1
|
Nickels K, Beeson PM, Kielar A. Addressing Phonological Deficit in Primary Progressive Aphasia With Behavioral Intervention and Transcranial Direct Current Stimulation. JOURNAL OF SPEECH, LANGUAGE, AND HEARING RESEARCH : JSLHR 2025:1-38. [PMID: 40227131 DOI: 10.1044/2024_jslhr-24-00250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/15/2025]
Abstract
PURPOSE Despite recognition of the underlying phonological impairment observed in the logopenic and nonfluent variants of primary progressive aphasia (PPA), there is relatively little treatment research directed toward strengthening phonological skills. In this study, we focused on remediating phonological deficits in logopenic and nonfluent PPA. Specifically, we hypothesized that behavioral intervention intended to strengthen phonological manipulation skills and sound-letter correspondences-coupled with transcranial direct current stimulation (tDCS)-would improve language abilities, especially in the written modality. METHOD Twelve individuals with logopenic or nonfluent variants of PPA and 24 neurotypical adults completed neuropsychological assessment that documented spoken and written language deficits in those with PPA. Phonological skills were consistently impaired in relation to other language processes. Following a double-blind, crossover design, six individuals with PPA were randomized to receive active tDCS with phonological intervention during the first treatment phase, and after a 2-month break, they received a second phase of behavioral intervention paired with sham tDCS. The other six individuals were randomized to receive sham first and active tDCS second. Language skills were evaluated before and after each treatment phase and 2 months after the intervention. RESULTS Both treatment groups (tDCS-first and sham-first) made significant improvement in phonological transcoding skills in response to behavioral intervention, but those who received active tDCS first showed stronger gains in phonological manipulation ability. This group also showed positive changes in written narratives, which contained more grammatical sentences with increased meaningful content and more accurate spelling. CONCLUSIONS These data provide compelling evidence supporting an approach that targets phonological deficits in logopenic and nonfluent PPA. Specifically, we found that improved phonological skills resulted in better functional communication ability (text-level writing) relevant to everyday life. Positive outcomes were strongest when tDCS was combined with behavioral treatment from the beginning, suggesting that this combination may potentiate positive changes that extend beyond the initial stimulation period. SUPPLEMENTAL MATERIAL https://doi.org/10.23641/asha.28598195.
Collapse
Affiliation(s)
- Katlyn Nickels
- Department of Speech, Language, and Hearing Sciences, The University of Arizona, Tucson
| | - Pélagie M Beeson
- Department of Speech, Language, and Hearing Sciences, The University of Arizona, Tucson
- Department of Neurology, The University of Arizona, Tucson
| | - Aneta Kielar
- Department of Speech, Language, and Hearing Sciences, The University of Arizona, Tucson
- BIO5 Institute, The University of Arizona, Tucson
| |
Collapse
|
2
|
Gyoda T, Hashimoto R, Inagaki S, Tsushi N, Kitao T, Minati L, Yoshimura N. Electroencephalography-guided transcranial direct current stimulation improves picture-naming performance. Neuroimage 2025; 308:120997. [PMID: 39778817 DOI: 10.1016/j.neuroimage.2024.120997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 09/22/2024] [Accepted: 12/31/2024] [Indexed: 01/11/2025] Open
Abstract
Transcranial direct current stimulation (tDCS) is a potential method for improving verbal function by stimulating Broca's area. Previous studies have shown the effectiveness of using functional magnetic resonance imaging (fMRI) to optimize the stimulation site, but it is unclear whether similar optimization can be achieved using scalp electroencephalography (EEG). Here, we investigated whether tDCS targeting a brain area identified by EEG can improve verbalization performance during a picture-naming task. In Experiment 1, EEG and fMRI data were acquired during a naming task with 21 participants. Comparison of EEG and fMRI data showed overlap in the highest areas of activation for 80% of the participants. In Experiment 2, tDCS was administered to 15 participants using a crossover design, with stimulation targeting the EEG-guided area, Broca's area, and sham conditions. Our findings indicated that tDCS targeting the EEG-guided area significantly improved lexical retrieval speed compared with stimulation over Broca's area and sham conditions. These results support the validity of EEG-based area identification and its use in optimizing the effects of tDCS on improving language function.
Collapse
Affiliation(s)
| | - Ryuichiro Hashimoto
- Department of Language Science, Graduate School of Humanities, Tokyo Metropolitan University, Tokyo, Japan
| | - Satoru Inagaki
- School of Computing, Institute of Science Tokyo (formerly Tokyo Institute of Technology), Yokohama, Japan
| | | | | | - Ludovico Minati
- Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, Japan; Center for Mind/Brain Science (CIMeC), University of Trento, Trento, Italy
| | - Natsue Yoshimura
- School of Computing, Institute of Science Tokyo (formerly Tokyo Institute of Technology), Yokohama, Japan; ATR Brain Information Communication Research Laboratory Group, Kyoto, Japan.
| |
Collapse
|
3
|
Godefroy O, Aarabi A, Béjot Y, Biessels GJ, Glize B, Mok VCT, de Schotten MT, Sibon I, Chabriat H, Roussel M. Are we ready to cure post-stroke cognitive impairment? Many key prerequisites can be achieved quickly and easily. Eur Stroke J 2025; 10:22-35. [PMID: 39129252 PMCID: PMC11569528 DOI: 10.1177/23969873241271651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 07/02/2024] [Indexed: 08/13/2024] Open
Abstract
PURPOSE Post-stroke (PS) cognitive impairment (CI) is frequent and its devastating functional and vital consequences are well known. Despite recent guidelines, they are still largely neglected. A large number of recent studies have re-examined the epidemiology, diagnosis, imaging determinants and management of PSCI. The aim of this update is to determine whether these new data answer the questions that are essential to reducing PSCI, the unmet needs, and steps still to be taken. METHODS Literature review of stroke unit-era studies examining key steps in the management of PSCI: epidemiology and risk factors, diagnosis (cognitive profile and assessments), imaging determinants (quantitative measures, voxelwise localization, the disconnectome and associated Alzheimer's disease [AD]) and treatment (secondary prevention, symptomatic drugs, rehabilitation and noninvasive brain stimulation) of PSCI. FINDINGS (1) the prevalence of PSCI of approximately 50% is probably underestimated; (2) the sensitivity of screening tests should be improved to detect mild PSCI; (3) comprehensive assessment is now well-defined and should include apathy; (4) easily available factors can identify patients at high risk of PSCI; (5) key imaging determinants are the location and volume of the lesion and the resulting disconnection, associated AD and brain atrophy; WMH, ePVS, microhemorrhages, hemosiderosis, and cortical microinfarcts may contribute to cognitive impairment but are more likely to be markers of brain vulnerability or associated AD that reduce PS recovery; (6) remote and online assessment is a promising approach for selected patients; (7) secondary stroke prevention has not been proven to prevent PSCI; (8) symptomatic drugs are ineffective in treating PSCI and apathy; (9) in addition to cognitive rehabilitation, the benefits of training platforms and computerized training are yet to be documented; (10) the results and the magnitude of improvement of noninvasive brain stimulation, while very promising, need to be substantiated by large, high-quality, sham-controlled RCTs. DISCUSSION AND CONCLUSION These major advances pave the way for the reduction of PSCI. They include (1) the development of more sensitive screening tests applicable to all patients and (2) online remote assessment; crossvalidation of (3) clinical and (4) imaging factors to (5) identify patients at risk, as well as (6) factors that prompt a search for associated AD; (7) the inclusion of cognitive outcome as a secondary endpoint in acute and secondary stroke prevention trials; and (8) the validation of the benefit of noninvasive brain stimulation through high-quality, randomized, sham-controlled trials. Many of these objectives can be rapidly and easily attained.
Collapse
Affiliation(s)
- Olivier Godefroy
- Departments of Neurology, Amiens University Hospital, France
- Laboratory of Functional Neurosciences (UR UPJV 4559), Jules Verne University of Picardie, Amiens, France
| | - Ardalan Aarabi
- Laboratory of Functional Neurosciences (UR UPJV 4559), Jules Verne University of Picardie, Amiens, France
| | - Yannick Béjot
- Department of Neurology, Dijon University Hospital, France
- Dijon Stroke Registry, EA7460, University of Burgundy, France
| | - Geert Jan Biessels
- Department of Neurology and Neurosurgery, UMC Utrecht Brain Center, Utrecht, the Netherlands
| | - Bertrand Glize
- Department of Rehabilitation, University Hospital, Bordeaux, France
| | - Vincent CT Mok
- Division of Neurology, Department of Medicine and Therapeutics, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR
| | - Michel Thiebaut de Schotten
- Groupe d’Imagerie Neurofonctionnelle, Institut des Maladies Neurodegeneratives-UMR 5293 CNRS CEA University of Bordeaux, Bordeaux, France
- Brain Connectivity and Behaviour Laboratory Sorbonne Universities Paris, France
| | - Igor Sibon
- Department of Neurology, University Hospital, Bordeaux, France
| | - Hugues Chabriat
- Department of Neurology, Lariboisière Hospital, and INSERM NeuroDiderot UMR 1141, Paris, France
| | - Martine Roussel
- Departments of Neurology, Amiens University Hospital, France
- Laboratory of Functional Neurosciences (UR UPJV 4559), Jules Verne University of Picardie, Amiens, France
| |
Collapse
|
4
|
Zheng ZS, Wang J, Lee S, Wang KXL, Zhang B, Howard M, Rosario E, Schnakers C. Cerebellar transcranial direct current stimulation improves quality of life in individuals with chronic poststroke aphasia. Sci Rep 2025; 15:6898. [PMID: 40011597 DOI: 10.1038/s41598-025-90927-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 02/17/2025] [Indexed: 02/28/2025] Open
Abstract
The cerebellum has emerged as a potential target for transcranial direct current stimulation (tDCS) in post-stroke aphasia (PSA) due to its role in language processing and relative preservation compared to supratentorial lesions. Recent evidence also highlights the cerebellum's involvement in affective and social processes, suggesting potential broader effects of cerebellar modulation. This study investigated the efficacy of anodal tDCS over the right cerebellum paired with speech and language therapy in enhancing language functions and quality of life in individuals with PSA. Twenty-two participants with chronic PSA received cerebellar tDCS, while historical sham control data from 25 participants were obtained. Language outcomes were assessed using the Western Aphasia Battery-Revised (WAB-R), and secondary outcomes included patient-reported measures of communication effectiveness and quality of life. Mixed-design analyses of variance were conducted to examine treatment effects. No significant Group x Time interaction was found for WAB-R scores, indicating that tDCS did not provide additional language benefits over speech therapy. However, a significant Group x Time interaction was observed for the Stroke and Aphasia Quality of Life Scale-39 scores, driven by improvements in the Psychosocial, Physical, and Energy subdomains in the tDCS group. Cerebellar tDCS did not significantly improve language outcomes in PSA individuals but enhanced specific aspects of quality of life. These findings highlight the cerebellum's multifaceted role in cognitive, affective, and sensorimotor processes. Future research should focus on conducting well-powered, randomized, double-blind, and concurrent trials to validate these findings and explore optimal stimulation parameters in PSA rehabilitation.Trial registration: The trial is registered at ClinicalTrials.gov with the registration number NCT03699930. The date of registration is 10/05/2018.
Collapse
Affiliation(s)
- Zhong Sheng Zheng
- Research Institute, Casa Colina Hospital and Centers for Healthcare, 255 E. Bonita Ave, Pomona, CA, 91767, USA.
| | - Jing Wang
- Research Institute, Casa Colina Hospital and Centers for Healthcare, 255 E. Bonita Ave, Pomona, CA, 91767, USA
| | - Sharon Lee
- Research Institute, Casa Colina Hospital and Centers for Healthcare, 255 E. Bonita Ave, Pomona, CA, 91767, USA
| | | | - Ben Zhang
- Research Institute, Casa Colina Hospital and Centers for Healthcare, 255 E. Bonita Ave, Pomona, CA, 91767, USA
| | - Melissa Howard
- Research Institute, Casa Colina Hospital and Centers for Healthcare, 255 E. Bonita Ave, Pomona, CA, 91767, USA
| | - Emily Rosario
- Research Institute, Casa Colina Hospital and Centers for Healthcare, 255 E. Bonita Ave, Pomona, CA, 91767, USA
| | - Caroline Schnakers
- Research Institute, Casa Colina Hospital and Centers for Healthcare, 255 E. Bonita Ave, Pomona, CA, 91767, USA
| |
Collapse
|
5
|
Yun SJ, Hyun SE, Lee WH, Oh BM, Seo HG. Comparison of stimulation sites enhancing dual-task performance using transcranial direct current stimulation in Parkinson's disease. NPJ Parkinsons Dis 2025; 11:19. [PMID: 39827184 PMCID: PMC11742881 DOI: 10.1038/s41531-025-00869-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 01/04/2025] [Indexed: 01/22/2025] Open
Abstract
This pilot randomized crossover study aimed to compare the effects of stimulating various transcranial direct current stimulation (tDCS) target sites to improve dual-task performance in patients with Parkinson's disease (PD). Nineteen patients with idiopathic PD completed four sessions of 2 mA anodal tDCS for 20 min at randomly assigned sites: the primary motor cortex (M1), left dorsolateral prefrontal cortex (DLPFC), ventromedial prefrontal cortex, and sham stimulation. Anodal M1 tDCS induced statistically significant improvements in single-task and cognitive dual-task timed up and go test. Additionally, enhancements were noted in the color-word Stroop test and trail-making test-Trail B following left DLPFC stimulation. However, none of the stimulation sites showed any significant changes in the dual-task effect. Overall, these results suggest that although tDCS targeting the M1 and DLPFC may immediately enhance motor and cognitive performances, respectively, neither has a significant effect on dual-task interference.
Collapse
Affiliation(s)
- Seo Jung Yun
- Department of Rehabilitation Medicine, Seoul National University Hospital, Seoul, Republic of Korea
- Department of Rehabilitation Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
- Department of Human Systems Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Sung Eun Hyun
- Department of Rehabilitation Medicine, Seoul National University Hospital, Seoul, Republic of Korea
- Department of Rehabilitation Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Woo Hyung Lee
- Department of Rehabilitation Medicine, Seoul National University Hospital, Seoul, Republic of Korea
- Department of Rehabilitation Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Byung-Mo Oh
- Department of Rehabilitation Medicine, Seoul National University Hospital, Seoul, Republic of Korea
- Department of Rehabilitation Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Han Gil Seo
- Department of Rehabilitation Medicine, Seoul National University Hospital, Seoul, Republic of Korea.
- Department of Rehabilitation Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
6
|
Raymer AM, Johnson RK. Effectiveness of Transcranial Direct Current Stimulation as an Adjuvant to Aphasia Treatment Following Stroke: Evidence From Systematic Reviews and Meta-Analyses. AMERICAN JOURNAL OF SPEECH-LANGUAGE PATHOLOGY 2024; 33:3431-3443. [PMID: 38306506 DOI: 10.1044/2024_ajslp-23-00312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2024]
Abstract
PURPOSE Transcranial direct current stimulation (tDCS) is a neuromodulation tool to amplify neural excitability and enhance outcomes associated with speech-language therapy (SLT). Stimulation currents to the left and right hemispheres vary in applying anodal (excitatory), cathodal (inhibitory), or bihemispheric signals. Several systematic reviews (SRs) and meta-analyses (MAs) have summarized the large literature examining tDCS for aphasia rehabilitation. The purpose of this project was to appraise the quality of SRs and MAs of tDCS for aphasia and examine the weight of the evidence for language outcomes in individuals with aphasia beyond SLT alone. METHOD We searched four databases for SRs/MAs examining effects of tDCS for poststroke aphasia. We identified 16 reviews, with nine that incorporated MA to quantify results. Two reviewers reliably coded articles for methodological rigor using the AMSTAR 2 (A MeaSurement Tool to Assess Systematic Reviews, Version 2). We then summarized findings of the 16 reviews. RESULTS The AMSTAR 2 appraisal criteria suggest that critical weaknesses were noted among all reviews except those by Elsner et al. (2015, 2019). Reviews summarized three to 48 studies, as some included only randomized crossover trials and others included all trial designs. All SRs and one MA reported improvements following tDCS stimulation for general aphasia abilities and measures of repetition and speech fluency. Five recent MAs reported significant naming improvements following tDCS using all stimulation arrays. No tDCS effects were noted for comprehension measures. CONCLUSIONS As the tDCS literature matured, the conclusions of MAs merged with earlier SRs reporting statistically positive benefits over SLT alone. Most consistent results are reported for naming measures, leaving some to question the clinical significance of tDCS effects for functional measures of aphasia recovery. Although the tDCS literature is expansive, important questions remain before the technique can be confidently recommended for clinical practice.
Collapse
Affiliation(s)
- Anastasia M Raymer
- School of Speech-Language Pathology, Old Dominion University, Norfolk, VA
| | - Rachel K Johnson
- School of Speech-Language Pathology, Old Dominion University, Norfolk, VA
| |
Collapse
|
7
|
Zhao J, Meng Q, Qi S, Zhao H, Xia L. Effect of non-invasive brain stimulation on post-stroke cognitive impairment: a meta-analysis. Front Neurol 2024; 15:1424792. [PMID: 39479008 PMCID: PMC11521814 DOI: 10.3389/fneur.2024.1424792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Accepted: 09/25/2024] [Indexed: 11/02/2024] Open
Abstract
Background Previous studies have suggested that repetitive transcranial magnetic stimulation (rTMS) may be an effective and safe alternative treatment for post-stroke cognitive impairment (PSCI). Similarly, the application of transcranial direct current stimulation (tDCS) during stroke rehabilitation has been shown to improve cognitive function in PSCI patients. However, there have been conflicting results from some studies. Therefore, this study aims to conduct a meta-analysis to evaluate the effects of tDCS and rTMS on PSCI. Methods The meta-analysis search for articles published from the initial availability date to 5 February 2024 in databases. The extracted study data were entered into STATA 12.0 software for statistical analysis. Results This meta-analysis provides evidence that both rTMS and tDCS have a positive impact on general cognitive function in PSCI patients [immediate effect of rTMS: standard mean difference (SMD) = 2.58, 95% confidence interval (CI) = 1.44 to 3.71; long-term effect of rTMS: SMD = 2.33, 95% CI = 0.87-3.78; immediate effect of tDCS: SMD = 2.22, 95% CI = 1.31-3.12]. Specifically, rTMS was found to significantly improve attention, language, memory, and visuospatial functions, while it did not show a significant therapeutic effect on executive function (attention: SMD = 3.77, 95% CI = 2.30-5.24; executive function: SMD = -0.52, 95% CI = -3.17-2.12; language: SMD = 3.43, 95% CI = 1.50-5.36; memory: SMD = 3.52, 95% CI = 1.74-5.30; visuospatial function: SMD = 4.71, 95% CI = 2.61-6.80). On the other hand, tDCS was found to significantly improve executive and visuospatial functions but did not show a significant improvement in attention function and memory (attention: SMD = 0.63, 95% CI = -0.30-1.55; executive function: SMD = 2.15, 95% CI = 0.87-3.43; memory: SMD = 0.99, 95% CI = -0.81-2.80; visuospatial function: SMD = 2.64, 95% CI = 1.04-4.23). Conclusion In conclusion, this meta-analysis demonstrates that both rTMS and tDCS are effective therapeutic techniques for improving cognitive function in PSCI. However, more large-scale studies are needed to further investigate the effects of these techniques on different cognitive domains in PSCI.
Collapse
Affiliation(s)
| | | | | | | | - Ling Xia
- Department of Rehabilitation Medicine, Zibo Central Hospital, Zibo, Shandong, China
| |
Collapse
|
8
|
Sheng Zheng Z, Xing-Long Wang K, Millan H, Lee S, Howard M, Rothbart A, Rosario E, Schnakers C. Transcranial direct stimulation over left inferior frontal gyrus improves language production and comprehension in post-stroke aphasia: A double-blind randomized controlled study. BRAIN AND LANGUAGE 2024; 257:105459. [PMID: 39241469 DOI: 10.1016/j.bandl.2024.105459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 04/26/2024] [Accepted: 08/21/2024] [Indexed: 09/09/2024]
Abstract
Transcranial direct current stimulation (tDCS) targeting Broca's area has shown promise for augmenting language production in post-stroke aphasia (PSA). However, previous research has been limited by small sample sizes and inconsistent outcomes. This study employed a double-blind, parallel, randomized, controlled design to evaluate the efficacy of anodal Broca's tDCS, paired with 20-minute speech and language therapy (SLT) focused primarily on expressive language, across 5 daily sessions in 45 chronic PSA patients. Utilizing the Western Aphasia Battery-Revised, which assesses a spectrum of linguistic abilities, we measured changes in both expressive and receptive language skills before and after intervention. The tDCS group demonstrated significant improvements over sham in aphasia quotient, auditory verbal comprehension, and spontaneous speech. Notably, tDCS improved both expressive and receptive domains, whereas sham only benefited expression. These results underscore the broader linguistic benefits of Broca's area stimulation and support the integration of tDCS with SLT to advance aphasia rehabilitation.
Collapse
Affiliation(s)
- Zhong Sheng Zheng
- Research Institute, Casa Colina Hospital and Centers for Healthcare, Pomona, CA, USA.
| | | | - Henry Millan
- Research Institute, Casa Colina Hospital and Centers for Healthcare, Pomona, CA, USA
| | - Sharon Lee
- Research Institute, Casa Colina Hospital and Centers for Healthcare, Pomona, CA, USA
| | - Melissa Howard
- Research Institute, Casa Colina Hospital and Centers for Healthcare, Pomona, CA, USA
| | - Aaron Rothbart
- Research Institute, Casa Colina Hospital and Centers for Healthcare, Pomona, CA, USA
| | - Emily Rosario
- Research Institute, Casa Colina Hospital and Centers for Healthcare, Pomona, CA, USA
| | - Caroline Schnakers
- Research Institute, Casa Colina Hospital and Centers for Healthcare, Pomona, CA, USA
| |
Collapse
|
9
|
Coemans S, De Aguiar V, Paquier P, Tsapkini K, Engelborghs S, Struys E, Keulen S. Effects of Cerebellar Transcranial Direct Current Stimulation in Bilingual Logopenic Primary Progressive Aphasia. J Alzheimers Dis Rep 2024; 8:1253-1273. [PMID: 39434819 PMCID: PMC11491977 DOI: 10.3233/adr-240034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 06/21/2024] [Indexed: 10/23/2024] Open
Abstract
Background Primary progressive aphasia (PPA) is a language-based dementia, causing progressive decline of language functions. Transcranial direct current stimulation (tDCS) can augment effects of speech-and language therapy (SLT). However, this has not been investigated in bilingual patients with PPA. Objective We evaluated the case of Mr. G., a French (native language, L1)/Dutch (second language, L2)-speaking 59-year-old male, with logopenic PPA, associated with Alzheimer's disease pathology. We aimed to characterize his patterns of language decline and evaluate the effects of tDCS applied to the right posterolateral cerebellum on his language abilities and executive control circuits. Methods In a within-subject controlled design, Mr. G received 9 sessions of sham and anodal tDCS combined with semantic and phonological SLT in L2. Changes were evaluated with an oral naming task in L2, the Boston Naming Task and subtests of the Bilingual Aphasia Test in in L2 and L1, the Stroop Test and Attention Network Test, before and after each phase of stimulation (sham/tDCS) and at 2-month follow-up. Results After anodal tDCS, but not after sham, results improved significantly on oral naming in L2, with generalization to untrained tasks and cross-language transfer (CLT) to L1: picture naming in both languages, syntactic comprehension and repetition in L2, and response times in the incongruent condition of the Attention Network Test, indicating increased inhibitory control. Conclusions Our preliminary results are the first to indicate that tDCS applied to the cerebellum may be a valuable tool to enhance the effects of SLT in bilingual patients with logopenic PPA.
Collapse
Affiliation(s)
- Silke Coemans
- Brussels Centre for Language Studies (BCLS), Vrije Universiteit Brussels (VUB), Brussels, Belgium
| | - Vânia De Aguiar
- Groningen Center for Language and Cognition (CLCG), University of Groningen, Groningen, The Netherlands
- Department of Radiation Oncology, University of Groningen, University Medical Center Groningen, The Netherlands
| | - Philippe Paquier
- Brussels Centre for Language Studies (BCLS), Vrije Universiteit Brussels (VUB), Brussels, Belgium
- Center for Neurosciences (C4N), Vrije Universiteit Brussels (VUB), Brussels, Belgium
| | - Kyrana Tsapkini
- Department of Neurology, Johns Hopkins School of Medicine, Baltimore, MD, USA
- Department of Cognitive Science, Johns Hopkins University, Baltimore, MD, USA
| | - Sebastiaan Engelborghs
- Center for Neurosciences (C4N), Vrije Universiteit Brussels (VUB), Brussels, Belgium
- Department of Neurology, Universitair Ziekenhuis Brussel (UZ Brussel), Brussels, Belgium
- Department of Biomedical Sciences, Universiteit Antwerpen (UA), Antwerp, Belgium
| | - Esli Struys
- Brussels Centre for Language Studies (BCLS), Vrije Universiteit Brussels (VUB), Brussels, Belgium
- Center for Neurosciences (C4N), Vrije Universiteit Brussels (VUB), Brussels, Belgium
| | - Stefanie Keulen
- Brussels Centre for Language Studies (BCLS), Vrije Universiteit Brussels (VUB), Brussels, Belgium
| |
Collapse
|
10
|
Lapenta OM, Rêgo GG, Boggio PS. Transcranial electrical stimulation for procedural learning and rehabilitation. Neurobiol Learn Mem 2024; 213:107958. [PMID: 38971460 DOI: 10.1016/j.nlm.2024.107958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 06/26/2024] [Accepted: 07/01/2024] [Indexed: 07/08/2024]
Abstract
Procedural learning is the acquisition of motor and non-motor skills through a gradual process that increases with practice. Impairments in procedural learning have been consistently demonstrated in neurodevelopmental, neurodegenerative, and neuropsychiatric disorders. Considering that noninvasive brain stimulation modulates brain activity and boosts neuroplastic mechanisms, we reviewed the effects of coupling transcranial direct current stimulation (tDCS) with training methods for motor and non-motor procedural learning to explore tDCS potential use as a tool for enhancing implicit learning in healthy and clinical populations. The review covers tDCS effects over i. motor procedural learning, from basic to complex activities; ii. non-motor procedural learning; iii. procedural rehabilitation in several clinical populations. We conclude that targeting the primary motor cortex and prefrontal areas seems the most promising for motor and non-motor procedural learning, respectively. For procedural rehabilitation, the use of tDCS is yet at an early stage but some effectiveness has been reported for implicit motor and memory learning. Still, systematic comparisons of stimulation parameters and target areas are recommended for maximising the effectiveness of tDCS and its robustness for procedural rehabilitation.
Collapse
Affiliation(s)
- Olivia Morgan Lapenta
- Psychological Neuroscience Laboratory, Psychology Research Center, School of Psychology, University of Minho - Rua da Universidade, 4710-057 Braga, Portugal.
| | - Gabriel Gaudencio Rêgo
- Social and Cognitive Neuroscience Laboratory, Mackenzie Presbyterian University - Rua Piauí, 181, 01241-001 São Paulo, Brazil; National Institute of Science and Technology on Social and Affective Neuroscience (INCT-SANI), São Paulo, Brazil
| | - Paulo Sérgio Boggio
- Social and Cognitive Neuroscience Laboratory, Mackenzie Presbyterian University - Rua Piauí, 181, 01241-001 São Paulo, Brazil; National Institute of Science and Technology on Social and Affective Neuroscience (INCT-SANI), São Paulo, Brazil
| |
Collapse
|
11
|
Liu N, Ye TF, Yu QW. The role of the right hemispheric homologous language pathways in recovery from post-stroke aphasia: A systematic review. Psychiatry Res Neuroimaging 2024; 343:111866. [PMID: 39098261 DOI: 10.1016/j.pscychresns.2024.111866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 07/06/2024] [Accepted: 07/31/2024] [Indexed: 08/06/2024]
Abstract
The involvement of the right hemisphere, mainly the activation of the right cerebral regions, in recovery from post-stroke aphasia has been widely recognized. In contrast, the role of the right white matter pathways in the recovery from post-stroke aphasia is rarely understood. In this study, we aimed to provide a primary overview of the correlation between the structural integrity of the right hemispheric neural tracts based on the dual-stream model of language organization and recovery from post-stroke aphasia by systematically reviewing prior longitudinal interventional studies. By searching electronic databases for relevant studies according to a standard protocol, a total of 10 records (seven group studies and three case studies) including 79 participants were finally included. After comprehensively analyzing these studies and reviewing the literature, although no definite correlation was found between the right hemispheric neural tracts and recovery from post-stroke aphasia, our review provideds a new perspective for investigating the linguistic role of the right hemispheric neural tracts. This suggests that the involvement of the right hemispheric neural tracts in recovery from post-stroke aphasia may be mediated by multiple factors; thus, this topic should be comprehensively investigated in the future.
Collapse
Affiliation(s)
- Na Liu
- Department of Rehabilitation Medicine, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou 215008, Jiangsu, China
| | - Tian-Fen Ye
- Department of Rehabilitation Medicine, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou 215008, Jiangsu, China
| | - Qi-Wei Yu
- Department of Rehabilitation Medicine, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou 215008, Jiangsu, China.
| |
Collapse
|
12
|
Rubi-Fessen I, Gerbershagen K, Stenneken P, Willmes K. Early Boost of Linguistic Skills? Individualized Non-Invasive Brain Stimulation in Early Postacute Aphasia. Brain Sci 2024; 14:789. [PMID: 39199482 PMCID: PMC11353206 DOI: 10.3390/brainsci14080789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 07/26/2024] [Accepted: 07/29/2024] [Indexed: 09/01/2024] Open
Abstract
Non-invasive brain stimulation, such as transcranial direct current stimulation (tDCS), has been shown to increase the outcome of speech and language therapy (SLT) in chronic aphasia. Only a few studies have investigated the effect of add-on tDCS on SLT in the early stage of aphasia; this may be due to methodological reasons, in particular the influence of spontaneous remission and the difficulty of establishing stimulation protocols in clinical routines. Thirty-seven participants with subacute aphasia (PwA) after stroke (23 men, 14 women; mean age 62 ± 12 years; mean duration 49 ± 28 days) were included in two consecutive periods of treatment lasting two weeks each. During the first period (P1) the participants received 10 sessions of SLT, during the second period (P2) the aphasia therapy was supplemented by anodal left hemispheric 2 mA tDCS over the left hemisphere. Severity-specific language tests (Aachen Aphasia Test (AAT), n = 27 and Bielefeld Aphasia Screening-Reha (BIAS-R), n = 10) were administered before P1, between P1 and P2, and after P2. Where information was available, the results were corrected for spontaneous remission (AAT sample), and the therapy outcomes of P1 and P2 were compared. Participants' overall language abilities improved significantly during P1 and P2. However, improvement-as measured by the AAT profile level or the BIAS-R mean percentage value-during P2 (with tDCS) was significantly higher than during P1 (p < 0.001; AAT sample and p = 0.005; BIAS-R sample). Thus, tDCS protocols can be implemented in early aphasia rehabilitation. Despite the limitations of the research design, which are also discussed from an implementation science perspective, this is preliminary evidence that an individually tailored anodal tDCS can have a significant add-on effect on the outcome of behavioral aphasia therapy in subacute aphasia.
Collapse
Affiliation(s)
- Ilona Rubi-Fessen
- Neurological Rehabilitation Hospital, RehaNova Köln, 51109 Cologne, Germany;
- Department of Rehabilitation and Special Education, Faculty of Human Sciences, University of Cologne, 50931 Cologne, Germany;
| | | | - Prisca Stenneken
- Department of Rehabilitation and Special Education, Faculty of Human Sciences, University of Cologne, 50931 Cologne, Germany;
| | - Klaus Willmes
- Department of Neurology, Medical Faculty, RWTH Aachen University, 52074 Aachen, Germany;
| |
Collapse
|
13
|
Williams EER, Sghirripa S, Rogasch NC, Hordacre B, Attrill S. Non-invasive brain stimulation in the treatment of post-stroke aphasia: a scoping review. Disabil Rehabil 2024; 46:3802-3826. [PMID: 37828899 DOI: 10.1080/09638288.2023.2259299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 09/06/2023] [Accepted: 09/10/2023] [Indexed: 10/14/2023]
Abstract
PURPOSE Aphasia is an acquired language impairment that commonly results from stroke. Non-invasive brain stimulation (NIBS) might accelerate aphasia recovery trajectories and has seen mounting popularity in recent aphasia rehabilitation research. The present review aimed to: (1) summarise all existing literature on NIBS as a post-stroke aphasia treatment; and (2) provide recommendations for future NIBS-aphasia research. MATERIALS AND METHODS Databases for published and grey literature were searched using scoping review methodology. 278 journal articles, conference abstracts/posters, and books, and 38 items of grey literature, were included for analysis. RESULTS Quantitative analysis revealed that ipsilesional anodal transcranial direct current stimulation and contralesional 1-Hz repetitive transcranial magnetic stimulation were the most widely used forms of NIBS, while qualitative analysis identified four key themes including: the roles of the hemispheres in aphasia recovery and their relationship with NIBS; heterogeneity of individuals but homogeneity of subpopulations; individualisation of stimulation parameters; and much remains under-explored in the NIBS-aphasia literature. CONCLUSIONS Taken together, these results highlighted systemic challenges across the field such as small sample sizes, inter-individual variability, lack of protocol optimisation/standardisation, and inadequate focus on aphasiology. Four key recommendations are outlined herein to guide future research and refine NIBS methods for post-stroke aphasia treatment.
Collapse
Affiliation(s)
- Ellen E R Williams
- School of Biomedicine, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, Australia
- Hopwood Centre for Neurobiology, Lifelong Health Theme, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, Australia
| | - Sabrina Sghirripa
- School of Biomedicine, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, Australia
- Hopwood Centre for Neurobiology, Lifelong Health Theme, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, Australia
| | - Nigel C Rogasch
- School of Biomedicine, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, Australia
- Hopwood Centre for Neurobiology, Lifelong Health Theme, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, Australia
- Turner Institute of Brain and Mental Health, School of Psychological Sciences, Monash University, Melbourne, Australia
| | - Brenton Hordacre
- Innovation, IMPlementation and Clinical Translation (IIMPACT) in Health, Allied Health and Human Performance, The University of South Australia, Adelaide, Australia
| | - Stacie Attrill
- Speech Pathology, School of Allied Health Science and Practice, The University of Adelaide, Adelaide, Australia
| |
Collapse
|
14
|
Ashaie SA, Hernandez-Pavon JC, Houldin E, Cherney LR. Behavioral, Functional Imaging, and Neurophysiological Outcomes of Transcranial Direct Current Stimulation and Speech-Language Therapy in an Individual with Aphasia. Brain Sci 2024; 14:714. [PMID: 39061454 PMCID: PMC11274865 DOI: 10.3390/brainsci14070714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 07/11/2024] [Accepted: 07/11/2024] [Indexed: 07/28/2024] Open
Abstract
Speech-language therapy (SLT) is the most effective technique to improve language performance in persons with aphasia. However, residual language impairments remain even after intensive SLT. Recent studies suggest that combining transcranial direct current stimulation (tDCS) with SLT may improve language performance in persons with aphasia. However, our understanding of how tDCS and SLT impact brain and behavioral relation in aphasia is poorly understood. We investigated the impact of tDCS and SLT on a behavioral measure of scripted conversation and on functional connectivity assessed with multiple methods, both resting-state functional magnetic resonance imaging (rs-fMRI) and resting-state electroencephalography (rs-EEG). An individual with aphasia received 15 sessions of 20-min cathodal tDCS to the right angular gyrus concurrent with 40 min of SLT. Performance during scripted conversation was measured three times at baseline, twice immediately post-treatment, and at 4- and 8-weeks post-treatment. rs-fMRI was measured pre-and post-3-weeks of treatment. rs-EEG was measured on treatment days 1, 5, 10, and 15. Results show that both communication performance and left hemisphere functional connectivity may improve after concurrent tDCS and SLT. Results are in line with aphasia models of language recovery that posit a beneficial role of left hemisphere perilesional areas in language recovery.
Collapse
Affiliation(s)
- Sameer A. Ashaie
- Think and Speak, Shirley Ryan AbilityLab, Chicago, IL 60611, USA; (S.A.A.); (E.H.)
- Physical Medicine and Rehabilitation, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | | | - Evan Houldin
- Think and Speak, Shirley Ryan AbilityLab, Chicago, IL 60611, USA; (S.A.A.); (E.H.)
- Physical Medicine and Rehabilitation, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Leora R. Cherney
- Think and Speak, Shirley Ryan AbilityLab, Chicago, IL 60611, USA; (S.A.A.); (E.H.)
- Physical Medicine and Rehabilitation, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| |
Collapse
|
15
|
Arheix-Parras S, Franco J, Siklafidou IP, Villain M, Rogue C, Python G, Glize B. Neuromodulation of the Right Motor Cortex of the Lips With Repetitive Transcranial Magnetic Stimulation to Reduce Phonological Impairment and Improve Naming in Three Persons With Aphasia: A Single-Case Experimental Design. AMERICAN JOURNAL OF SPEECH-LANGUAGE PATHOLOGY 2024; 33:2023-2040. [PMID: 38875479 DOI: 10.1044/2024_ajslp-23-00215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2024]
Abstract
PURPOSE Repetitive transcranial magnetic stimulation (rTMS) can enhance aphasia recovery. Most studies have used inhibitory stimulation targeting the right inferior frontal gyrus. However, the motor cortex, observed to contribute to the prediction of aphasia recovery, is involved in word production and could be an appropriate target for rTMS. We aimed to observe behavioral changes in a picture naming task induced by inhibitory rTMS targeting the right motor cortex of the lips in people with poststroke aphasia. METHOD Using a single-case experimental design, we included three participants with chronic poststroke aphasia who had phonological deficits. Each participant performed a verbal picture naming task 3 times a week for 2, 3, or 4 weeks (pseudorandom across participants) to establish a baseline naming ability for each participant. These were not therapy sessions, and no feedback was provided. Then, each participant received the intervention, inhibitory continuous theta burst stimulation targeting the right motor cortex of the lips, 3 times a week for 2 weeks. Naming testing continued 3 times a week, for these latter 2 weeks. No therapy was performed at any time during the study. RESULTS Visual analysis of the graphs showed a positive effect of rTMS for P2 and P3 on picture naming accuracy and a tendency toward improvement for P1. Statistical analysis showed an improvement after rTMS for P1 (τ = 0.544, p = .013, SETau = 0.288) and P2 (τ = 0.708, p = .001, SETau = 0.235). For P3, even if the intervention allowed some improvement, this was statistically nonsignificant due to a learning effect during the baseline naming testing, which lasted the longest, 4 weeks. Regarding specific language features, phonological errors significantly decreased in all patients. CONCLUSIONS The motor cortex of the lips could be an appropriate target for rTMS to improve naming in people with poststroke aphasia suffering from a phonological deficit. This suggests the possibility to individualize the target for rTMS, according to the patient's linguistic impairment.
Collapse
Affiliation(s)
- Sophie Arheix-Parras
- ACTIVE Team, Bordeaux Population Health, University of Bordeaux, France
- Institut Universitaire des Sciences de la Réadaptation, University of Bordeaux, France
| | - Julie Franco
- Faculty of Psychology and Educational Sciences, University of Geneva, Switzerland
| | | | - Marie Villain
- Department of Physical and Rehabilitation Medicine, AP-HP La Pitié Salpêtrière - Charles Foix University Hospital, France
- AP-HP, Handicap Moteur et Cognitif & Réadaptation, Sorbonne Université, Paris, France
- ICM, INSERM UMRS 1127, CNRS, UMR 7225, Brain and Spine Institute, Paris, France
| | - Caroline Rogue
- Department of Physical Medicine and Rehabilitation, Centre Hospitalier Universitaire de Bordeaux, France
| | - Grégoire Python
- Faculty of Psychology and Educational Sciences, University of Geneva, Switzerland
- Department of Clinical Neurosciences, Lausanne University Hospital, Switzerland
| | - Bertrand Glize
- ACTIVE Team, Bordeaux Population Health, University of Bordeaux, France
- Institut Universitaire des Sciences de la Réadaptation, University of Bordeaux, France
- Department of Physical Medicine and Rehabilitation, Centre Hospitalier Universitaire de Bordeaux, France
| |
Collapse
|
16
|
Sloane KL, Hamilton RH. Transcranial Direct Current Stimulation to Ameliorate Post-Stroke Cognitive Impairment. Brain Sci 2024; 14:614. [PMID: 38928614 PMCID: PMC11202055 DOI: 10.3390/brainsci14060614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 06/04/2024] [Accepted: 06/12/2024] [Indexed: 06/28/2024] Open
Abstract
Post-stroke cognitive impairment is a common and disabling condition with few effective therapeutic options. After stroke, neural reorganization and other neuroplastic processes occur in response to ischemic injury, which can result in clinical improvement through spontaneous recovery. Neuromodulation through transcranial direct current stimulation (tDCS) is a promising intervention to augment underlying neuroplasticity in order to improve cognitive function. This form of neuromodulation leverages mechanisms of neuroplasticity post-stroke to optimize neural reorganization and improve function. In this review, we summarize the current state of cognitive neurorehabilitation post-stroke, the practical features of tDCS, its uses in stroke-related cognitive impairment across cognitive domains, and special considerations for the use of tDCS in the post-stroke patient population.
Collapse
Affiliation(s)
- Kelly L. Sloane
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Physical Medicine and Rehabilitation, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Roy H. Hamilton
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Physical Medicine and Rehabilitation, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
17
|
Chmiel J, Kurpas D, Rybakowski F, Leszek J. The Effects of Transcranial Direct Current Stimulation (tDCS) in HIV Patients-A Review. J Clin Med 2024; 13:3288. [PMID: 38892999 PMCID: PMC11173062 DOI: 10.3390/jcm13113288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 05/16/2024] [Accepted: 05/20/2024] [Indexed: 06/21/2024] Open
Abstract
Introduction: HIV is a severe and incurable disease that has a devastating impact worldwide. It affects the immune system and negatively affects the nervous system, leading to various cognitive and behavioral problems. Scientists are actively exploring different therapeutic approaches to combat these issues. One promising method is transcranial direct current stimulation (tDCS), a non-invasive technique that stimulates the brain. Methods: This review aims to examine how tDCS can help HIV patients. Searches were conducted in the Pubmed/Medline, Research Gate, and Cochrane databases. Results: The literature search resulted in six articles focusing on the effects of tDCS on cognitive and behavioral measures in people with HIV. In some cases, tDCS showed positive improvements in the measures assessed, improving executive functions, depression, attention, reaction time, psychomotor speed, speed of processing, verbal learning and memory, and cognitive functioning. Furthermore, the stimulation was safe with no severe side effects. However, the included studies were of low quality, had small sample sizes, and did not use any relevant biomarkers that would help to understand the mechanisms of action of tDCS in HIV. Conclusions: tDCS may help patients with HIV; however, due to the limited number of studies and the diversity of protocols used, caution should be exercised when recommending this treatment option in clinical settings. More high-quality research, preferably involving neurophysiological and neuroimaging measurements, is necessary to better understand how tDCS works in individuals with HIV.
Collapse
Affiliation(s)
- James Chmiel
- Institute of Neurofeedback and tDCS Poland, 70-393 Szczecin, Poland
| | - Donata Kurpas
- Department of Family and Pediatric Nursing, Faculty of Health Sciences, Wrocław Medical University, 51-618 Wrocław, Poland
| | - Filip Rybakowski
- Department and Clinic of Psychiatry, Poznan University of Medical Sciences, 61-701 Poznań, Poland
| | - Jerzy Leszek
- Department and Clinic of Psychiatry, Wrocław Medical University, 54-235 Wrocław, Poland
| |
Collapse
|
18
|
Jagadish A, Natarajan M, Adhia DB, Kuppuswamy A, Guddattu V, Solomon JM. Effect of high-definition transcranial direct current stimulation among late-subacute and chronic stroke survivors with fatigue: A randomized-controlled crossover trial protocol. MethodsX 2024; 12:102629. [PMID: 38435639 PMCID: PMC10907195 DOI: 10.1016/j.mex.2024.102629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 02/22/2024] [Indexed: 03/05/2024] Open
Abstract
Post-stroke fatigue (PSF) is a commonly overlooked symptom that impacts daily functioning and quality of life. It is caused by altered functional connectivity within the brain networks, which can potentially be influenced by neuromodulation. Multiple cortical regions have been targeted to reduce PSF, but the most efficient ones remain uncertain. Therefore, we aim to identify the most appropriate cortical stimulation site to reduce PSF. Twenty participants with PSF will be included in this cross-over trial. Each participant will receive one session of active anodal high definition- transcranial direct current stimulation (HD-tDCS) over three different cortical areas and one session of sham tDCS in a cross-over manner, with a two-week of washout period in between. Pre- and post- fatigue will be assessed using Fatigue Severity Scale and fatigability using electromyography by determining the time to task failure. Resting-state electroencephalography will be performed before and after each stimulation session to determine the functional connectivity of the cortical areas stimulated.
Collapse
Affiliation(s)
- Akhila Jagadish
- Department of Physiotherapy, Manipal College of Health Professions, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
- Centre for Comprehensive Stroke Rehabilitation and Research (CCSRR), Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
| | - Manikandan Natarajan
- Department of Physiotherapy, Manipal College of Health Professions, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
- Centre for Comprehensive Stroke Rehabilitation and Research (CCSRR), Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
| | - Divya Bharatkumar Adhia
- Department of Surgical Sciences, Dunedin School of Medicine, University of Otago, Dunedin 9013, New Zealand
| | | | - Vasudeva Guddattu
- Department of Data Science, Prasanna School of Public Health, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
| | - John M. Solomon
- Department of Physiotherapy, Manipal College of Health Professions, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
- Centre for Comprehensive Stroke Rehabilitation and Research (CCSRR), Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
| |
Collapse
|
19
|
Abdelhaleem N, Tawfek A, Abouamra HS, Aly MG, Elbanna ST, Mahmoud AG, Elborady AA, Gheitah PS, Elshennawy S. Combined Effect of Non-Invasive Brain Stimulation with Mirror Therapy for Improving Motor Function in Patients with Stroke: a Systematic Review with Meta-Analysis. CURRENT PHYSICAL MEDICINE AND REHABILITATION REPORTS 2024; 12:368-382. [DOI: 10.1007/s40141-024-00448-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/11/2024] [Indexed: 01/03/2025]
|
20
|
Tilton-Bolowsky VE, Hillis AE. A Review of Poststroke Aphasia Recovery and Treatment Options. Phys Med Rehabil Clin N Am 2024; 35:419-431. [PMID: 38514227 DOI: 10.1016/j.pmr.2023.06.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2024]
Abstract
Poststroke aphasia, which impacts expressive and receptive communication, can have detrimental effects on the psychosocial well-being and the quality of life of those affected. Aphasia recovery is multidimensional and can be influenced by several baseline, stroke-related, and treatment-related factors, including preexisting cerebrovascular conditions, stroke size and location, and amount of therapy received. Importantly, aphasia recovery can continue for many years after aphasia onset. Behavioral speech and language therapy with a speech-language pathologist is the most common form of aphasia therapy. In this review, the authors also discuss augmentative treatment methodologies, collaborative goal setting frameworks, and recommendations for future research.
Collapse
Affiliation(s)
- Victoria E Tilton-Bolowsky
- Department of Neurology, Johns Hopkins School of Medicine, 600 North Wolfe Street, Phipps 446F, Baltimore, MD 21287, USA
| | - Argye E Hillis
- Department of Neurology, Johns Hopkins School of Medicine, 600 North Wolfe Street, Phipps 446F, Baltimore, MD 21287, USA.
| |
Collapse
|
21
|
ul-ain Q, Ilyas S, Ali H, Ali I, Ullah R, Arshad H, Khalid S, Azim ME, Liu T, Wang J. Exploring the Differential Effects of Transcranial Direct Current Stimulation: A Comparative Analysis of Motor Cortex and Cerebellar Stimulation. Heliyon 2024; 10:e26838. [PMID: 38515670 PMCID: PMC10955213 DOI: 10.1016/j.heliyon.2024.e26838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 02/07/2024] [Accepted: 02/20/2024] [Indexed: 03/23/2024] Open
Abstract
Background Transcranial Direct Current Stimulation (tDCS) is a non-invasive brain stimulation technique. Constant electric current is passed through the patient's scalp with the aim of modulating cortical excitability. Stroke is a cerebrovascular disease characterized by hemorrhage or cerebral ischemia. This systematic review and meta-analysis are aimed at comparing the efficacy of motor cortex stimulation with that of cerebellar stimulation by using transcranial direct current stimulation. Method Google Scholar, PubMed, EMBASE, Cochrane CENTRAL, and Physiotherapy Evidence Database (Pedro) databases were searched for studies. The extracted qualitative data was synthesized systematically. Cochrane RevMan software was used to conduct a meta-analysis of quantitative data. The fixed effects mean difference of the collected data was calculated at a 95% confidence interval (CI) for the changes in balance and side effects. Results This research included 10 articles with seven studies assessing changes in balance (outcome measured in CoP and FMA scores) and side effects (tingling and itching were the most prevalent). There was no significant difference between the efficacy levels of m1-tDCS versus ctDCS (P = 0.18), m1-tDCS versus sham (P = 0.92), and ctDCS versus sham (P = 0.19). Itching and tingling sensation were the most common and were significantly prevalent in sham interventions (P < 0.00001). Conclusion We found that motor cortex and cerebellar stimulations are both effective in improving motor function in stroke patients. There are no adverse effects to using the interventions besides mild itching and tingling experienced during the stimulation.
Collapse
Affiliation(s)
- Qurat ul-ain
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Institute of Health and Rehabilitation Science, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, PR China
- National Engineering Research Center for Healthcare Devices Guangzhou, Guangdong, PR China
- The Key Laboratory of Neuro-informatics & Rehabilitation Engineering of Ministry of Civil Affairs Xi'an, Shaanxi, PR China
| | - Saad Ilyas
- Faculty of Computing, Shifa Tameer-e-Millat University, Islamabad, Pakistan
| | - Hamid Ali
- Department of Biosciences, COMSATS University Islamabad, Pakistan
| | - Ijaz Ali
- Centre for Applied Mathematics and Bioinformatics, Gulf University for Science and Technology, Hawally, Kuwait
| | - Riaz Ullah
- Department of Pharmacognosy, College of Pharmacy King Saud University, Riyadh, Saudi Arabia
| | - Hafsah Arshad
- Department of Physiotherapy and Rehabilitation, Ibadat International University, Islamabad, Pakistan
| | - Sana Khalid
- Department of Physiotherapy and Rehabilitation, Foundation University Islamabad, Pakistan
| | - Muhammad Ehab Azim
- Department of Physiotherapy and Rehabilitation, Foundation University Islamabad, Pakistan
| | - Tian Liu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Institute of Health and Rehabilitation Science, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, PR China
- National Engineering Research Center for Healthcare Devices Guangzhou, Guangdong, PR China
- The Key Laboratory of Neuro-informatics & Rehabilitation Engineering of Ministry of Civil Affairs Xi'an, Shaanxi, PR China
| | - Jue Wang
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Institute of Health and Rehabilitation Science, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, PR China
- National Engineering Research Center for Healthcare Devices Guangzhou, Guangdong, PR China
- The Key Laboratory of Neuro-informatics & Rehabilitation Engineering of Ministry of Civil Affairs Xi'an, Shaanxi, PR China
| |
Collapse
|
22
|
Kim JH, Cust S, Lammers B, Sheppard SM, Keator LM, Tippett DC, Hillis AE, Sebastian R. Cerebellar tDCS Enhances Functional Communication Skills in Chronic Aphasia. APHASIOLOGY 2024; 38:1895-1915. [PMID: 39555327 PMCID: PMC11566018 DOI: 10.1080/02687038.2024.2328874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 01/25/2024] [Indexed: 11/19/2024]
Abstract
Background Transcranial direct current stimulation (tDCS) has emerged as a possible neuromodulatory tool to augment language therapy in post-stroke aphasia. However, there is limited information on whether tDCS may help to improve everyday functional communication. Aims To investigate whether cerebellar tDCS combined with computerized aphasia treatment improves functional communication skills in individuals with chronic aphasia. Methods and Procedures In a randomized, double-blind, sham-controlled, within-subject crossover study, participants received 15 sessions of anodal (n=14) or cathodal (n=14) cerebellar tDCS plus computerized aphasia treatment then sham plus computerized aphasia treatment, or the opposite order. Linear mixed-effects regression models were performed to evaluate (1) the effect of tDCS treatment on change in functional communication skills on the two dimensions of the American Speech-Language-Hearing Association Functional Assessment of Communication Skills for Adults (ASHA-FACS): Communication Independence (CI) scale and Qualitative Dimension of Communication (QDC) scale, and (2) the relationship between functional communication skills and trained and untrained naming abilities. Outcomes and Results The results showed significant tDCS-induced gains for the overall QDC mean score, but not for the overall CI mean score. Cerebellar stimulation was more effective than sham for the overall QDC mean score immediately post-treatment, 2-weeks post-treatment and 2-months post-treatment. Follow up analysis separated by group showed that the change in the overall QDC mean score (combining both phases) were similar in participants receiving anodal or cathodal stimulation. We also found a significant linear association between ASHA-FACS overall CI mean change scores and trained and untrained naming change scores for the tDCS condition but not sham. Conclusions Our study provides preliminary evidence that cerebellar tDCS coupled with computerized aphasia treatment has the potential to improve the overall qualitative dimensions of functional communication skills in individuals with chronic aphasia.
Collapse
Affiliation(s)
- Ji Hyun Kim
- Department of Physical Medicine and Rehabilitation, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Sarah Cust
- Department of Physical Medicine and Rehabilitation, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Becky Lammers
- Department of Physical Medicine and Rehabilitation, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Shannon M. Sheppard
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD
- Department of Speech & Hearing Sciences, University of Washington, Seattle, WA
| | - Lynsey M. Keator
- Department of Linguistics and Cognitive Science, University of Delaware, Newark, DE
| | - Donna C. Tippett
- Department of Physical Medicine and Rehabilitation, Johns Hopkins University School of Medicine, Baltimore, MD
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD
- Department of Otolaryngology, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Argye E. Hillis
- Department of Physical Medicine and Rehabilitation, Johns Hopkins University School of Medicine, Baltimore, MD
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD
- Department of Cognitive Science, Johns Hopkins University, Baltimore, MD
| | - Rajani Sebastian
- Department of Physical Medicine and Rehabilitation, Johns Hopkins University School of Medicine, Baltimore, MD
| |
Collapse
|
23
|
Mendes AJ, Lema A, Soares JM, Sampaio A, Leite J, Carvalho S. Functional neuroimaging and behavioral correlates of multisite tDCS as an add-on to language training in a person with post-stroke non-fluent aphasia: a year-long case study. Neurocase 2024; 30:8-17. [PMID: 38700140 DOI: 10.1080/13554794.2024.2349327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 04/22/2024] [Indexed: 05/05/2024]
Abstract
Mary, who experienced non-fluent aphasia as a result of an ischemic stroke, received 10 years of personalized language training (LT), resulting in transient enhancements in speech and comprehension. To enhance these effects, multisite transcranial Direct Current Stimulation (tDCS) was added to her LT regimen for 15 sessions. Assessment using the Reliable Change Index showed that this combination improved her left inferior frontal connectivity and speech production for two months and significantly improved comprehension after one month. The results indicate that using multisite transcranial direct current stimulation (tDCS) can improve the effectiveness of language therapy (LT) for individuals with non-fluent aphasia.
Collapse
Affiliation(s)
- Augusto J Mendes
- Psychological Neuroscience Laboratory, CIPsi, School of Psychology, University of Minho, Braga, Portugal
- Laboratory of Neuroimaging of Aging (LANVIE), University of Geneva, Geneva, Switzerland
- Geneva Memory Center, Department of Rehabilitation and Geriatrics, Geneva University Hospitals, Geneva, Switzerland
| | - Alberto Lema
- Psychological Neuroscience Laboratory, CIPsi, School of Psychology, University of Minho, Braga, Portugal
| | - José Miguel Soares
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
| | - Adriana Sampaio
- Psychological Neuroscience Laboratory, CIPsi, School of Psychology, University of Minho, Braga, Portugal
| | - Jorge Leite
- CINTESIS@RISE, CINTESIS.UPT, Portucalense University, Porto, Portugal
| | - Sandra Carvalho
- Translational Neuropsychology Lab, Department of Education and Psychology, William James Center for Research (WJCR), University of Aveiro, Aveiro, Portugal
- Department of Education and Psychology, University of Aveiro, Aveiro, Portugal
| |
Collapse
|
24
|
Song Y, Liu F, Kang L, Xue C, Wang X, Yang Y, Sun M, Zhao M, Lu S. Effects of Transcranial Direct Current Stimulation on Graph Naming Function and Brain Connectivity in Postinfarction Aphasia Patients: An fMRI Study. Folia Phoniatr Logop 2023; 76:264-272. [PMID: 37788662 DOI: 10.1159/000534188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Accepted: 09/14/2023] [Indexed: 10/05/2023] Open
Abstract
INTRODUCTION The study aimed to investigate the mechanisms of impairment and recovery in graph naming functions among patients with aphasia due to cerebral infarction. Specifically, the study compared immediate effects of transcranial direct current stimulation (tDCS) treatment in patients at different stages postinfarction: the acute phase (AP) and the recovery period (RP). METHODS Twenty-eight patients were selected, consisting of 16 in the AP and 12 in the RP, along with 18 healthy controls. Both patient groups underwent 2 weeks of tDCS treatment. Posttreatment changes in functional connectivity (FC) within language-related brain regions, as well as in graph naming abilities, were assessed in both patient groups. RESULTS Both AP and RP groups exhibited significant improvements in graph naming ability following tDCS treatment. Compared to healthy controls, patients showed decreased FC in multiple brain regions of both hemispheres, particularly in the dominant hemisphere. Posttreatment assessments revealed significant increases in FC within the bilateral frontotemporal lobes for both AP and RP groups, and within the bilateral temporo-occipital regions for the AP group. Moreover, the RP group demonstrated decreased FC in the left temporal lobe posttreatment, which had shown increased FC pre-treatment. CONCLUSIONS This study suggests that tDCS can effectively enhance graph naming functions in patients with postinfarction aphasia. The therapeutic effects appear to be mediated by enhancing FC within bilateral frontotemporal lobes.
Collapse
Affiliation(s)
- Yancheng Song
- Department of MRI, Cangzhou Central Hospital, Cangzhou, China
| | - Fenghai Liu
- Department of MRI, Cangzhou Central Hospital, Cangzhou, China
| | - Liqing Kang
- Department of MRI, Cangzhou Central Hospital, Cangzhou, China
| | - Cheng Xue
- University of College London, London, UK
| | - Xiaoxuan Wang
- Department of MRI, Cangzhou Central Hospital, Cangzhou, China
| | - Yanlong Yang
- Department of MRI, Cangzhou Central Hospital, Cangzhou, China
| | - Min Sun
- Department of MRI, Cangzhou Central Hospital, Cangzhou, China
| | - Meng Zhao
- Department of MRI, Cangzhou Central Hospital, Cangzhou, China
| | - Shan Lu
- Department of MRI, Cangzhou Central Hospital, Cangzhou, China
| |
Collapse
|
25
|
Stockbridge MD, Elm J, Teklehaimanot AA, Cassarly C, Spell LA, Fridriksson J, Hillis AE. Individual Differences in Response to Transcranial Direct Current Stimulation With Language Therapy in Subacute Stroke. Neurorehabil Neural Repair 2023; 37:519-529. [PMID: 37592860 PMCID: PMC10528733 DOI: 10.1177/15459683231190642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/19/2023]
Abstract
BACKGROUND Transcranial direct current stimulation (tDCS) can be used to improve post-stroke aphasia. However, given the mixed evidence for its efficacy, individual differences may moderate the relative benefit of this strategy. In planned exploratory subgroup analyses, we examined whether age, education, sex, brain-derived neurotrophic factor status, and baseline performance individually impacted improvement in picture naming between baseline and 1 week after the end of the therapy, then whether the combination of factors that predicted recovery of naming and discourse differed for those who received concurrent tDCS. OBJECTIVE Examine whether individual differences influenced the effect of tDCS on language recovery. METHODS In this randomized, double-blind, sham-controlled, efficacy study of tDCS combined with language therapy for subacute post-stroke aphasia, patients completed an evaluation including the Philadelphia Naming Test and Cookie Theft picture description, which was analyzed for Content Units (CU) and Syllables/CU. Individual factors were examined using linear models including the interaction between treatment group and subgroup. RESULTS Significant interactions were observed between tDCS group and both age and education. The predictors of a positive response to tDCS differed from the predictors of a positive response to language treatment alone. While baseline performance was an important predictor of future performance regardless of treatment group, responses to treatment without tDCS were influenced by age whereas responses to treatment with tDCS were not. CONCLUSIONS Age and education influence the efficacy of different treatment strategies. Refinement of treatment selection is important to the overall individualization and optimization of post-stroke patient care. TRIAL REGISTRATION ClinicalTrials.gov NCT02674490.
Collapse
Affiliation(s)
- Melissa D. Stockbridge
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21287
| | - Jordan Elm
- Department of Public Health Sciences, Medical University of South Carolina, Charleston, SC
| | - Abeba A. Teklehaimanot
- Department of Public Health Sciences, Medical University of South Carolina, Charleston, SC
| | - Christy Cassarly
- Department of Public Health Sciences, Medical University of South Carolina, Charleston, SC
| | - Leigh-Ann Spell
- Department of Communication Sciences and Disorders, University of South Carolina
| | - Julius Fridriksson
- Department of Communication Sciences and Disorders, University of South Carolina
| | - Argye E. Hillis
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21287
| |
Collapse
|
26
|
Coemans S, Struys E, Tsapkini K, Paquier P, Vandenborre D, Keulen S. Case report: the effects of cerebellar tDCS in bilingual post-stroke aphasia. Front Hum Neurosci 2023; 17:1173178. [PMID: 37545596 PMCID: PMC10398340 DOI: 10.3389/fnhum.2023.1173178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 06/15/2023] [Indexed: 08/08/2023] Open
Abstract
Transcranial Direct Current Stimulation may be a useful neuromodulation tool for enhancing the effects of speech and language therapy in people with aphasia, but research so far has focused on monolinguals. We present the effects of 9 sessions of anodal cerebellar tDCS (ctDCS) coupled with language therapy in a bilingual patient with chronic post-stroke aphasia caused by left frontal ischemia, in a double-blind, sham-controlled within-subject design. Language therapy was provided in his second language (L2). Both sham and anodal treatment improved trained picture naming in the treated language (L2), while anodal ctDCS in addition improved picture naming of untrained items in L2 and his first language, L1. Picture description improved in L2 and L1 after anodal ctDCS, but not after sham.
Collapse
Affiliation(s)
- Silke Coemans
- Brussels Centre for Language Studies (BCLS), Vrije Universiteit Brussels, Brussels, Belgium
| | - Esli Struys
- Brussels Centre for Language Studies (BCLS), Vrije Universiteit Brussels, Brussels, Belgium
- Center for Neurosciences (C4N), Vrije Universiteit Brussels, Brussels, Belgium
| | - Kyrana Tsapkini
- Department of Neurology, Johns Hopkins School of Medicine, Baltimore, MD, United States
- Department of Cognitive Science, Johns Hopkins University, Baltimore, MD, United States
| | - Philippe Paquier
- Brussels Centre for Language Studies (BCLS), Vrije Universiteit Brussels, Brussels, Belgium
- Center for Research in Cognition and Neurosciences (CRCN), Université Libre de Bruxelles, Brussels, Belgium
- Department of Translational Neurosciences (TNW), Universiteit Antwerpen (UA), Antwerp, Belgium
| | - Dorien Vandenborre
- Health and Wellbeing Research Unit, Thomas More University of Applied Sciences, Antwerp, Belgium
| | - Stefanie Keulen
- Brussels Centre for Language Studies (BCLS), Vrije Universiteit Brussels, Brussels, Belgium
| |
Collapse
|
27
|
Stockbridge MD, Keser Z. Supporting Post-Stroke Language and Cognition with Pharmacotherapy: Tools for Each Phase of Care. Curr Neurol Neurosci Rep 2023; 23:335-343. [PMID: 37271792 PMCID: PMC10257638 DOI: 10.1007/s11910-023-01273-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/18/2023] [Indexed: 06/06/2023]
Abstract
PURPOSE OF REVIEW There is enormous enthusiasm for the possibility of pharmacotherapies to treat language deficits that can arise after stroke. Speech language therapy remains the most frequently utilized and most strongly evidenced treatment, but the numerous barriers to patients receiving the therapy necessary to recover have motivated the creation of a relatively modest, yet highly cited, body of evidence to support the use of pharmacotherapy to treat post-stroke aphasia directly or to augment traditional post-stroke aphasia treatment. In this review, we survey the use of pharmacotherapy to preserve and support language and cognition in the context of stroke across phases of care, discuss key ongoing clinical trials, and identify targets that may become emerging interventions in the future. RECENT FINDINGS Recent trials have shifted focus from short periods of drug therapy supporting therapy in the chronic phase to longer terms approaching pharmacological maintenance beginning more acutely. Recent innovations in hyperacute stroke care, such as tenecteplase, and acute initiation of neuroprotective agents and serotonin reuptake inhibitors are important areas of ongoing research that complement the ongoing search for effective adjuvants to later therapy. Currently there are no drugs approved in the United States for the treatment of aphasia. Nevertheless, pharmacological intervention may provide a benefit to all phases of stroke care.
Collapse
Affiliation(s)
- Melissa D Stockbridge
- Department of Neurology, Johns Hopkins University School of Medicine, 600 North Wolfe Street, Phipps 4, Suite 446, Baltimore, MD, 21287, USA.
| | - Zafer Keser
- Department of Neurology, Mayo Clinic, Rochester, MN, 55905, USA
| |
Collapse
|
28
|
Stockbridge MD, Elm J, Breining BL, Tippett DC, Sebastian R, Cassarly C, Teklehaimanot A, Spell LA, Sheppard SM, Vitti E, Ruch K, Goldberg EB, Kelly C, Keator LM, Fridriksson J, Hillis AE. Transcranial Direct-Current Stimulation in Subacute Aphasia: A Randomized Controlled Trial. Stroke 2023; 54:912-920. [PMID: 36912144 PMCID: PMC10050116 DOI: 10.1161/strokeaha.122.041557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 02/10/2023] [Indexed: 03/14/2023]
Abstract
BACKGROUND Transcranial direct-current stimulation (tDCS) is a promising adjunct to therapy for chronic aphasia. METHODS This single-center, randomized, double-blind, sham-controlled efficacy trial tested the hypothesis that anodal tDCS augments language therapy in subacute aphasia. Secondarily, we compared the effect of tDCS on discourse measures and quality of life and compared the effects on naming to previous findings in chronic stroke. Right-handed English speakers with aphasia <3 months after left hemisphere ischemic stroke were included, unless they had prior neurological or psychiatric disease or injury or were taking certain medications (34 excluded; final sample, 58). Participants were randomized 1:1, controlling for age, aphasia type, and severity, to receive 20 minutes of tDCS (1 mA) or sham-tDCS in addition to fifteen 45-minute sessions of naming treatment (plus standard care). The primary outcome variable was change in naming accuracy of untrained pictures pretreatment to 1-week posttreatment. RESULTS Baseline characteristics were similar between the tDCS (N=30) and sham (N=28) groups: patients were 65 years old, 53% male, and 2 months from stroke onset on average. In intent-to-treat analysis, the adjusted mean change from baseline to 1-week posttreatment in picture naming was 22.3 (95% CI, 13.5-31.2) for tDCS and 18.5 (9.6-27.4) for sham and was not significantly different. Content and efficiency of picture description improved more with tDCS than sham. Groups did not differ in quality of life improvement. No patients were withdrawn due to adverse events. CONCLUSIONS tDCS did not improve recovery of picture naming but did improve recovery of discourse. Discourse skills are critical to participation. Future research should examine tDCS in a larger sample with richer functional outcomes. REGISTRATION URL: https://www. CLINICALTRIALS gov; Unique identifier: NCT02674490.
Collapse
Affiliation(s)
- Melissa D. Stockbridge
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, United States
| | - Jordan Elm
- Department of Public Health Science, Medical University of South Carolina, Charleston, SC 29425, United States
| | - Bonnie L. Breining
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, United States
| | - Donna C. Tippett
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, United States
| | - Rajani Sebastian
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, United States
| | - Christy Cassarly
- Department of Public Health Science, Medical University of South Carolina, Charleston, SC 29425, United States
| | - Abeba Teklehaimanot
- Department of Public Health Science, Medical University of South Carolina, Charleston, SC 29425, United States
| | - Leigh Ann Spell
- Department of Communication Sciences and Disorders, University of South Carolina, Columbia, SC 29208, United States
| | - Shannon M. Sheppard
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, United States
- Department of Communication Sciences & Disorders, Chapman University, Orange, CA 92866, United States
| | - Emilia Vitti
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, United States
| | - Kristina Ruch
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, United States
| | - Emily B. Goldberg
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, United States
| | - Catherine Kelly
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, United States
| | - Lynsey M. Keator
- Department of Communication Sciences and Disorders, University of South Carolina, Columbia, SC 29208, United States
| | - Julius Fridriksson
- Department of Communication Sciences and Disorders, University of South Carolina, Columbia, SC 29208, United States
| | - Argye E. Hillis
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, United States
| |
Collapse
|
29
|
Cao R, Guan C, Gan Z, Leng S. Reviving the Dynamics of Attacked Reservoir Computers. ENTROPY (BASEL, SWITZERLAND) 2023; 25:515. [PMID: 36981403 PMCID: PMC10048059 DOI: 10.3390/e25030515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 03/08/2023] [Accepted: 03/14/2023] [Indexed: 06/18/2023]
Abstract
Physically implemented neural networks are subject to external perturbations and internal variations. Existing works focus on the adversarial attacks but seldom consider attack on the network structure and the corresponding recovery method. Inspired by the biological neural compensation mechanism and the neuromodulation technique in clinical practice, we propose a novel framework of reviving attacked reservoir computers, consisting of several strategies direct at different types of attacks on structure by adjusting only a minor fraction of edges in the reservoir. Numerical experiments demonstrate the efficacy and broad applicability of the framework and reveal inspiring insights into the mechanisms. This work provides a vehicle to improve the robustness of reservoir computers and can be generalized to broader types of neural networks.
Collapse
Affiliation(s)
- Ruizhi Cao
- Institute of AI and Robotics, Academy for Engineering and Technology, Fudan University, Shanghai 200433, China
| | - Chun Guan
- Institute of AI and Robotics, Academy for Engineering and Technology, Fudan University, Shanghai 200433, China
| | - Zhongxue Gan
- Institute of AI and Robotics, Academy for Engineering and Technology, Fudan University, Shanghai 200433, China
| | - Siyang Leng
- Institute of AI and Robotics, Academy for Engineering and Technology, Fudan University, Shanghai 200433, China
- Research Institute of Intelligent Complex Systems, Fudan University, Shanghai 200433, China
| |
Collapse
|
30
|
Arheix-Parras S, Glize B, Guehl D, Python G. Electrophysiological Changes in Patients with Post-stroke Aphasia: A Systematic Review. Brain Topogr 2023; 36:135-171. [PMID: 36749552 DOI: 10.1007/s10548-023-00941-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Accepted: 01/19/2023] [Indexed: 02/08/2023]
Abstract
Background Magnetoencephalography (MEG) and electroencephalography (EEG) record two main types of data: continuous measurements at rest or during sleep, and event-related potentials/evoked magnetic fields (ERPs/EMFs) that involve specific and repetitive tasks. In this systematic review, we summarized longitudinal studies on recovery from post-stroke aphasia that used continuous or event-related temporal imaging (EEG or MEG). Methods We searched PubMed and Scopus for English articles published from 1950 to May 31, 2022. Results 34 studies were included in this review: 11 were non-interventional studies and 23 were clinical trials that used specific rehabilitation methods, neuromodulation, or drugs. The results of the non-interventional studies suggested that poor language recovery was associated with slow-wave activity persisting over time. The results of some clinical trials indicated that behavioral improvements were correlated with significant modulation of the N400 component. Discussion Compared with continuous EEG, ERP/EMF may more reliably identify biomarkers of therapy-induced effects. Electrophysiology should be used more often to explore language processes that are impaired after a stroke, as it may highlight treatment challenges for patients with post-stroke aphasia.
Collapse
Affiliation(s)
- Sophie Arheix-Parras
- ACTIVE team, Bordeaux Population Health, INSERM UMR 1219, university of Bordeaux, 33000, Bordeaux, France. .,Institut Universitaire des Sciences de la Réadaptation, University of Bordeaux, 33000, Bordeaux, France. .,Department of physical medicine and rehabilitation, CHU de Bordeaux, 33000, Bordeaux, France.
| | - Bertrand Glize
- ACTIVE team, Bordeaux Population Health, INSERM UMR 1219, university of Bordeaux, 33000, Bordeaux, France.,Institut Universitaire des Sciences de la Réadaptation, University of Bordeaux, 33000, Bordeaux, France.,Department of physical medicine and rehabilitation, CHU de Bordeaux, 33000, Bordeaux, France
| | - Dominique Guehl
- Pole des neurosciences cliniques, CHU de Bordeaux, 33000, Bordeaux, France.,IMN CNRS UMR 5293, CNRS, University of Bordeaux, 33000, Bordeaux, France
| | - Grégoire Python
- Faculty of Psychology and Educational Sciences, University of Geneva, Geneva, Switzerland.,Department of Clinical Neurosciences, Lausanne University Hospital (CHUV), Lausanne, Switzerland
| |
Collapse
|
31
|
Telerehabilitation-Based Exercises with or without Transcranial Direct Current Stimulation for Pain, Motor and Cognitive Function in Older Adults with mild Cognitive Impairments Post-Stroke: A Multi-Arm Parallel-Group Randomized Controlled Trial Study Protocol. BRAIN HEMORRHAGES 2023. [DOI: 10.1016/j.hest.2023.01.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
|
32
|
Ntasiopoulou C, Nasios G, Messinis L, Nousia A, Siokas V, Dardiotis E. Repetitive Transcranial Magnetic Stimulation in Post-stroke Aphasia: Comparative Evaluation of Inhibitory and Excitatory Therapeutic Protocols: Narrative Review. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1425:619-628. [PMID: 37581835 DOI: 10.1007/978-3-031-31986-0_60] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/16/2023]
Abstract
OBJECTIVE Aphasia is a serious consequence of stroke resulting in difficulties in using language for communication with negative effects on patients' quality of life. The use of non-invasive repetitive transcranial magnetic stimulation (rTMS) is a novel approach in aphasia therapy, based on the knowledge gained by functional imaging technics of the brain. AIM This review evaluates the effectiveness of rTMS on aphasia therapy according to the results of English language studies that have been published in the databases PubMed/Medline, Scopus, and Web of Science from 2011 to 2021. RESULTS Twenty-seven studies were included in the review with 672 participants. The studies mainly concern the application of inhibitory rTMS on the right inferior frontal gyrus (rIFG) in the subacute and chronic phase, as well as excitatory rTMS of the unaffected language areas of the left cerebral hemisphere in the chronic phase after stroke. Most of the studies concluded that there was statistically significant improvement in various parameters of language including confrontation naming, repetition, and aphasia quotient. Three studies published results that doubt the effectiveness of rTMS. CONCLUSION rTMS is a safe therapeutic method for aphasia treatment in the subacute and chronic phases after stroke. Its effectiveness is immediate as well as distant with a gradually decreasing therapeutic effect. Moreover, rTMS may supplement speech and language therapy as a priming factor. The most recognized method at this point in time is the application of suppressive rTMS on the right inferior frontal gyrus in combination with speech and language therapy.
Collapse
Affiliation(s)
| | - Grigorios Nasios
- Department of Speech and Language Therapy, School of Health Sciences, University of Ioannina, Ioannina, Greece
| | - Lambros Messinis
- Lab of Cognitive Neuroscience, School of Psychology, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Anastasia Nousia
- Department of Speech and Language Therapy, School of Health Sciences, University of Ioannina, Ioannina, Greece
| | - Vasileios Siokas
- Department of Neurology, Laboratory of Neurogenetics, University of Thessaly, Larissa, Greece
| | - Efthimios Dardiotis
- Department of Neurology, Laboratory of Neurogenetics, University of Thessaly, Larissa, Greece
| |
Collapse
|
33
|
Li C, Tu S, Xu S, Zhang Y, Yan Z, Jia J, Tian S. Research Hotspots and Frontiers of Transcranial Direct Current Stimulation in Stroke: A Bibliometric Analysis. Brain Sci 2022; 13:brainsci13010015. [PMID: 36671997 PMCID: PMC9856087 DOI: 10.3390/brainsci13010015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 11/26/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022] Open
Abstract
Background: Over the past decade, many studies in the field of transcranial direct current stimulation (tDCS) in stroke have been published in scholarly journals. However, a scientometric analysis focusing on tDCS after stroke is still missing. The purpose of this study is to deliver a bibliometric analysis to investigate the global hotspots and frontiers in the domain of tDCS in stroke from 2012 to 2021. Methods: Articles and reviews related to tDCS in stroke were retrieved and obtained from the Web of Science core collection database from 2012 to 2021. Data visualization and analysis were conducted by using CiteSpace, VOSviewer, and Microsoft Excel 2019. Results: Finally, 371 publications were included in the scientometric analysis, including 288 articles and 83 reviews. The results showed that the number of publications per year increased from 15 to 68 in the last 10 years. Neurosciences was the main research hotspot category (n = 201). Frontiers in Human Neuroscience was the most published journal with 14 papers. The most productive author, institution, and country were Fregni F (n = 13), the League of European Research Universities (n = 37), and the United States of America (n = 98), respectively. A burstness analysis of keywords and the literature indicated that current studies in the field of tDCS in stroke focused on poststroke aphasia, tDCS combined with robotic therapy, and anatomical parameters. Conclusion: The research of tDCS in stroke is predicted to remain a research hotspot in the future. We recommend investigating the curative effect of other different tDCS closed-loop rehabilitation methods for different stroke dysfunctions. In conclusion, this bibliometric study presented the hotspots and trends of tDCS in stroke over the last decade, which may help researchers manage their further studies.
Collapse
Affiliation(s)
- Chong Li
- School of Exercise and Health, Shanghai University of Sport, Shanghai 200040, China
| | - Shuting Tu
- Institute of Rehabilitation, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China
| | - Shuo Xu
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Yongli Zhang
- Institute of Rehabilitation, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China
| | - Zhijie Yan
- The Third Affiliated Hospital, Xinxiang Medical University, Xinxiang 453003, China
| | - Jie Jia
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China
- Correspondence: (J.J.); (S.T.)
| | - Shiliu Tian
- School of Exercise and Health, Shanghai University of Sport, Shanghai 200040, China
- Key Laboratory of Exercise and Health Science of Ministry of Education, Shanghai University of Sport, Shanghai 200433, China
- Shanghai Frontiers Science Research Base of Exercise and Metabolic Health, Shanghai 200031, China
- Fujian Sports Vocational Education and Technical College, Fuzhou 350003, China
- Correspondence: (J.J.); (S.T.)
| |
Collapse
|
34
|
Stockbridge MD, Bunker LD, Hillis AE. Reversing the Ruin: Rehabilitation, Recovery, and Restoration After Stroke. Curr Neurol Neurosci Rep 2022; 22:745-755. [PMID: 36181577 PMCID: PMC9525934 DOI: 10.1007/s11910-022-01231-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/26/2022] [Indexed: 01/27/2023]
Abstract
PURPOSE OF REVIEW Stroke is a common cause of disability in aging adults. A given individual's needs after stroke vary as a function of the stroke extent and location. The purpose of this review was to discuss recent clinical investigations addressing rehabilitation of an array of overlapping functional domains. RECENT FINDINGS Research is ongoing in the domains of movement, cognition, attention, speech, language, swallowing, and mental health. To best assist patients' recovery, innovative research has sought to develop and evaluate behavioral approaches, identify and refine synergistic approaches that augment the response to behavioral therapy, and integrate technology where appropriate, particularly to introduce and titrate real-world complexity and improve the overall experience of therapy. Recent and ongoing trials have increasingly adopted a multidisciplinary nature - augmenting refined behavioral therapy approaches with methods for increasing their potency, such as pharmaceutical or electrical interventions. The integration of virtual reality, robotics, and other technological advancements has generated immense excitement, but has not resulted in consistent improvements over more universally accessible, lower technology therapy.
Collapse
Affiliation(s)
- Melissa D Stockbridge
- Department of Neurology, Johns Hopkins University School of Medicine, 600 North Wolfe Street, Phipps 4, Suite 446, Baltimore, MD, 21287, USA.
| | - Lisa D Bunker
- Department of Neurology, Johns Hopkins University School of Medicine, 600 North Wolfe Street, Phipps 4, Suite 446, Baltimore, MD, 21287, USA
| | - Argye E Hillis
- Department of Neurology, Johns Hopkins University School of Medicine, 600 North Wolfe Street, Phipps 4, Suite 446, Baltimore, MD, 21287, USA
| |
Collapse
|
35
|
Ko MH, Yoon JY, Jo YJ, Son MN, Kim DS, Kim GW, Won YH, Park SH, Seo JH, Kim YH. Home-Based Transcranial Direct Current Stimulation to Enhance Cognition in Stroke: Randomized Controlled Trial. Stroke 2022; 53:2992-3001. [PMID: 35975663 DOI: 10.1161/strokeaha.121.037629] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Transcranial direct current stimulation (tDCS) is a promising tool for improving post-stroke cognitive function. Home-based rehabilitation is increasingly required for patients with stroke, and additional benefits are expected if supplemented with remotely supervised tDCS (RS-tDCS). We evaluated the cognitive improvement effect and feasibility of RS-tDCS in patients with chronic stroke. METHODS Twenty-six patients with chronic stroke and cognitive impairment (Korean version of the Montreal Cognitive Assessment [K-MoCA] score <26) were randomized into real and sham RS-tDCS groups and underwent concurrent computerized cognitive training and RS-tDCS. Patients and caregivers underwent training to ensure correct tDCS self-application, were monitored, and treated 5 d/wk for 4 weeks. We investigated several cognition tests including K-MoCA, Korean version of the Dementia Rating Scale-2, Korean-Boston Naming Test, Trail Making Test, Go/No Go, and Controlled Oral Word Association Test at the end of the training sessions and one month later. Repeated-measures ANOVA was used for comparison between the groups and within each group. The adherence rate of the appropriate RS-tDCS session was also investigated. RESULTS In within-group comparison, unlike the sham group, the real group showed significant improvement in K-MoCA (Preal=0.004 versus Psham=0.132), particularly in patients with lower baseline K-MoCA (K-MoCA10-17; Preal=0.001 versus Psham=0.835, K-MoCA18-25; Preal=0.060 versus Psham=0.064) or with left hemispheric lesions (left; Preal=0.010 versus Psham=0.454, right; Preal=0.106 versus Psham=0.128). In between-group comparison, a significant difference was observed in K-MoCA in the lower baseline K-MoCA subgroup (K-MoCA10-17; Ptime×group=0.048), but no significant difference was found in other cognitive tests. The adherence rate of successful application of the RS-tDCS was 98.4%, and no serious adverse effects were detected. CONCLUSIONS RS-tDCS is a safe and feasible rehabilitation modality for post-stroke cognitive dysfunction. Specifically, RS-tDCS is effective in patients with moderate cognitive decline. Additionally, these data demonstrate the potential to enhance home-based cognitive training, although significant differences were not consistently found in between-group comparisons; therefore, further larger studies are needed. REGISTRATION URL: https://cris.nih.go.kr; Unique identifier: KCT0003427.
Collapse
Affiliation(s)
- Myoung-Hwan Ko
- Department of Physical Medicine and Rehabilitation, Jeonbuk National University Medical School, Jeonju, Republic of Korea (M.-H.K., J.-Y.Y., D.-S.K., G.-W.K., Y.H.W., S.-H.P., J.-H.S.).,Research Institute of Clinical Medicine of Jeonbuk National University-Biomedical Research Institute of Jeonbuk National University Hospital, Jeonju, Republic of Korea (M.-H.K., Y.-J.J., D.-S.K., G.-W.K., Y.H.W., S.-H.P., J.-H.S.).,Translational Research & Clinical Trials Center for Medical Devices, Jeonbuk National University Hospital, Jeonju, Republic of Korea (M.-H.K., Y.-J.J., G.-W.K.)
| | - Ju-Yul Yoon
- Department of Physical Medicine and Rehabilitation, Jeonbuk National University Medical School, Jeonju, Republic of Korea (M.-H.K., J.-Y.Y., D.-S.K., G.-W.K., Y.H.W., S.-H.P., J.-H.S.).,Research Institute of Clinical Medicine of Jeonbuk National University-Biomedical Research Institute of Jeonbuk National University Hospital, Jeonju, Republic of Korea (M.-H.K., Y.-J.J., D.-S.K., G.-W.K., Y.H.W., S.-H.P., J.-H.S.)
| | - Yun-Ju Jo
- Translational Research & Clinical Trials Center for Medical Devices, Jeonbuk National University Hospital, Jeonju, Republic of Korea (M.-H.K., Y.-J.J., G.-W.K.)
| | - Mi-Nam Son
- Department of Physical and Rehabilitation Medicine, Center for Prevention and Rehabilitation, Heart Vascular Stroke Institute, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea (M.-N.S., Y.-H.K.)
| | - Da-Sol Kim
- Department of Physical Medicine and Rehabilitation, Jeonbuk National University Medical School, Jeonju, Republic of Korea (M.-H.K., J.-Y.Y., D.-S.K., G.-W.K., Y.H.W., S.-H.P., J.-H.S.).,Research Institute of Clinical Medicine of Jeonbuk National University-Biomedical Research Institute of Jeonbuk National University Hospital, Jeonju, Republic of Korea (M.-H.K., Y.-J.J., D.-S.K., G.-W.K., Y.H.W., S.-H.P., J.-H.S.)
| | - Gi-Wook Kim
- Department of Physical Medicine and Rehabilitation, Jeonbuk National University Medical School, Jeonju, Republic of Korea (M.-H.K., J.-Y.Y., D.-S.K., G.-W.K., Y.H.W., S.-H.P., J.-H.S.).,Research Institute of Clinical Medicine of Jeonbuk National University-Biomedical Research Institute of Jeonbuk National University Hospital, Jeonju, Republic of Korea (M.-H.K., Y.-J.J., D.-S.K., G.-W.K., Y.H.W., S.-H.P., J.-H.S.).,Translational Research & Clinical Trials Center for Medical Devices, Jeonbuk National University Hospital, Jeonju, Republic of Korea (M.-H.K., Y.-J.J., G.-W.K.)
| | - Yu Hui Won
- Department of Physical Medicine and Rehabilitation, Jeonbuk National University Medical School, Jeonju, Republic of Korea (M.-H.K., J.-Y.Y., D.-S.K., G.-W.K., Y.H.W., S.-H.P., J.-H.S.).,Research Institute of Clinical Medicine of Jeonbuk National University-Biomedical Research Institute of Jeonbuk National University Hospital, Jeonju, Republic of Korea (M.-H.K., Y.-J.J., D.-S.K., G.-W.K., Y.H.W., S.-H.P., J.-H.S.)
| | - Sung-Hee Park
- Department of Physical Medicine and Rehabilitation, Jeonbuk National University Medical School, Jeonju, Republic of Korea (M.-H.K., J.-Y.Y., D.-S.K., G.-W.K., Y.H.W., S.-H.P., J.-H.S.).,Research Institute of Clinical Medicine of Jeonbuk National University-Biomedical Research Institute of Jeonbuk National University Hospital, Jeonju, Republic of Korea (M.-H.K., Y.-J.J., D.-S.K., G.-W.K., Y.H.W., S.-H.P., J.-H.S.)
| | - Jeong-Hwan Seo
- Department of Physical Medicine and Rehabilitation, Jeonbuk National University Medical School, Jeonju, Republic of Korea (M.-H.K., J.-Y.Y., D.-S.K., G.-W.K., Y.H.W., S.-H.P., J.-H.S.).,Research Institute of Clinical Medicine of Jeonbuk National University-Biomedical Research Institute of Jeonbuk National University Hospital, Jeonju, Republic of Korea (M.-H.K., Y.-J.J., D.-S.K., G.-W.K., Y.H.W., S.-H.P., J.-H.S.)
| | - Yun-Hee Kim
- Department of Physical and Rehabilitation Medicine, Center for Prevention and Rehabilitation, Heart Vascular Stroke Institute, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea (M.-N.S., Y.-H.K.).,Department of Health Science and Technology, Department of Medical Device Management and Research, Department of Digital Healthcare, SAIHST, Sungkyunkwan University, Seoul, Republic of Korea (Y.-H.K.)
| |
Collapse
|
36
|
Association of Long-Term Speech Therapy and Neuromodulation in Primary Progressive Aphasia: Lessons from a Case Report. CLINICAL AND TRANSLATIONAL NEUROSCIENCE 2022. [DOI: 10.3390/ctn6030017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Primary progressive aphasia (PPA) is a neurodegenerative disorder with a progressive loss of language. Long-term support requires speech therapy but also individually set training programs. Here we propose an 8-month individualized speech-training program which alternates 3-week periods of transcranial direct current stimulation (tDCS) treatment with intensive daily language exercises and a 3-week period without tDCS treatment and a less intensive language exercise from home in a patient with non-fluent variant PPA (nfvPPA). The endpoints were the following: adherence to this program, language data after 8 months, questionnaires related to emotional valence, and brain volume changes. The results showed a persistent adherence after 8 months and a positive compliance reported by both the patient and the partner. The language evaluation showed a clinical stabilization. Moreover, a significant and positive influence of tDCS on mood was observed. This is, to our knowledge, the first ever published report of a combined neuromodulation and language training during the course of 8 months. Our finding suggests the feasibility of programs integrating hospital speech therapy, home training, and tDCS modulation in PPA. Further studies should be conducted in order to disentangle the contextual influences on language performance from the tDCS intervention effects and to address the observation of an initial improvement and a subsequent stabilization effect of language performances.
Collapse
|
37
|
Shen Y, Cai Z, Liu F, Zhang Z, Ni G. Repetitive Transcranial Magnetic Stimulation and Transcranial Direct Current Stimulation as Treatment of Poststroke Depression: A Systematic Review and Meta-Analysis. Neurologist 2022; 27:177-182. [PMID: 35184118 DOI: 10.1097/nrl.0000000000000416] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Previous studies showed that the application of repetitive transcranial magnetic stimulation (rTMS) and transcranial direct current stimulation (tDCS) during stroke rehabilitation improve the depression symptoms in poststroke depression (PSD). However, some studies showed inconsistent results. The study was designed to make a meta-analysis to evaluate the effect of noninvasive brain stimulation (tDCS and rTMS) on PSD. METHODS Articles published before July 2021 were searched in databases: PubMed, Web of Science, and Google Scholar. STATA 12.0 software was utilized to make meta-analysis. We extracted or calculated mean values and SD of reduction or increase rate of depression-related scales. Standardized mean difference (SMD) and 95% confidence intervals (CIs) were calculated as effect size. RESULTS The study showed increased immediate and long-term improvement in depression in rTMS group compared with sham rTMS group after treatment with random-effects models (immediate: SMD=4.92, 95% CI=2.69-7.15, I2 =95.2%, P -value for Q test <0.001; long term: SMD=7.21, 95% CI=3.50-10.92, I2 =93.9%, P -value for Q test <0.001). Meta-analysis showed increased substantially immediate improvement in depression in tDCS group compared with sham tDCS group with a random effect model (SMD=5.30, 95% CI=1.30-9.30, I2 =97.3%, P- value for Q test <0.001). CONCLUSIONS rTMS and tDCS were demonstrated to be effective and safe treatment techniques for PSD. More large-scale studies were essential to explore the effect of rTMS with different frequencies and tDCS on PSD.
Collapse
Affiliation(s)
- Yiting Shen
- College of Acupuncture-Moxibustion and Tuina, Nanjing University of Chinese Medicine, Nanjing, Jiangsu Province, China
| | | | | | | | | |
Collapse
|
38
|
Kalloch B, Weise K, Lampe L, Bazin PL, Villringer A, Hlawitschka M, Sehm B. The influence of white matter lesions on the electric field in transcranial electric stimulation. Neuroimage Clin 2022; 35:103071. [PMID: 35671557 PMCID: PMC9168230 DOI: 10.1016/j.nicl.2022.103071] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 05/04/2022] [Accepted: 05/30/2022] [Indexed: 11/25/2022]
Abstract
Sensitivity analysis allows the simulation of tDCS with uncertain conductivities. White matter lesions (WML) have no global influence on the electric field in tDCS. In subjects with a high lesion load, a local influence can be observed. In low to medium lesion load subjects, explicit modeling of WML is not required.
Background Transcranial direct current stimulation (tDCS) is a promising tool to enhance therapeutic efforts, for instance, after a stroke. The achieved stimulation effects exhibit high inter-subject variability, primarily driven by perturbations of the induced electric field (EF). Differences are further elevated in the aging brain due to anatomical changes such as atrophy or lesions. Informing tDCS protocols by computer-based, individualized EF simulations is a suggested measure to mitigate this variability. Objective While brain anatomy in general and specifically atrophy as well as stroke lesions are deemed influential on the EF in simulation studies, the influence of the uncertainty in the change of the electrical properties of the white matter due to white matter lesions (WMLs) has not been quantified yet. Methods A group simulation study with 88 subjects assigned into four groups of increasing lesion load was conducted. Due to the lack of information about the electrical conductivity of WMLs, an uncertainty analysis was employed to quantify the variability in the simulation when choosing an arbitrary conductivity value for the lesioned tissue. Results The contribution of WMLs to the EF variance was on average only one tenth to one thousandth of the contribution of the other modeled tissues. While the contribution of the WMLs significantly increased (p≪.01) in subjects exhibiting a high lesion load compared to low lesion load subjects, typically by a factor of 10 and above, the total variance of the EF didnot change with the lesion load. Conclusion Our results suggest that WMLs do not perturb the EF globally and can thus be omitted when modeling subjects with low to medium lesion load. However, for high lesion load subjects, the omission of WMLs may yield less robust local EF estimations in the vicinity of the lesioned tissue. Our results contribute to the efforts of accurate modeling of tDCS for treatment planning.
Collapse
Affiliation(s)
- Benjamin Kalloch
- Max Planck Institute for Human Cognitive and Brain Sciences, Department of Neurology, Leipzig, Germany; Leipzig University of Applied Science, Faculty of Computer Science and Media, Leipzig, Germany; Max Planck Institute for Human Cognitive and Brain Sciences, Methods and Development Group "Brain Networks", Leipzig, Germany; Technische Universität Ilmenau, Instiute of Biomedical Engineering and Informatics, Ilmenau, Germany.
| | - Konstantin Weise
- Max Planck Institute for Human Cognitive and Brain Sciences, Methods and Development Group "Brain Networks", Leipzig, Germany; Technische Universität Ilmenau, Advanced Electromagnetics Group, Ilmenau, Germany
| | - Leonie Lampe
- Max Planck Institute for Human Cognitive and Brain Sciences, Department of Neurology, Leipzig, Germany
| | - Pierre-Louis Bazin
- Max Planck Institute for Human Cognitive and Brain Sciences, Department of Neurology, Leipzig, Germany; University of Amsterdam, Faculty of Social and Behavioural Sciences, Amsterdam, The Netherlands
| | - Arno Villringer
- Max Planck Institute for Human Cognitive and Brain Sciences, Department of Neurology, Leipzig, Germany
| | - Mario Hlawitschka
- Leipzig University of Applied Science, Faculty of Computer Science and Media, Leipzig, Germany
| | - Bernhard Sehm
- Max Planck Institute for Human Cognitive and Brain Sciences, Department of Neurology, Leipzig, Germany; Department of Neurology, Martin Luther University of Halle-Wittenberg, Germany
| |
Collapse
|
39
|
Richardson JD, Galletta EE, Charvet L, Shaw M. Feasibility of Remotely Supervised Transcranial Direct Current Stimulation (RS-tDCS) for People with Stroke-Induced and Progressive Aphasia. APHASIOLOGY 2022; 37:1039-1063. [PMID: 39949352 PMCID: PMC11824641 DOI: 10.1080/02687038.2022.2076279] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/16/2025]
Abstract
Background Remotely-supervised transcranial direct current stimulation (RS-tDCS) is a telerehabilitation protocol that provides access to tDCS treatment to participants with aphasia in their homes using real-time monitoring via videoconference and overcomes barriers associated with in-person tDCS treatment of neurological disease. Aims Two feasibility studies for participants with aphasia are presented herein that investigate (1) RS-tDCS procedural implementation, acceptability, and demand, and (2) acceptability of ten repeated consecutive RS-tDCS sessions. Methods & Procedures Thirteen participants with aphasia were enrolled in Study 1: (1) seven participants with stroke-induced latent aphasia, (2) four participants with stroke-induced clinically diagnosed aphasia, and (3) two participants with logopenic variant primary progressive aphasia (lvPPA). Four supervisors (1 certified speech-language pathologist [SLP], 3 graduate SLPs-in-training) were trained to supervise RS-tDCS and also provided survey responses. All participants participated in RS-tDCS training and a virtual simulation of home delivery. Two participants with stroke-induced aphasia (1 latent aphasia, 1 clinically diagnosed aphasia) were enrolled in 10 consecutive sessions of RS-tDCS alongside computerized treatment in their home for Study 2. Outcomes & Results This work provides preliminary evidence for the feasibility of RS-tDCS for people with stable and progressive aphasia of varying severity and typology and includes both participant and clinician perspectives. Importantly, no major barriers to use of RS-tDCS were revealed for people with aphasia, though eHelpers were required for two participants. Conclusions This work confirms that remotely supervised at-home tDCS studies can be used to enable much-needed efficacy trials, with sufficient sample size, power, and dosing considerations, that will determine the clinical efficacy of tDCS as a treatment adjuvant to aphasia treatment.
Collapse
Affiliation(s)
- Jessica D. Richardson
- Department of Speech and Hearing Sciences, University of New Mexico, Albuquerque, New Mexico, USA
| | - Elizabeth E. Galletta
- Department of Speech Language Pathology, Rusk Rehabilitation Medicine, NYU Langone Health, New York, New York, USA
| | - Leigh Charvet
- Department of Neurology, NYU Langone Health, New York, New York, USA
| | - Michael Shaw
- Department of Neurology, NYU Langone Health, New York, New York, USA
- Department of Psychology, Binghamton University, Binghamton, New York, USA
| |
Collapse
|
40
|
Farcy C, Moliadze V, Nees F, Hartwigsen G, Guggisberg AG. Identifying neural targets for enhancing phonological processing with transcranial alternate current stimulation. Brain Stimul 2022; 15:789-791. [PMID: 35561959 DOI: 10.1016/j.brs.2022.05.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Accepted: 05/08/2022] [Indexed: 11/02/2022] Open
Affiliation(s)
- Camille Farcy
- Division of Neurorehabilitation, Department of Clinical Neurosciences, University Hospital of Geneva, Av. de Beau-Séjour 26, 1211, Geneva, Switzerland
| | - Vera Moliadze
- Institute of Medical Psychology and Medical Sociology, University Medical Center Schleswig Holstein, Kiel University, Kiel, Germany
| | - Frauke Nees
- Institute of Medical Psychology and Medical Sociology, University Medical Center Schleswig Holstein, Kiel University, Kiel, Germany
| | - Gesa Hartwigsen
- Lise Meitner Research Group Cognition and Plasticity, Max Planck Institute for Human Cognitive and Brain Sciences, 04103, Leipzig, Germany
| | - Adrian G Guggisberg
- Division of Neurorehabilitation, Department of Clinical Neurosciences, University Hospital of Geneva, Av. de Beau-Séjour 26, 1211, Geneva, Switzerland; Universitäre Neurorehabilitation, Universitätsklinik für Neurologie, Inselspital, University Hospital of Berne, 1010, Berne, Switzerland.
| |
Collapse
|
41
|
Matar SJ, Newton C, Sorinola IO, Pavlou M. Transcranial Direct-Current Stimulation as an Adjunct to Verb Network Strengthening Treatment in Post-stroke Chronic Aphasia: A Double-Blinded Randomized Feasibility Study. Front Neurol 2022; 13:722402. [PMID: 35309584 PMCID: PMC8924047 DOI: 10.3389/fneur.2022.722402] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 01/24/2022] [Indexed: 11/24/2022] Open
Abstract
Background Difficulties in discourse production are common in post-stroke chronic aphasia. Previous studies have found that speech and language therapy combined with transcranial direct-current stimulation (tDCS) may improve language skills like naming and enhance aphasia treatment outcomes. However, very few studies have investigated the effect of tDCS when combined with interventions for improving higher level language skills such as the Verb Network Strengthening Treatment (VNeST). Aims This study aimed to determine the feasibility of anodal tDCS as an adjunct to VNeST to improve discourse production in post-stroke chronic aphasia. Methods Six people with post-stroke chronic aphasia took part in this double-blinded randomized feasibility study. Participants were randomly allocated to either the experimental group receiving a 6-week block of once weekly VNeST sessions combined with active tDCS over the left inferior frontal gyrus (LIFG) or a control group that received VNeST with sham stimulation. Feasibility outcomes included screening, eligibility, retention, and completion rates, and adverse events. Preliminary response to intervention was also examined using discourse production, functional communication, quality of life, psychological state, and cognition outcomes. Results Overall 19 individuals were screened and ten met the inclusion criteria. Six individuals provided consent and participated in the study giving a consent rate of 60%. Participant retention and completion rates were 100% and no adverse effects were reported. Exploratory analyses revealed promising changes (i.e., estimated large effect size) in discourse production measures across discourse language tasks and functional communication for the active tDCS group. Conclusions Our results support the feasibility of tDCS as an adjunct to VNeST. Preliminary findings provide motivation for future large-scale studies to better understand the potential of tDCS as a safe and economical tool for enhancing rehabilitation in chronic aphasia.
Collapse
Affiliation(s)
- Shereen J. Matar
- Centre for Human & Applied Physiological Sciences, Faculty of Life Sciences & Medicine, King's College London, London, United Kingdom
| | - Caroline Newton
- Division of Psychology and Language Sciences, Faculty of Brain Sciences, University College London, London, United Kingdom
| | - Isaac O. Sorinola
- Department of Population Health Sciences, Faculty of Life Sciences & Medicine, King's College London, London, United Kingdom
| | - Marousa Pavlou
- Centre for Human & Applied Physiological Sciences, Faculty of Life Sciences & Medicine, King's College London, London, United Kingdom
- *Correspondence: Marousa Pavlou
| |
Collapse
|
42
|
Collier C, Muzzio N, Thevi Guntnur R, Gomez A, Redondo C, Zurbano R, Schuller IK, Monton C, Morales R, Romero G. Wireless Force-Inducing Neuronal Stimulation Mediated by High Magnetic Moment Microdiscs. Adv Healthc Mater 2022; 11:e2101826. [PMID: 34890130 PMCID: PMC9583708 DOI: 10.1002/adhm.202101826] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 11/24/2021] [Indexed: 01/03/2023]
Abstract
Noninvasive manipulation of cell signaling is critical in basic neuroscience research and in developing therapies for neurological disorders and psychiatric conditions. Here, the wireless force-induced stimulation of primary neuronal circuits through mechanotransduction mediated by magnetic microdiscs (MMDs) under applied low-intensity and low-frequency alternating magnetic fields (AMFs), is described. MMDs are fabricated by top-down lithography techniques that allow for cost-effective mass production of biocompatible MMDs with high saturation and zero magnetic magnetic moment at remanence. MMDs are utilized as transducers of AMFs into mechanical forces. When MMDs are exposed to primary rat neuronal circuits, their magneto-mechanical actuation triggers the response of specific mechanosensitive ion channels expressed on the cell membranes activating ≈50% of hippocampal and ≈90% of cortical neurons subjected to the treatment. Mechanotransduction is confirmed by the inhibition of mechanosensitive transmembrane channels with Gd3+ . Mechanotransduction mediated by MMDs cause no cytotoxic effect to neuronal cultures. This technology fulfills the requirements of cell-type specificity and weak magnetic fields, two limiting factors in the development of noninvasive neuromodulation therapies and clinical equipment design. Moreover, high efficiency and long-lasting stimulations are successfully achieved. This research represents a fundamental step forward for magneto-mechanical control of neural activity using disc-shaped micromaterials with tailored magnetic properties.
Collapse
Affiliation(s)
- Claudia Collier
- Department of Biomedical Engineering and Chemical Engineering, The University of Texas at San Antonio, San Antonio, TX, 78249, USA
| | - Nicolas Muzzio
- Department of Biomedical Engineering and Chemical Engineering, The University of Texas at San Antonio, San Antonio, TX, 78249, USA
| | - Rohini Thevi Guntnur
- Department of Biomedical Engineering and Chemical Engineering, The University of Texas at San Antonio, San Antonio, TX, 78249, USA
| | - Amanda Gomez
- Department of Biomedical Engineering and Chemical Engineering, The University of Texas at San Antonio, San Antonio, TX, 78249, USA
| | - Carolina Redondo
- Department of Physical Chemistry, University of the Basque Country UPV/EHU, Leioa, 48940, Spain
| | - Raquel Zurbano
- Department of Physical Chemistry, University of the Basque Country UPV/EHU, Leioa, 48940, Spain
| | - Ivan K Schuller
- Center for Advanced Nanoscience and Department of Physics, University of California San Diego, La Jolla, CA, 92093, USA
| | - Carlos Monton
- General Atomics, PO Box 85608, San Diego, CA, 92186, USA
| | - Rafael Morales
- Department of Physical Chemistry & BCMaterials, University of the Basque Country UPV/EHU, Leioa, 48940, Spain
- IKERBASQUE, Basque Foundation for Science, Bilbao, 48011, Spain
| | - Gabriela Romero
- Department of Biomedical Engineering and Chemical Engineering, The University of Texas at San Antonio, San Antonio, TX, 78249, USA
| |
Collapse
|
43
|
Harvey DY, Hamilton R. Noninvasive brain stimulation to augment language therapy for poststroke aphasia. HANDBOOK OF CLINICAL NEUROLOGY 2022; 185:241-250. [PMID: 35078601 DOI: 10.1016/b978-0-12-823384-9.00012-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Behavioral language treatment approaches represent the standard of care for persons with aphasia (PWA), but the benefits of these treatments are variable. Moreover, due to the logistic and financial limitations on the amount of behavioral therapy available to patients, it is often infeasible for PWA to receive behavioral interventions with the level of frequency, intensity, or duration that would provide significant and lasting benefit, underscoring the need for novel, effective treatment approaches. Noninvasive brain stimulation (NIBS) techniques, such as transcranial magnetic stimulation (TMS) and transcranial direct current stimulation (tDCS), have emerged as promising neurally-based tools to enhance language abilities for PWA following stroke. This chapter first provides an overview of the methods and physiologic basis motivating the use of NIBS to enhance aphasia recovery followed by a selective review of the growing evidence of its potential as a novel therapeutic tool. Subsequent sections discuss some of the principles that may prove most useful in guiding and optimizing the effects of NIBS on aphasia recovery, focusing on how the functional state of the brain at the time of stimulation interacts with the behavioral aftereffects of neuromodulation. We conclude with a discussion of current challenges and future directions for NIBS in aphasia treatment.
Collapse
Affiliation(s)
- Denise Y Harvey
- Department of Neurology, University of Pennsylvania, Philadelphia, PA, United States
| | - Roy Hamilton
- Department of Neurology, University of Pennsylvania, Philadelphia, PA, United States.
| |
Collapse
|
44
|
Figeys M, Kim ES, Hopper T. Does Right-Hemispheric Anodal tDCS Enhance the Impact of Script Training in Chronic Aphasia? A Single-Subject Experimental Study. FRONTIERS IN REHABILITATION SCIENCES 2022; 2:793451. [PMID: 36188817 PMCID: PMC9397953 DOI: 10.3389/fresc.2021.793451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 12/02/2021] [Indexed: 12/03/2022]
Abstract
Background: Script training is an aphasia treatment approach that has been demonstrated to have a positive effect on communication of individuals with aphasia; however, it is time intensive as a therapeutic modality. To augment therapy-induced neuroplasticity, transcranial direct current stimulation (tDCS) may be implemented. tDCS has been paired with other speech-language treatments, however, has not been investigated with script training. Aims: The purpose of this study was to determine if tDCS improves communication proficiency when paired with script training, compared to script training alone. Methods and Procedures: A single-subject experimental design was implemented with a participant with non-fluent aphasia, using two scripts across treatment conditions: script training with sham-tDCS, and script training with anodal-tDCS. Treatment sessions were 75 min long, administered three times weekly. Anodal tDCS was implemented for 20 min with a current of 1.5 mA over the right inferior frontal gyrus. Results: Large effect sizes were obtained on script mastery for both stimulation conditions (anodal d2 = 9.94; sham d2 = 11.93). tDCS did not improve script accuracy, however, there was a significant improvement in the rate of change of script pace relative to baseline (3.99 seconds/day, p < 0.001) in the anodal tDCS condition. Conclusion: Despite a null tDCS result on accuracy, the script training protocol increased script performance to a near-fluent level of communication. There is preliminary evidence to suggest that tDCS may alter the rate of script acquisition, however, further research to corroborate this finding is required. Implications for future studies are discussed.
Collapse
Affiliation(s)
- Mathieu Figeys
- Faculty of Rehabilitation Medicine, University of Alberta, Edmonton, AB, Canada
| | - Esther Sung Kim
- Faculty of Rehabilitation Medicine, University of Alberta, Edmonton, AB, Canada
- Department of Communication Sciences and Disorders, University of Alberta, Edmonton, AB, Canada
- *Correspondence: Esther Sung Kim
| | - Tammy Hopper
- Faculty of Rehabilitation Medicine, University of Alberta, Edmonton, AB, Canada
- Department of Communication Sciences and Disorders, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
45
|
Capizzi A, Woo J, Magat E. Poststroke aphasia treatment: A review of pharmacologic therapies and noninvasive brain stimulation techniques. THE JOURNAL OF THE INTERNATIONAL SOCIETY OF PHYSICAL AND REHABILITATION MEDICINE 2022. [DOI: 10.4103/jisprm.jisprm-000151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
46
|
Zettin M, Bondesan C, Nada G, Varini M, Dimitri D. Transcranial Direct-Current Stimulation and Behavioral Training, a Promising Tool for a Tailor-Made Post-stroke Aphasia Rehabilitation: A Review. Front Hum Neurosci 2021; 15:742136. [PMID: 34987366 PMCID: PMC8722401 DOI: 10.3389/fnhum.2021.742136] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 11/22/2021] [Indexed: 12/14/2022] Open
Abstract
Aphasia is an acquired language disorder resulting from damage to portions of the brain which are responsible for language comprehension and formulation. This disorder can involve different levels of language processing with impairments in both oral and written comprehension and production. Over the last years, different rehabilitation and therapeutic interventions have been developed, especially non-invasive brain stimulation (NIBS) techniques. One of the most used NIBS techniques in aphasia rehabilitation is the Transcranial Direct-Current Stimulation (tDCS). It has been proven to be effective in promoting a successful recovery both in the short and the long term after a brain injury. The main strength of tDCS is its feasibility associated with relatively minor side effects, if safely and properly administered. TDCS requires two electrodes, an anode and a cathode, which are generally placed on the scalp. The electrode montage can be either unipolar or bipolar. The main aim of this review is to give an overview of the state of the art of tDCS for the treatment of aphasia. The studies described included patients with different types of language impairments, especially with non-fluent aphasia and in several cases anomia. The effects of tDCS are variable and depend on several factors, such as electrode size and montage, duration of the stimulation, current density and characteristics of the brain tissue underneath the electrodes. Generally, tDCS has led to promising results in rehabilitating patients with acquired aphasia, especially if combined with different language and communication therapies. The selection of the appropriate approach depends on the patients treated and their impaired language function. When used in combination with treatments such as Speech and Language Therapy, Constraint Induced Aphasia Therapy or Intensive Action Treatment, tDCS has generally promoted a better recovery of the impaired functions. In addition to these rehabilitation protocols, Action Observation Therapy, such as IMITAF, appeared to contribute to the reduction of post-stroke anomia. The potential of combining such techniques with tDCS would would therefore be a possibility for further improvement, also providing the clinician with a new action and intervention tool. The association of a tDCS protocol with a dedicated rehabilitation training would favor a generalized long-term improvement of the different components of language.
Collapse
Affiliation(s)
- Marina Zettin
- Centro Puzzle, Turin, Italy
- Department of Psychology, University of Turin, Turin, Italy
| | | | - Giulia Nada
- Department of Psychology, University of Turin, Turin, Italy
| | - Matteo Varini
- Department of Psychology, University of Turin, Turin, Italy
| | - Danilo Dimitri
- Centro Puzzle, Turin, Italy
- Department of Psychology, University of Turin, Turin, Italy
| |
Collapse
|
47
|
Mohamad NA, Che Adinan SN, Yusof Khan AHK, Nik Abdul Ghani NNH, Kamis MFAK, Wan Sulaiman WA, Salim MS, Basri H. Transcranial direct current stimulation with multiple oral re-reading therapy for pure alexia without agraphia: a case report. Neurocase 2021; 27:391-395. [PMID: 34478345 DOI: 10.1080/13554794.2021.1974487] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Pure alexia without agraphia is characterized by impaired reading due to damage to the occipitotemporal cortex with preserved writing skills. In this case report, we investigate the effect of multiple oral re-reading (MOR) therapy adjunct with transcranial direct current stimulation (tDCS) in improving reading recovery of a 64-year-old patient with pure alexia without agraphia following a stroke. His MRI revealed an area of infarct with microhemorrhages at the left occipitotemporal region. The patient was blinded to each therapy and underwent seven consecutive sessions of sham tDCS followed by seven consecutive sessions of real tDCS, coupled with 1-hour MOR therapy during each session. Western Aphasia Battery (WAB) was performed at baseline, before sham and real-tDCS, and 6 weeks after completing tDCS therapy. The patient showed improvement using both sham and real-tDCS with better reading comprehension, average reading time, and word per minute after real-tDCS. This study suggests that MOR, coupled with tDCS therapy may accelerate the reading recovery in patients with pure alexia.
Collapse
Affiliation(s)
- Nur Afiqah Mohamad
- Department of Neurology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Malaysia
| | - Siti Nadia Che Adinan
- Department of Neurology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Malaysia
| | - Abdul Hanif Khan Yusof Khan
- Department of Neurology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Malaysia
| | | | | | - Wan Aliaa Wan Sulaiman
- Department of Neurology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Malaysia
| | - Mazatulfazura Sf Salim
- Department of Rehabilitation Medicine, Hospital Pengajar Universiti Putra Malaysia, Serdang, Malaysia.,Department of Rehabilitation Medicine, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Malaysia
| | - Hamidon Basri
- Department of Neurology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Malaysia
| |
Collapse
|
48
|
Effects of tDCS on Language Recovery in Post-Stroke Aphasia: A Pilot Study Investigating Clinical Parameters and White Matter Change with Diffusion Imaging. Brain Sci 2021; 11:brainsci11101277. [PMID: 34679342 PMCID: PMC8534035 DOI: 10.3390/brainsci11101277] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 09/21/2021] [Accepted: 09/22/2021] [Indexed: 11/16/2022] Open
Abstract
Objectives: In this pilot study we investigated the effects of transcranial direct current stimulation (tDCS) on language recovery in the subacute stage of post-stroke aphasia using clinical parameters and diffusion imaging with constrained spherical deconvolution-based tractography. Methods: The study included 21 patients with subacute post-stroke aphasia. Patients were randomly classified into two groups with a ratio of 2:1 to receive real tDCS or sham tDCS as placebo control. Patients received 10 sessions (5/week) bi-hemispheric tDCS treatments over the left affected Broca's area (anodal electrode) and over the right unaffected Broca's area (cathodal stimulation). Aphasia score was assessed clinically using the language section of the Hemispheric Stroke Scale (HSS) before and after treatment sessions. Diffusion imaging and tractography were performed for seven patients of the real group, both before and after the 10th session. Dissection of language-related white matter tracts was achieved, and diffusion measures were extracted. A paired Student's t-test was used to compare the clinical recovery and diffusion measures of the dissected tracts both pre- and post- treatment. The partial correlation between changes in diffusion measures and the language improvements was calculated. Results: At baseline assessment, there were no significant differences between groups in demographic and clinical HSS language score. No significant clinical recovery in HSS was evident in the sham group. However, significant improvements in the different components of HSS were only observed in patients receiving real tDCS. Associated significant increase in the fractional anisotropy of the right uncinate fasciculus and a significant reduction in the mean diffusivity of the right frontal aslant tract were reported. A significant positive correlation was found between the changes in the right uncinate fasciculus and fluency improvement. Conclusions: Aphasia recovery after bi-hemispheric transcranial direct current stimulation was associated with contralesional right-sided white matter changes at the subacute stage. These changes probably reflect neuroplasticity that could contribute to the recovery. Both the right uncinate fasciculus and right frontal aslant tract seem to be involved in aphasia recovery.
Collapse
|
49
|
Prillinger K, Radev ST, Amador de Lara G, Klöbl M, Lanzenberger R, Plener PL, Poustka L, Konicar L. Repeated Sessions of Transcranial Direct Current Stimulation on Adolescents With Autism Spectrum Disorder: Study Protocol for a Randomized, Double-Blind, and Sham-Controlled Clinical Trial. Front Psychiatry 2021; 12:680525. [PMID: 34526918 PMCID: PMC8435587 DOI: 10.3389/fpsyt.2021.680525] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Accepted: 07/26/2021] [Indexed: 01/03/2023] Open
Abstract
Background: Social-emotional difficulties are a core symptom of autism spectrum disorder (ASD). Accordingly, individuals with ASD have problems with social cognition such as recognizing emotions from other peoples' faces. Various results from functional magnetic resonance imaging and electroencephalography studies as well as eye-tracking data reveal a neurophysiological basis of these deficits by linking them to abnormal brain activity. Thus, an intervention targeting the neural origin of ASD impairments seems warranted. A safe method able to influence neural activity is transcranial direct current stimulation (tDCS). This non-invasive brain stimulation method has already demonstrated promising results in several neuropsychiatric disorders in adults and children. The aim of this project is to investigate the effects of tDCS on ASD symptoms and their neural correlates in children and adolescents with ASD. Method: This study is designed as a double-blind, randomized, and sham-controlled trial with a target sample size of 20 male participants (aged 12-17 years) diagnosed with ASD. Before randomization, the participants will be stratified into comorbid depression, comorbid ADHS/conduct disorder, or no-comorbidity groups. The intervention phase comprises 10 sessions of anodal or sham tDCS applied over the left prefrontal cortex within 2 consecutive weeks. To engage the targeted brain regions, participants will perform a social cognition training during the stimulation. TDCS-induced effects on ASD symptoms and involved neural circuits will be investigated through psychological, neurophysiological, imaging, and behavioral data at pre- and post-measurements. Tolerability will be evaluated using a standardized questionnaire. Follow-up assessments 1 and 6 months after the intervention will examine long-lasting effects. Discussion: The results of this study will provide insights into the changeability of social impairments in ASD by investigating social and emotional abilities on different modalities following repeated sessions of anodal tDCS with an intra-simulation training. Furthermore, this trial will elucidate the tolerability and the potential of tDCS as a new treatment approach for ASD in adolescents. Clinical Trial Registration: The study is ongoing and has been registered in the German Registry of Clinical Trials (DRKS00017505) on 02/07/2019.
Collapse
Affiliation(s)
- Karin Prillinger
- Department of Child and Adolescent Psychiatry, Medical University of Vienna, Vienna, Austria
| | - Stefan T. Radev
- Department of Child and Adolescent Psychiatry, Medical University of Vienna, Vienna, Austria
- Institute of Psychology, University of Heidelberg, Heidelberg, Germany
| | - Gabriel Amador de Lara
- Department of Child and Adolescent Psychiatry, Medical University of Vienna, Vienna, Austria
| | - Manfred Klöbl
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
| | - Rupert Lanzenberger
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
| | - Paul L. Plener
- Department of Child and Adolescent Psychiatry, Medical University of Vienna, Vienna, Austria
- Department of Child and Adolescent Psychiatry and Psychotherapy, University of Ulm, Ulm, Germany
| | - Luise Poustka
- Department of Child and Adolescent Psychiatry and Psychotherapy, University Medical Center Göttingen, Göttingen, Germany
| | - Lilian Konicar
- Department of Child and Adolescent Psychiatry, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
50
|
Cichon N, Wlodarczyk L, Saluk-Bijak J, Bijak M, Redlicka J, Gorniak L, Miller E. Novel Advances to Post-Stroke Aphasia Pharmacology and Rehabilitation. J Clin Med 2021; 10:jcm10173778. [PMID: 34501229 PMCID: PMC8432240 DOI: 10.3390/jcm10173778] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 07/07/2021] [Accepted: 07/29/2021] [Indexed: 12/23/2022] Open
Abstract
Aphasia is one of the most common clinical features of functional impairment after a stroke. Approximately 21–40% of stroke patients sustain permanent aphasia, which progressively worsens one’s quality of life and rehabilitation outcomes. Post-stroke aphasia treatment strategies include speech language therapies, cognitive neurorehabilitation, telerehabilitation, computer-based management, experimental pharmacotherapy, and physical medicine. This review focuses on current evidence of the effectiveness of impairment-based aphasia therapies and communication-based therapies (as well as the timing and optimal treatment intensities for these interventions). Moreover, we present specific interventions, such as constraint-induced aphasia therapy (CIAT) and melodic intonation therapy (MIT). Accumulated data suggest that using transcranial magnetic stimulation (TMS) and transcranial direct current stimulation (tDCS) is safe and can be used to modulate cortical excitability. Therefore, we review clinical studies that present TMS and tDCS as (possible) promising therapies in speech and language recovery, stimulating neuroplasticity. Several drugs have been used in aphasia pharmacotherapy, but evidence from clinical studies suggest that only nootropic agents, donepezil and memantine, may improve the prognosis of aphasia. This article is an overview on the current state of knowledge related to post-stroke aphasia pharmacology, rehabilitation, and future trends.
Collapse
Affiliation(s)
- Natalia Cichon
- Biohazard Prevention Centre, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska, 141/143, 90-236 Lodz, Poland; (M.B.); (L.G.)
- Correspondence:
| | - Lidia Wlodarczyk
- Department of Occupational Diseases and Environmental Health, Nofer Institute of Occupational Medicine, 91-348 Lodz, Poland;
| | - Joanna Saluk-Bijak
- Department of General Biochemistry, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska, 141/143, 90-236 Lodz, Poland;
| | - Michal Bijak
- Biohazard Prevention Centre, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska, 141/143, 90-236 Lodz, Poland; (M.B.); (L.G.)
| | - Justyna Redlicka
- Department of Neurological Rehabilitation, Medical University of Lodz, Milionowa, 14, 93-113 Lodz, Poland; (J.R.); (E.M.)
| | - Leslaw Gorniak
- Biohazard Prevention Centre, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska, 141/143, 90-236 Lodz, Poland; (M.B.); (L.G.)
| | - Elzbieta Miller
- Department of Neurological Rehabilitation, Medical University of Lodz, Milionowa, 14, 93-113 Lodz, Poland; (J.R.); (E.M.)
| |
Collapse
|