1
|
Boone-Villa D, Ventura-Sobrevilla J, Aguilera-Méndez A, Jiménez-Villarreal J. The effect of adenosine monophosphate-activated protein kinase on lipolysis in adipose tissue: an historical and comprehensive review. Arch Physiol Biochem 2022; 128:7-23. [PMID: 35143739 DOI: 10.1080/13813455.2019.1661495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
CONTEXT Lipolysis is one of the most important pathways for energy management, its control in the adipose tissue (AT) is a potential therapeutic target for metabolic diseases. Adenosine Mono Phosphate-activated Protein Kinase (AMPK) is a key regulatory enzyme in lipids metabolism and a potential target for diabetes and obesity treatment. OBJECTIVE The aim of this work is to analyse the existing information on the relationship of AMPK and lipolysis in the AT. METHODS A thorough search of bibliography was performed in the databases Scopus and Web of Knowledge using the terms lipolysis, adipose tissue, and AMPK, the unrelated publications were excluded, and the documents were analysed. RESULTS Sixty-three works were found and classified in 3 categories: inhibitory effects, stimulatory effect, and diverse relationships; remarkably, the newest researches support an upregulating relationship of AMPK over lipolysis. CONCLUSION The most probable reality is that the relationship AMPK-lipolysis depends on the experimental conditions.
Collapse
Affiliation(s)
- Daniel Boone-Villa
- School of Medicine Northern Unit, Universidad Autonoma de Coahuila, Piedras Negras, México
| | | | - Asdrúbal Aguilera-Méndez
- Institute of Biological Chemistry Research, Universidad Michoacana de San Nicolás de Hidalgo, Morelia, México
| | | |
Collapse
|
2
|
von Loeffelholz C, Coldewey SM, Birkenfeld AL. A Narrative Review on the Role of AMPK on De Novo Lipogenesis in Non-Alcoholic Fatty Liver Disease: Evidence from Human Studies. Cells 2021; 10:cells10071822. [PMID: 34359991 PMCID: PMC8306246 DOI: 10.3390/cells10071822] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 07/01/2021] [Accepted: 07/15/2021] [Indexed: 02/06/2023] Open
Abstract
5′AMP-activated protein kinase (AMPK) is known as metabolic sensor in mammalian cells that becomes activated by an increasing adenosine monophosphate (AMP)/adenosine triphosphate (ATP) ratio. The heterotrimeric AMPK protein comprises three subunits, each of which has multiple phosphorylation sites, playing an important role in the regulation of essential molecular pathways. By phosphorylation of downstream proteins and modulation of gene transcription AMPK functions as a master switch of energy homeostasis in tissues with high metabolic turnover, such as the liver, skeletal muscle, and adipose tissue. Regulation of AMPK under conditions of chronic caloric oversupply emerged as substantial research target to get deeper insight into the pathogenesis of non-alcoholic fatty liver disease (NAFLD). Evidence supporting the role of AMPK in NAFLD is mainly derived from preclinical cell culture and animal studies. Dysbalanced de novo lipogenesis has been identified as one of the key processes in NAFLD pathogenesis. Thus, the scope of this review is to provide an integrative overview of evidence, in particular from clinical studies and human samples, on the role of AMPK in the regulation of primarily de novo lipogenesis in human NAFLD.
Collapse
Affiliation(s)
- Christian von Loeffelholz
- Department of Anesthesiology and Intensive Care Medicine, Jena University Hospital, 07747 Jena, Germany;
- Correspondence: ; Tel.: +49-3641-9323-177; Fax: +49-3641-9323-102
| | - Sina M. Coldewey
- Department of Anesthesiology and Intensive Care Medicine, Jena University Hospital, 07747 Jena, Germany;
- Septomics Research Center, Jena University Hospital, 07747 Jena, Germany
- Center for Sepsis Control and Care, Jena University Hospital, 07747 Jena, Germany
| | - Andreas L. Birkenfeld
- Department of Diabetology Endocrinology and Nephrology, University Hospital Tübingen, Eberhard Karls University Tübingen, 72074 Tübingen, Germany;
- Department of Therapy of Diabetes, Institute of Diabetes Research and Metabolic Diseases in the Helmholtz Center Munich, Eberhard Karls University Tübingen, 72074 Tübingen, Germany
- Division of Diabetes and Nutritional Sciences, Rayne Institute, King’s College London, London SE5 9RJ, UK
| |
Collapse
|
3
|
Pourafshar S, Akhavan NS, George KS, Foley EM, Johnson SA, Keshavarz B, Navaei N, Davoudi A, Clark EA, Arjmandi BH. Egg consumption may improve factors associated with glycemic control and insulin sensitivity in adults with pre- and type II diabetes. Food Funct 2018; 9:4469-4479. [DOI: 10.1039/c8fo00194d] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Daily consumption of one large egg for 12 weeks improves fasting blood glucose, ATP-binding cassette protein family A1, and apolipoprotein A1 in overweight or obese individuals with pre- and type II diabetes.
Collapse
|
4
|
Shao Y, Yuan G, Zhang J, Guo X. Liraglutide reduces lipogenetic signals in visceral adipose of db/db mice with AMPK activation and Akt suppression. DRUG DESIGN DEVELOPMENT AND THERAPY 2015; 9:1177-84. [PMID: 25733821 PMCID: PMC4342181 DOI: 10.2147/dddt.s79175] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Liraglutide, a glucagon-like peptide-1 analog, has been proved to reduce body weight and visceral adipose tissue (VAT) in human studies. In this study, we aimed at examining lipogenetic signal changes in VAT after weight-loss with liraglutide in db/db mice. The mice were divided into two groups: liraglutide-treated group (n=14, 8-week-old, fasting glucose. >10 mmol/L, liraglutide 300 μg/kg twice a day for 4 weeks) and control group (n=14, saline). We found body weight gain and food intake were reduced after liraglutide treatment (P<0.05). Compared to the control group, the VAT weights were significantly lower in the treated group (2.32±0.37 g versus 3.20±0.30 g, P<0.01) than that in control group. In VAT, compared with control group, the lipogenetic transcription factors PPARγ and C/EBPα expressions were both reduced with pAMPK and pACC increased 3.5-fold and 2.31-fold respectively, while pAkt and pP38MAPK were reduced 0.38-fold and 0.62-fold respectively (P<0.01). In conclusion, VAT was reduced after weight loss with AMPK activation and Akt suppression with liraglutide treatment, which was associated with reduction of lipogenetic process in VAT.
Collapse
Affiliation(s)
- Yimin Shao
- Department of Endocrinology, Peking University First Hospital, Beijing, People's Republic of China
| | - Geheng Yuan
- Department of Endocrinology, Peking University First Hospital, Beijing, People's Republic of China
| | - Junqing Zhang
- Department of Endocrinology, Peking University First Hospital, Beijing, People's Republic of China
| | - Xiaohui Guo
- Department of Endocrinology, Peking University First Hospital, Beijing, People's Republic of China
| |
Collapse
|
5
|
Nicotinic acid increases adiponectin secretion from differentiated bovine preadipocytes through G-protein coupled receptor signaling. Int J Mol Sci 2014; 15:21401-18. [PMID: 25411802 PMCID: PMC4264232 DOI: 10.3390/ijms151121401] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2014] [Revised: 10/20/2014] [Accepted: 11/06/2014] [Indexed: 12/17/2022] Open
Abstract
The transition period in dairy cows (3 weeks prepartum until 3 weeks postpartum) is associated with substantial mobilization of energy stores, which is often associated with metabolic diseases. Nicotinic acid (NA) is an antilipolytic and lipid-lowering compound used to treat dyslipidaemia in humans, and it also reduces non-esterified fatty acids in cattle. In mice the G-protein coupled receptor 109A (GPR109A) ligand NA positively affects the secretion of adiponectin, an important modulator of glucose and fat metabolism. In cattle, the corresponding data linking NA to adiponectin are missing. Our objective was to examine the effects of NA on adiponectin and AMPK protein abundance and the expression of mRNAs of related genes such as chemerin, an adipokine that enhances adiponectin secretion in vitro. Differentiated bovine adipocytes were incubated with pertussis toxin (PTX) to verify the involvement of GPR signaling, and treated with 10 or 15 µM NA for 12 or 24 h. NA increased adiponectin concentrations (p ≤ 0.001) and the mRNA abundances of GPR109A (p ≤ 0.05) and chemerin (p ≤ 0.01). Pre-incubation with PTX reduced the adiponectin response to NA (p ≤ 0.001). The NA-stimulated secretion of adiponectin and the mRNA expression of chemerin in the bovine adipocytes were suggestive of GPR signaling-dependent improved insulin sensitivity and/or adipocyte metabolism in dairy cows.
Collapse
|
6
|
Bijland S, Mancini SJ, Salt IP. Role of AMP-activated protein kinase in adipose tissue metabolism and inflammation. Clin Sci (Lond) 2013; 124:491-507. [PMID: 23298225 DOI: 10.1042/cs20120536] [Citation(s) in RCA: 231] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
AMPK (AMP-activated protein kinase) is a key regulator of cellular and whole-body energy balance. AMPK phosphorylates and regulates many proteins concerned with nutrient metabolism, largely acting to suppress anabolic ATP-consuming pathways while stimulating catabolic ATP-generating pathways. This has led to considerable interest in AMPK as a therapeutic target for the metabolic dysfunction observed in obesity and insulin resistance. The role of AMPK in skeletal muscle and the liver has been extensively studied, such that AMPK has been demonstrated to inhibit synthesis of fatty acids, cholesterol and isoprenoids, hepatic gluconeogenesis and translation while increasing fatty acid oxidation, muscle glucose transport, mitochondrial biogenesis and caloric intake. The role of AMPK in the other principal metabolic and insulin-sensitive tissue, adipose, remains poorly characterized in comparison, yet increasing evidence supports an important role for AMPK in adipose tissue function. Obesity is characterized by hypertrophy of adipocytes and the development of a chronic sub-clinical pro-inflammatory environment in adipose tissue, leading to increased infiltration of immune cells. This combination of dysfunctional hypertrophic adipocytes and a pro-inflammatory environment contributes to insulin resistance and the development of Type 2 diabetes. Exciting recent studies indicate that AMPK may not only influence metabolism in adipocytes, but also act to suppress this pro-inflammatory environment, such that targeting AMPK in adipose tissue may be desirable to normalize adipose dysfunction and inflammation. In the present review, we discuss the role of AMPK in adipose tissue, focussing on the regulation of carbohydrate and lipid metabolism, adipogenesis and pro-inflammatory pathways in physiological and pathophysiological conditions.
Collapse
Affiliation(s)
- Silvia Bijland
- Institute of Cardiovascular & Medical Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | | | | |
Collapse
|
7
|
Srivastava RAK, Pinkosky SL, Filippov S, Hanselman JC, Cramer CT, Newton RS. AMP-activated protein kinase: an emerging drug target to regulate imbalances in lipid and carbohydrate metabolism to treat cardio-metabolic diseases. J Lipid Res 2012; 53:2490-514. [PMID: 22798688 DOI: 10.1194/jlr.r025882] [Citation(s) in RCA: 220] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The adenosine monophosphate-activated protein kinase (AMPK) is a metabolic sensor of energy metabolism at the cellular as well as whole-body level. It is activated by low energy status that triggers a switch from ATP-consuming anabolic pathways to ATP-producing catabolic pathways. AMPK is involved in a wide range of biological activities that normalizes lipid, glucose, and energy imbalances. These pathways are dysregulated in patients with metabolic syndrome (MetS), which represents a clustering of major cardiovascular risk factors including diabetes, lipid abnormalities, and energy imbalances. Clearly, there is an unmet medical need to find a molecule to treat alarming number of patients with MetS. AMPK, with multifaceted activities in various tissues, has emerged as an attractive drug target to manage lipid and glucose abnormalities and maintain energy homeostasis. A number of AMPK activators have been tested in preclinical models, but many of them have yet to reach to the clinic. This review focuses on the structure-function and role of AMPK in lipid, carbohydrate, and energy metabolism. The mode of action of AMPK activators, mechanism of anti-inflammatory activities, and preclinical and clinical findings as well as future prospects of AMPK as a drug target in treating cardio-metabolic disease are discussed.
Collapse
|
8
|
van der Spek R, Kreier F, Fliers E, Kalsbeek A. Circadian rhythms in white adipose tissue. PROGRESS IN BRAIN RESEARCH 2012; 199:183-201. [DOI: 10.1016/b978-0-444-59427-3.00011-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
9
|
Finocchietto PV, Holod S, Barreyro F, Peralta JG, Alippe Y, Giovambattista A, Carreras MC, Poderoso JJ. Defective leptin-AMP-dependent kinase pathway induces nitric oxide release and contributes to mitochondrial dysfunction and obesity in ob/ob mice. Antioxid Redox Signal 2011; 15:2395-406. [PMID: 21529143 DOI: 10.1089/ars.2010.3857] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
AIMS Obesity arises on defective neuroendocrine pathways that increase energy intake and reduce mitochondrial metabolism. In the metabolic syndrome, mitochondrial dysfunction accomplishes defects in fatty acid oxidation and reciprocal increase in triglyceride content with insulin resistance and hyperglycemia. Mitochondrial inhibition is attributed to reduced biogenesis, excessive fission, and low adipokine-AMP-activated protein kinase (AMPK) level, but lateness of the respiratory chain contributes to perturbations. Considering that nitric oxide (NO) binds cytochrome oxidase and inhibits respiration, we explored NO as a direct effector of mitochondrial dysfunction in the leptin-deficient ob/ob mice. RESULTS A remarkable three- to fourfold increase in neuronal nitric oxide synthase (nNOS) expression and activity was detected by western blot, citrulline assay, electronic and confocal microscopy, flow cytometry, and NO electrode sensor in mitochondria from ob/ob mice. High NO reduced oxygen uptake in ob/ob mitochondria by inhibition of complex IV and nitration of complex I. Low metabolic status restricted β-oxidation in obese mitochondria and displaced acetyl-CoA to fat synthesis; instead, small interference RNA nNOS caused a phenotype change with fat reduction in ob/ob adipocytes. INNOVATION We evidenced that leptin increases mitochondrial respiration and fat utilization by potentially inhibiting NO release. Accordingly, leptin administration to ob/ob mice prevented nNOS overexpression and mitochondrial dysfunction in vivo and rescued leptin-dependent effects by matrix NO reduction, whereas leptin-Ob-Rb disruption increased the formation of mitochondrial NO in control adipocytes. We demonstrated that in ob/ob, hypoleptinemia is associated with critically low mitochondrial p-AMPK and that, oppositely to p-Akt2, p-AMPK is a negative modulator of nNOS. CONCLUSION Thereby, defective leptin-AMPK pathway links mitochondrial NO to obesity with complex I syndrome and dysfunctional mitochondria.
Collapse
Affiliation(s)
- Paola V Finocchietto
- Laboratory of Oxygen Metabolism, University Hospital, University of Buenos Aires, Argentina.
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Gauthier MS, O'Brien EL, Bigornia S, Mott M, Cacicedo JM, Xu XJ, Gokce N, Apovian C, Ruderman N. Decreased AMP-activated protein kinase activity is associated with increased inflammation in visceral adipose tissue and with whole-body insulin resistance in morbidly obese humans. Biochem Biophys Res Commun 2010; 404:382-7. [PMID: 21130749 DOI: 10.1016/j.bbrc.2010.11.127] [Citation(s) in RCA: 171] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2010] [Accepted: 11/27/2010] [Indexed: 11/20/2022]
Abstract
Inflammation and infiltration of immune cells in white adipose tissue have been implicated in the development of obesity-associated insulin resistance. Likewise, dysregulation of the fuel-sensing enzyme AMP-activated protein kinase (AMPK) has been proposed as a pathogenetic factor for these abnormalities based on both its links to insulin action and its anti-inflammatory effects. In this study, we examined the relationships between AMPK activity, the expression of multiple inflammatory markers in visceral (mesenteric and omental) and abdominal subcutaneous adipose tissue, and whole-body insulin sensitivity in morbidly obese patients (BMI 48±1.9 kg/m(2)) undergoing gastric bypass surgery. AMPK activity was assessed by Western-blots (P-AMPK/T-AMPK) and mRNA levels of various markers of inflammation by qRT-PCR. Patients were stratified as insulin sensitive obese or insulin-resistant obese according to their HOMA-IR values. The results indicate that AMPK activity is lower in visceral than in subcutaneous abdominal adipose tissue of these patients and that this is associated with an increased expression of multiple inflammatory genes. They also revealed that AMPK activity is lower in adipose tissue of obese patients who are insulin resistant (HOMA-IR>2.3) than in BMI-matched insulin sensitive subjects. Furthermore, this difference was evident in all three fat depots. In conclusion, the data suggest that there are close links between reduced AMPK activity and inflammation in white adipose tissue, and whole-body insulin resistance in obese humans. Whether adipose tissue AMPK dysregulation is a causal factor for the development of the inflammation and insulin resistance remains to be determined.
Collapse
Affiliation(s)
- Marie-Soleil Gauthier
- Diabetes and Metabolism Unit, Section of Endocrinology, Boston University School of Medicine, Boston, MA 02118, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|