfei Fan
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Department of Pathophysiology, Peking Union Medical College, Beijing, China
| | - Bolun Li
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Department of Pathophysiology, Peking Union Medical College, Beijing, China
| | - Pan Gao
- Department of Geriatrics, Southwest Hospital, The First Affiliated Hospital to Army Medical University, Chongqing, China
| | - Bin Liu
- Aab Cardiovascular Research Institute, University of Rochester, Rochester, USA
| | - Yuehong Zheng
- Peking Union Medical College Hospital, Beijing, China
| | - Jing Wang
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Department of Pathophysiology, Peking Union Medical College, Beijing, China
| |
Collapse
|
3
|
Abstract
A crucial step for tumor cell extravasation and metastasis is the migration through the extracellular matrix, which requires proteolytic activity. Hence, proteases, particularly matrix metalloproteases (MMPs), have been discussed as therapeutic targets and their inhibition should diminish tumor growth and metastasis. The metalloproteases meprin α and meprin β are highly abundant on intestinal enterocytes and their expression was associated with different stages of colorectal cancer. Due to their ability to cleave extracellular matrix (ECM) components, they were suggested as pro-tumorigenic enzymes. Additionally, both meprins were shown to have pro-inflammatory activity by cleaving cytokines and their receptors, which correlates with chronic intestinal inflammation and associated conditions. On the other hand, meprin β was identified as an essential enzyme for the detachment and renewal of the intestinal mucus, important to prevent bacterial overgrowth and infection. Considering this, it is hard to estimate whether high activity of meprins is generally detrimental or if these enzymes have also protective functions in certain cancer types. For instance, for colorectal cancer, patients with high meprin β expression in tumor tissue exhibit a better survival prognosis, which is completely different to prostate cancer. This demonstrates that the very same enzyme may have contrary effects on tumor initiation and growth, depending on its tissue and subcellular localization. Hence, precise knowledge about proteolytic enzymes is required to design the most efficient therapeutic options for cancer treatment. In this review, we summarize the current findings on meprins' functions, expression, and cancer-associated variants with possible implications for tumor progression and metastasis.
Collapse
|
4
|
Chen Y, Xu D, Yao J, Wei Z, Li S, Gao X, Cai W, Mao N, Jin F, Li Y, Zhu Y, Li S, Liu H, Yang F, Xu H. Inhibition of miR-155-5p Exerts Anti-Fibrotic Effects in Silicotic Mice by Regulating Meprin α. MOLECULAR THERAPY-NUCLEIC ACIDS 2019; 19:350-360. [PMID: 31877411 PMCID: PMC6939030 DOI: 10.1016/j.omtn.2019.11.018] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 11/06/2019] [Accepted: 11/17/2019] [Indexed: 02/07/2023]
Abstract
Silicosis is a fatal profession-related disease linked to long-term inhalation of silica. The present study aimed to determine whether meprin α, a master regulator of anti-fibrotic peptide N-acetyl-seryl-aspartyl-lysyl-proline (Ac-SDKP), is diminished by miR-155-5p in silicotic and control lung macrophages and fibroblasts upon activation. NR8383 macrophages, primary lung fibroblasts, and mouse embryonic fibroblasts were used to evaluate the expression and function of meprin α and miR-155-5p. In vitro meprin α manipulation was performed by recombinant mouse meprin α protein, actinonin (its inhibitor), and small interfering RNA knockdown. Macrophage and fibroblast activation was assessed by western blotting, real-time PCR, matrix deposition, and immunohistochemical staining. The roles of meprin α and miR-155-5p were also investigated in mice exposed to silica. We found that the meprin α level was stably repressed in silicotic rats. In vitro, silica decreased meprin α, and exogenous meprin α reduced activation of macrophages and fibroblasts induced by profibrotic factors. miR-155-5p negatively regulated Mep1a by binding to the 3′ untranslated region. Treatment with anti-miR-155-5p elevated meprin α, ameliorated macrophage and fibroblast activation, and attenuated lung fibrosis in mice induced by silica. The sustained repression of meprin α and beneficial effects of its rescue by inhibition of miR-155-5p during silicosis indicate that miR-155-5p/meprin α are two of the major regulators of silicosis.
Collapse
Affiliation(s)
- Yingying Chen
- Medical Research Center, Hebei Key Laboratory for Organ Fibrosis Research, North China University of Science and Technology, Tangshan, Hebei 063210, China
| | - Dingjie Xu
- Traditional Chinese Medicine College, North China University of Science and Technology, Tangshan, Hebei 063210, China
| | - Jingxin Yao
- Medical Research Center, Hebei Key Laboratory for Organ Fibrosis Research, North China University of Science and Technology, Tangshan, Hebei 063210, China
| | - Zhongqiu Wei
- Basic Medical College, North China University of Science and Technology, Tangshan, Hebei 063210, China
| | - Shifeng Li
- Medical Research Center, Hebei Key Laboratory for Organ Fibrosis Research, North China University of Science and Technology, Tangshan, Hebei 063210, China
| | - Xuemin Gao
- Medical Research Center, Hebei Key Laboratory for Organ Fibrosis Research, North China University of Science and Technology, Tangshan, Hebei 063210, China
| | - Wenchen Cai
- School of Public Health, North China University of Science and Technology, Tangshan, Hebei 063210, China
| | - Na Mao
- School of Public Health, North China University of Science and Technology, Tangshan, Hebei 063210, China
| | - Fuyu Jin
- Medical Research Center, Hebei Key Laboratory for Organ Fibrosis Research, North China University of Science and Technology, Tangshan, Hebei 063210, China
| | - Yaqian Li
- Medical Research Center, Hebei Key Laboratory for Organ Fibrosis Research, North China University of Science and Technology, Tangshan, Hebei 063210, China
| | - Ying Zhu
- Medical Research Center, Hebei Key Laboratory for Organ Fibrosis Research, North China University of Science and Technology, Tangshan, Hebei 063210, China
| | - Shumin Li
- School of Public Health, North China University of Science and Technology, Tangshan, Hebei 063210, China
| | - Heliang Liu
- Medical Research Center, Hebei Key Laboratory for Organ Fibrosis Research, North China University of Science and Technology, Tangshan, Hebei 063210, China; School of Public Health, North China University of Science and Technology, Tangshan, Hebei 063210, China
| | - Fang Yang
- Medical Research Center, Hebei Key Laboratory for Organ Fibrosis Research, North China University of Science and Technology, Tangshan, Hebei 063210, China; School of Public Health, North China University of Science and Technology, Tangshan, Hebei 063210, China
| | - Hong Xu
- Medical Research Center, Hebei Key Laboratory for Organ Fibrosis Research, North China University of Science and Technology, Tangshan, Hebei 063210, China.
| |
Collapse
|
5
|
Physiology and pathophysiology of oxLDL uptake by vascular wall cells in atherosclerosis. Vascul Pharmacol 2016; 84:1-7. [PMID: 27256928 DOI: 10.1016/j.vph.2016.05.013] [Citation(s) in RCA: 185] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Revised: 04/26/2016] [Accepted: 05/28/2016] [Indexed: 01/09/2023]
Abstract
Atherosclerosis is a progressive disease in which endothelial cell dysfunction, macrophage foam cell formation, and smooth muscle cell migration and proliferation, lead to the loss of vascular homeostasis. Oxidized low-density lipoprotein (oxLDL) may play a pre-eminent function in atherosclerotic lesion formation, even if their role is still debated. Several types of scavenger receptors (SRs) such as SR-AI/II, SRBI, CD36, lectin-like oxidized low-density lipoprotein receptor-1 (LOX-1), toll-like receptors (TLRs) and others can promote the internalization of oxLDL. They are expressed on the surface of vascular wall cells (endothelial cells, macrophages and smooth muscle cells) and they mediate the cellular effects of oxLDL. The key influence of both oxLDL and SRs on the atherogenic process has been established in atherosclerosis-prone animals, in which antioxidant treatment and/or silencing of SRs has been shown to reduce atherogenesis. Despite some discrepancies, the indication from cohort studies that there is an association between oxLDL and cardiovascular (CV) events seems to point toward a role for oxLDL in atherosclerotic plaque progress and disruption. Finally, randomized clinical trials using antioxidants have demonstrated benefits only in high-risk patients, suggesting that additional proofs are still needed to better define the involvement of each type of modified LDL in the development of atherosclerosis.
Collapse
|
6
|
Meprin-β regulates production of pro-inflammatory factors via a disintegrin and metalloproteinase-10 (ADAM-10) dependent pathway in macrophages. Int Immunopharmacol 2013; 18:77-84. [PMID: 24239627 DOI: 10.1016/j.intimp.2013.11.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2013] [Revised: 10/25/2013] [Accepted: 11/01/2013] [Indexed: 01/17/2023]
Abstract
Inflammatory response plays an important role not only in the normal physiology but also in the pathology such as atherosclerosis. Meprin, an astacin metalloproteinase, has exhibited proinflammatory effects in vivo and in vitro studies. Here, we tried to further investigate the proinflammatory potential of meprin-β and the possible underlying mechanisms in primary human peripheral blood macrophages. In our current study, ELISA assay revealed that meprin-β increased the production of pro-inflammatory cytokines, including interleukin-1β (IL-1β), interleukin-18 and interleukin-6 (IL-6) in macrophages. However, meprin-β shows no effects on the level of ligands of epidermal growth factor receptor (EGFR), and the activation of EGFR. The molecular mechanism was associated with activation of a disintegrin and metalloproteinase 10 (ADAM10) and the phosphorylation of IκB. Further analysis of upstream mechanisms showed that activation of NF-κB by meprin-β was mediated by inhibiting ADAM10-downstream extracellular signal regulated kinase (ERK1/2) pathway. Taken together, these results indicated that meprin-β exhibited pro-inflammatory effects by targeting activating ADAM10, leading to ERK1/2-mediated activation of NF-κB in macrophages, and this would make meprin-β a strong candidate for further study as proinflammatory target.
Collapse
|
7
|
Gao P, Wang XM, Qian DH, Qin ZX, Jin J, Xu Q, Yuan QY, Li XJ, Si LY. Induction of oxidative stress by oxidized LDL via meprinα-activated epidermal growth factor receptor in macrophages. Cardiovasc Res 2012; 97:533-43. [PMID: 23250920 DOI: 10.1093/cvr/cvs369] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
AIMS The aim of this study was to explore meprinα-mediated transactivation of the epidermal growth factor receptor (EGFR) and reactive oxygen species (ROS) production in macrophages. METHODS AND RESULTS Accelerated atherosclerotic lesions were established by administration of a high-fat diet in apolipoprotein E-deficient (apoE(-/-)) mice. Lentiviral overexpression of meprinα in the thoracic aortic artery during plaque formation enhanced intra-plaque macrophage induction of ROS as well as formation of atherosclerotic plaques, whereas AG1478 (specific inhibitor of the EGFR) treatment exerted the opposite effect. A meprinα inhibitor abrogated EGFR activation in mice. In cultured J774a.1 macrophages, oxidized low-density lipoprotein (OxLDL) increased ROS formation and EGFR activation through a ligand [heparin-binding epidermal growth factor-like growth factor (HB-EGF)]-dependent pathway. However, a meprinα inhibitor or specific siRNA inhibited ROS production and EGFR activation. Recombinant mouse meprinα enhanced OxLDL-stimulated production of ROS and induced HB-EGF. Inhibition of p38 mitogen-activated protein kinase by SB203580 decreased OxLDL-stimulated production of ROS. Conversely, inhibition of meprinα or PI3K-Rac1 inhibitors also decreased p38 activity in OxLDL-stimulated macrophages. In addition, inhibition of meprinα reversed OxLDL-stimulated activation of PI3K. CONCLUSION Meprinα promotes OxLDL-induced plaque formation and ROS release by transactivation of the EGFR, followed by activation of the PI3K/Rac1/p38 pathway.
Collapse
Affiliation(s)
- Pan Gao
- Chongqing Key Disciplines, Department of Geriatrics, Southwest Hospital, Third Military Medical University, Chongqing 400038, China
| | | | | | | | | | | | | | | | | |
Collapse
|