1
|
Ghantabpour T, Goudarzi N, Parsaei H. Overview of Nrf2 as a target in ovary and ovarian dysfunctions focusing on its antioxidant properties. J Ovarian Res 2025; 18:60. [PMID: 40121445 PMCID: PMC11929342 DOI: 10.1186/s13048-025-01639-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2024] [Accepted: 02/25/2025] [Indexed: 03/25/2025] Open
Abstract
Female infertility is a common issue caused by various factors, such as hormonal imbalances, age-related decline in oocyte quality, and lifestyle choices. Ovarian dysfunction is a prevalent cause, impacting fertility by damaging cells and impairing functions. Oxidative stress (OS) is a condition resulting from an imbalance between natural antioxidants and the generation of oxidants. This phenomenon acts as a double-edged sword, playing a crucial role as a signaling mechanism in both physiological and pathological processes related to the female reproductive system. OS is linked to ovarian dysfunction, leading to cell damage and reduced fertility. Nrf2 is a key regulator in oxidative homeostasis, helping to defend against OS and improve ovarian function in women of reproductive age. Therefore, this review aims to highlight the role of Nrf2 in the female reproductive system, focusing on its antioxidant properties.
Collapse
Affiliation(s)
- Taha Ghantabpour
- Cellular and Molecular Research Center, Department of Anatomical Sciences, School of Medicine, Research Institute for Prevention of Non-Communicable Diseases, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Nasim Goudarzi
- Cellular and Molecular Research Center, Department of Anatomical Sciences, School of Medicine, Research Institute for Prevention of Non-Communicable Diseases, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Houman Parsaei
- Nervous System Stem Cells Research Center, Semnan University of Medical Sciences, Semnan, Iran.
| |
Collapse
|
2
|
Xi H, Chen X, Wang X, Jiang F, Niu D. Role of programmed cell death in mammalian ovarian follicular atresia. J Steroid Biochem Mol Biol 2025; 247:106667. [PMID: 39725276 DOI: 10.1016/j.jsbmb.2024.106667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 12/19/2024] [Accepted: 12/21/2024] [Indexed: 12/28/2024]
Abstract
Programmed cell death (PCD) is a fundamental process in the development process of organisms, including apoptosis, autophagy, ferroptosis, and pyroptosis. In mammalian ovaries, 99 % of follicles undergo atresia, while only 1 % mature and ovulate, which limits the reproductive efficiency of mammals. The PCD process is closely related to the regulation of follicle development and atresia. Recently, an increasing number of studies have reported that autophagy, pyroptosis, and ferroptosis of PCD are involved in regulating granulosa cell apoptosis and follicular atresia. Granulosa cell apoptosis is a hallmark of follicular atresia. Therefore, an understanding of molecular mechanisms regulating PCD events is required for future advances in the diagnosis and management of various disorders of follicular atresia. This review summarizes recent work on apoptosis, autophagy, pyroptosis, and ferroptosis of PCD that affect granulosa cell survival and follicular atresia, and further elucidating the mechanisms of follicular atresia and providing new directions for improving the reproductive capacity of humans and animals.
Collapse
Affiliation(s)
- Huaming Xi
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology & College of Veterinary Medicine of Zhejiang A&F University, Hangzhou 311300, China.
| | - Xinyu Chen
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology & College of Veterinary Medicine of Zhejiang A&F University, Hangzhou 311300, China.
| | - Xianglong Wang
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology & College of Veterinary Medicine of Zhejiang A&F University, Hangzhou 311300, China.
| | - Feng Jiang
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology & College of Veterinary Medicine of Zhejiang A&F University, Hangzhou 311300, China.
| | - Dong Niu
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology & College of Veterinary Medicine of Zhejiang A&F University, Hangzhou 311300, China.
| |
Collapse
|
3
|
Yan H, Wang L, Zhang G, Li N, Zhao Y, Liu J, Jiang M, Du X, Zeng Q, Xiong D, He L, Zhou Z, Luo M, Liu W. Oxidative stress and energy metabolism abnormalities in polycystic ovary syndrome: from mechanisms to therapeutic strategies. Reprod Biol Endocrinol 2024; 22:159. [PMID: 39722030 DOI: 10.1186/s12958-024-01337-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 12/14/2024] [Indexed: 12/28/2024] Open
Abstract
Polycystic ovary syndrome (PCOS), as a common endocrine and metabolic disorder, is often regarded as a primary cause of anovulatory infertility in women. The pathogenesis of PCOS is complex and influenced by multiple factors. Emerging evidence highlights that energy metabolism dysfunction and oxidative stress in granulosa cells (GCs) are pivotal contributors to aberrant follicular development and impaired fertility in PCOS patients. Mitochondrial dysfunction, increased oxidative stress, and disrupted glucose metabolism are frequently observed in individuals with PCOS, collectively leading to compromised oocyte quality. This review delves into the mechanisms linking oxidative stress and energy metabolism abnormalities in PCOS, analyzing their adverse effects on reproductive function. Furthermore, potential therapeutic strategies to mitigate oxidative stress and metabolic disturbances are proposed, providing a theoretical basis for advancing clinical management of PCOS.
Collapse
Affiliation(s)
- Heqiu Yan
- Key Laboratory of Reproductive Medicine, Sichuan Provincial Woman's and Children's Hospital, The Affiliated Women's and Children's Hospital of Chengdu Medical College, Chengdu, Sichuan, 610045, China
- School of Laboratory Medicine, Chengdu Medical College, Chengdu, 610000, China
| | - Li Wang
- Key Laboratory of Reproductive Medicine, Sichuan Provincial Woman's and Children's Hospital, The Affiliated Women's and Children's Hospital of Chengdu Medical College, Chengdu, Sichuan, 610045, China
| | - Guohui Zhang
- Key Laboratory of Reproductive Medicine, Sichuan Provincial Woman's and Children's Hospital, The Affiliated Women's and Children's Hospital of Chengdu Medical College, Chengdu, Sichuan, 610045, China
| | - Ningjing Li
- School of Medicine and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, 611137, China
| | - Yuhong Zhao
- School of Laboratory Medicine, Chengdu Medical College, Chengdu, 610000, China
| | - Jun Liu
- School of Medicine and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, 611137, China
| | - Min Jiang
- School of Medicine and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, 611137, China
| | - Xinrong Du
- School of Medicine and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, 611137, China
| | - Qin Zeng
- Key Laboratory of Reproductive Medicine, Sichuan Provincial Woman's and Children's Hospital, The Affiliated Women's and Children's Hospital of Chengdu Medical College, Chengdu, Sichuan, 610045, China
| | - Dongsheng Xiong
- Key Laboratory of Reproductive Medicine, Sichuan Provincial Woman's and Children's Hospital, The Affiliated Women's and Children's Hospital of Chengdu Medical College, Chengdu, Sichuan, 610045, China
| | - Libing He
- Key Laboratory of Reproductive Medicine, Sichuan Provincial Woman's and Children's Hospital, The Affiliated Women's and Children's Hospital of Chengdu Medical College, Chengdu, Sichuan, 610045, China
| | - Zhuoting Zhou
- School of Medicine and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, 611137, China
| | - Mengjun Luo
- Department of Clinical Laboratory, School of Medicine, Chengdu Women's and Children's Central Hospital, University of Electronic Science and Technology of China, No. 1617 Ri Yue Street, Chengdu, Sichuan, 611731, China.
| | - Weixin Liu
- Key Laboratory of Reproductive Medicine, Sichuan Provincial Woman's and Children's Hospital, The Affiliated Women's and Children's Hospital of Chengdu Medical College, Chengdu, Sichuan, 610045, China.
- School of Laboratory Medicine, Chengdu Medical College, Chengdu, 610000, China.
| |
Collapse
|
4
|
Valipour J, Taghizadeh F, Esfahani R, Ramesh M, Rastegar T. Role of nuclear factor erythroid 2-related factor 2 (Nrf2) in female and male fertility. Heliyon 2024; 10:e29752. [PMID: 38720768 PMCID: PMC11076650 DOI: 10.1016/j.heliyon.2024.e29752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 04/14/2024] [Accepted: 04/15/2024] [Indexed: 05/12/2024] Open
Abstract
Oxidative stress refers to a condition where there is an imbalance between the production of reactive oxygen species and their removal by antioxidants. While the function of reactive oxygen species as specific second messengers under physiological conditions is necessary, their overproduction can lead to numerous instances of cell and tissue damage. Nuclear factor erythroid 2-related factor 2 (Nrf2) is a master regulator of many cytoprotective genes that respond to redox stresses. Nrf2 is regularly degraded by kelch-like ECH-associated protein 1 through the ubiquitin-proteasome pathway. The kelch-like ECH-associated protein 1 and Nrf2 complex have attracted attention in both basic and clinical infertility research fields. Oxidative stress is implicated in the pathogenesis of female infertility, including primary ovarian insufficiency, polycystic ovarian syndrome, and endometriosis, as well as male infertility, namely varicocele, cryptorchidism, spermatic cord torsion, and orchitis. Most scientists believe that Nrf2 is a potential therapeutic method in female and male infertility disorders due to its antioxidant effect. Here, the potential roles of oxidative stress and Nrf2 in female and male infertility disorders are reviewed. Moreover, the key role of Nrf2 in the inhibition or induction of these diseases is discussed.
Collapse
Affiliation(s)
- Jamal Valipour
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Taghizadeh
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Roghayeh Esfahani
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahya Ramesh
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Tayebeh Rastegar
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
5
|
Khan MZ, Khan A, Huang B, Wei R, Kou X, Wang X, Chen W, Li L, Zahoor M, Wang C. Bioactive Compounds Protect Mammalian Reproductive Cells from Xenobiotics and Heat Stress-Induced Oxidative Distress via Nrf2 Signaling Activation: A Narrative Review. Antioxidants (Basel) 2024; 13:597. [PMID: 38790702 PMCID: PMC11118937 DOI: 10.3390/antiox13050597] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 05/08/2024] [Accepted: 05/10/2024] [Indexed: 05/26/2024] Open
Abstract
Oxidative stress occurs when there is an imbalance between the production of reactive oxygen species (ROS) and the body's antioxidant defenses. It poses a significant threat to the physiological function of reproductive cells. Factors such as xenobiotics and heat can worsen this stress, leading to cellular damage and apoptosis, ultimately decreasing reproductive efficiency. The nuclear factor erythroid 2-related factor 2 (Nrf2) signaling pathway plays a crucial role in defending against oxidative stress and protecting reproductive cells via enhancing antioxidant responses. Dysregulation of Nrf2 signaling has been associated with infertility and suboptimal reproductive performance in mammals. Recent advancements in therapeutic interventions have underscored the critical role of Nrf2 in mitigating oxidative damage and restoring the functional integrity of reproductive cells. In this narrative review, we delineate the harmful effects of heat and xenobiotic-induced oxidative stress on reproductive cells and explain how Nrf2 signaling provides protection against these challenges. Recent studies have shown that activating the Nrf2 signaling pathway using various bioactive compounds can ameliorate heat stress and xenobiotic-induced oxidative distress and apoptosis in mammalian reproductive cells. By comprehensively analyzing the existing literature, we propose Nrf2 as a key therapeutic target for mitigating oxidative damage and apoptosis in reproductive cells caused by exposure to xenobiotic exposure and heat stress. Additionally, based on the synthesis of these findings, we discuss the potential of therapies focused on the Nrf2 signaling pathway to improve mammalian reproductive efficiency.
Collapse
Affiliation(s)
- Muhammad Zahoor Khan
- Liaocheng Research Institute of Donkey High-Efficiency Breeding and Ecological Feeding, Liaocheng University, Liaocheng 522000, China
| | - Adnan Khan
- Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 511464, China
| | - Bingjian Huang
- Liaocheng Research Institute of Donkey High-Efficiency Breeding and Ecological Feeding, Liaocheng University, Liaocheng 522000, China
| | - Ren Wei
- Liaocheng Research Institute of Donkey High-Efficiency Breeding and Ecological Feeding, Liaocheng University, Liaocheng 522000, China
| | - Xiyan Kou
- Liaocheng Research Institute of Donkey High-Efficiency Breeding and Ecological Feeding, Liaocheng University, Liaocheng 522000, China
| | - Xinrui Wang
- Liaocheng Research Institute of Donkey High-Efficiency Breeding and Ecological Feeding, Liaocheng University, Liaocheng 522000, China
| | - Wenting Chen
- Liaocheng Research Institute of Donkey High-Efficiency Breeding and Ecological Feeding, Liaocheng University, Liaocheng 522000, China
| | - Liangliang Li
- Liaocheng Research Institute of Donkey High-Efficiency Breeding and Ecological Feeding, Liaocheng University, Liaocheng 522000, China
| | - Muhammad Zahoor
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Sognsvannsveien, 90372 Oslo, Norway
| | - Changfa Wang
- Liaocheng Research Institute of Donkey High-Efficiency Breeding and Ecological Feeding, Liaocheng University, Liaocheng 522000, China
| |
Collapse
|
6
|
Zheng X, Zhao D, Liu Y, Jin Y, Liu T, Li H, Liu D. Regeneration and anti-inflammatory effects of stem cells and their extracellular vesicles in gynecological diseases. Biomed Pharmacother 2023; 168:115739. [PMID: 37862976 DOI: 10.1016/j.biopha.2023.115739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 10/10/2023] [Accepted: 10/16/2023] [Indexed: 10/22/2023] Open
Abstract
There are many gynecological diseases, among which breast cancer (BC), cervical cancer (CC), endometriosis (EMs), and polycystic ovary syndrome (PCOS) are common and difficult to cure. Stem cells (SCs) are a focus of regenerative medicine. They are commonly used to treat organ damage and difficult diseases because of their potential for self-renewal and multidirectional differentiation. SCs are also commonly used for difficult-to-treat gynecological diseases because of their strong directional differentiation ability with unlimited possibilities, their tendency to adhere to the diseased tissue site, and their use as carriers for drug delivery. SCs can produce exosomes in a paracrine manner. Exosomes can be produced in large quantities and have the advantage of easy storage. Their safety and efficacy are superior to those of SCs, which have considerable potential in gynecological treatment, such as inhibiting endometrial senescence, promoting vascular reconstruction, and improving anti-inflammatory and immune functions. In this paper, we review the mechanisms of the regenerative and anti-inflammatory capacity of SCs and exosomes in incurable gynecological diseases and the current progress in their application in genetic engineering to provide a foundation for further research.
Collapse
Affiliation(s)
- Xu Zheng
- Changchun University of Chinese Medicine, Changchun 130117, China
| | - Dan Zhao
- Affiliated Hospital of Changchun University of Traditional Chinese Medicine, Changchun 130000, China
| | - Yang Liu
- Affiliated Hospital of Changchun University of Traditional Chinese Medicine, Changchun 130000, China
| | - Ye Jin
- Changchun University of Chinese Medicine, Changchun 130117, China
| | - Tianjia Liu
- Changchun University of Chinese Medicine, Changchun 130117, China; Baicheng Medical College, Baicheng 137000, China.
| | - Huijing Li
- Changchun University of Chinese Medicine, Changchun 130117, China.
| | - Da Liu
- Changchun University of Chinese Medicine, Changchun 130117, China.
| |
Collapse
|
7
|
Li WJ, Zhang X, Shen M, Liu HL, Ding LR. Sulforaphane alleviates the meiosis defects induced by 3-nitropropionic acid in mouse oocytes. Food Chem Toxicol 2023; 181:114083. [PMID: 37783421 DOI: 10.1016/j.fct.2023.114083] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 09/11/2023] [Accepted: 09/29/2023] [Indexed: 10/04/2023]
Abstract
3-Nitropropionic acid (3-NP) is a mycotoxin commonly found in plants and fungi that has been linked to mammalian intoxication. Previously, we found 3-NP treatment exhibited reproductive toxicity by inducing oxidative stress in mouse ovary; however, the toxic effects of 3-NP on mouse oocyte maturation have not been investigated. Sulforaphane (SFN) is a naturally bioactive phytocompound derived from cruciferous vegetables that has been shown to possess cytoprotective properties. The present study was designed to investigate the cytotoxicity of 3-NP during mouse oocyte maturation and the protective effects of SFN on oocytes challenged with 3-NP. The results showed 3-NP had a dose-dependent inhibitory effect on oocyte maturation, and SFN significantly alleviated the defects caused by 3-NP, including failed first polar body extrusion and abnormal spindle assembly. Furthermore, 3-NP caused abnormal mitochondrial distribution in oocytes and disrupted mitochondrial functions, including mitochondrial depolarization, decreased ATP levels, and increased mitochondrial-derived ROS. Finally, 3-NP induced oxidative stress in oocytes, leading to increased apoptosis and autophagy, while SFN supplementation had significant cytoprotective effects on these damages. Collectively, our results provide insight on the mechanism of 3-NP toxicity in mouse oocytes and suggest the application of SFN may be a viable intervention strategy to mitigate 3-NP-induced reproductive toxicity.
Collapse
Affiliation(s)
- Wei-Jian Li
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xuan Zhang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Ming Shen
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Hong-Lin Liu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Li-Ren Ding
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
8
|
Wang K, Li Y. Signaling pathways and targeted therapeutic strategies for polycystic ovary syndrome. Front Endocrinol (Lausanne) 2023; 14:1191759. [PMID: 37929034 PMCID: PMC10622806 DOI: 10.3389/fendo.2023.1191759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 09/18/2023] [Indexed: 11/07/2023] Open
Abstract
Polycystic ovary syndrome (PCOS) is the most common endocrine disorder among women of reproductive age. Although promising strides have been made in the field of PCOS over the past decades, the distinct etiologies of this syndrome are not fully elucidated. Prenatal factors, genetic variation, epigenetic mechanisms, unhealthy lifestyles, and environmental toxins all contribute to the development of this intricate and highly heterogeneous metabolic, endocrine, reproductive, and psychological disorder. Moreover, interactions between androgen excess, insulin resistance, disruption to the hypothalamic-pituitary-ovary (HPO) axis, and obesity only make for a more complex picture. In this review, we investigate and summarize the related molecular mechanisms underlying PCOS pathogenesis from the perspective of the level of signaling pathways, including PI3K/Akt, TGF-β/Smads, Wnt/β-catenin, and Hippo/YAP. Additionally, this review provides an overview of prospective therapies, such as exosome therapy, gene therapy, and drugs based on traditional Chinese medicine (TCM) and natural compounds. By targeting these aberrant pathways, these interventions primarily alleviate inflammation, insulin resistance, androgen excess, and ovarian fibrosis, which are typical symptoms of PCOS. Overall, we hope that this paper will pave the way for better understanding and management of PCOS in the future.
Collapse
Affiliation(s)
- Kexin Wang
- The Second School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yanhua Li
- Department of General Practice, The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
9
|
Tsai YR, Liao YN, Kang HY. Current Advances in Cellular Approaches for Pathophysiology and Treatment of Polycystic Ovary Syndrome. Cells 2023; 12:2189. [PMID: 37681921 PMCID: PMC10487183 DOI: 10.3390/cells12172189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 08/28/2023] [Accepted: 08/28/2023] [Indexed: 09/09/2023] Open
Abstract
Polycystic ovary syndrome (PCOS) is a prevalent gynecological and endocrine disorder that results in irregular menstruation, incomplete follicular development, disrupted ovulation, and reduced fertility rates among affected women of reproductive age. While these symptoms can be managed through appropriate medication and lifestyle interventions, both etiology and treatment options remain limited. Here we provide a comprehensive overview of the latest advancements in cellular approaches utilized for investigating the pathophysiology of PCOS through in vitro cell models, to avoid the confounding systemic effects such as in vitro fertilization (IVF) therapy. The primary objective is to enhance the understanding of abnormalities in PCOS-associated folliculogenesis, particularly focusing on the aberrant roles of granulosa cells and other relevant cell types. Furthermore, this article encompasses analyses of the mechanisms and signaling pathways, microRNA expression and target genes altered in PCOS, and explores the pharmacological approaches considered as potential treatments. By summarizing the aforementioned key findings, this article not only allows us to appreciate the value of using in vitro cell models, but also provides guidance for selecting suitable research models to facilitate the identification of potential treatments and understand the pathophysiology of PCOS at the cellular level.
Collapse
Affiliation(s)
- Yi-Ru Tsai
- Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Taoyuan City 333, Taiwan
- An-Ten Obstetrics and Gynecology Clinic, Kaohsiung City 802, Taiwan
| | - Yen-Nung Liao
- Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Taoyuan City 333, Taiwan
- Department of Chinese Medicine, Kaohsiung Chang Gung Memorial Hospital, College of Medicine, Chang Gung University, Kaohsiung City 833, Taiwan
| | - Hong-Yo Kang
- Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Taoyuan City 333, Taiwan
- Department of Biological Science, National Sun Yat-sen University, Kaohsiung 804, Taiwan
- Center for Hormone and Reproductive Medicine Research, Department of Obstetrics and Gynecology, Kaohsiung Chang Gung Memorial Hospital, College of Medicine, Chang Gung University, Kaohsiung City 833, Taiwan
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital, College of Medicine, Chang Gung University, Kaohsiung City 833, Taiwan
| |
Collapse
|
10
|
Chen SY, Kannan M. Neural crest cells and fetal alcohol spectrum disorders: Mechanisms and potential targets for prevention. Pharmacol Res 2023; 194:106855. [PMID: 37460002 PMCID: PMC10528842 DOI: 10.1016/j.phrs.2023.106855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 06/23/2023] [Accepted: 07/14/2023] [Indexed: 07/26/2023]
Abstract
Fetal alcohol spectrum disorders (FASD) are a group of preventable and nongenetic birth defects caused by prenatal alcohol exposure that can result in a range of cognitive, behavioral, emotional, and functioning deficits, as well as craniofacial dysmorphology and other congenital defects. During embryonic development, neural crest cells (NCCs) play a critical role in giving rise to many cell types in the developing embryos, including those in the peripheral nervous system and craniofacial structures. Ethanol exposure during this critical period can have detrimental effects on NCC induction, migration, differentiation, and survival, leading to a broad range of structural and functional abnormalities observed in individuals with FASD. This review article provides an overview of the current knowledge on the detrimental effects of ethanol on NCC induction, migration, differentiation, and survival. The article also examines the molecular mechanisms involved in ethanol-induced NCC dysfunction, such as oxidative stress, altered gene expression, apoptosis, epigenetic modifications, and other signaling pathways. Furthermore, the review highlights potential therapeutic strategies for preventing or mitigating the detrimental effects of ethanol on NCCs and reducing the risk of FASD. Overall, this article offers a comprehensive overview of the current understanding of the impact of ethanol on NCCs and its role in FASD, shedding light on potential avenues for future research and intervention.
Collapse
Affiliation(s)
- Shao-Yu Chen
- Department of Pharmacology and Toxicology, University of Louisville Health Sciences Center, Louisville, KY 40292, USA; University of Louisville Alcohol Research Center, Louisville, KY 40292, USA.
| | - Maharajan Kannan
- Department of Pharmacology and Toxicology, University of Louisville Health Sciences Center, Louisville, KY 40292, USA; University of Louisville Alcohol Research Center, Louisville, KY 40292, USA.
| |
Collapse
|
11
|
Liu S, Jia Y, Meng S, Luo Y, Yang Q, Pan Z. Mechanisms of and Potential Medications for Oxidative Stress in Ovarian Granulosa Cells: A Review. Int J Mol Sci 2023; 24:ijms24119205. [PMID: 37298157 DOI: 10.3390/ijms24119205] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 05/20/2023] [Accepted: 05/22/2023] [Indexed: 06/12/2023] Open
Abstract
Granulosa cells are essential for follicle initiation and development, and their abnormal function or apoptosis is a crucial factor leading to follicular atresia. A state of oxidative stress occurs when the balance between the production of reactive oxygen species and the regulation of the antioxidant system is disturbed. Oxidative stress is one of the most important causes of the abnormal function and apoptosis of granulosa cells. Oxidative stress in granulosa cells causes female reproductive system diseases, such as polycystic ovary syndrome and premature ovarian failure. In recent years, studies have confirmed that the mechanism of oxidative stress in granulosa cells is closely linked to the PI3K-AKT signaling pathway, MAPK signaling pathway, FOXO axis, Nrf2 pathway, NF-κB signaling pathway, and mitophagy. It has been found that drugs such as sulforaphane, Periplaneta americana peptide, and resveratrol can mitigate the functional damage caused by oxidative stress on granulosa cells. This paper reviews some of the mechanisms involved in oxidative stress in granulosa cells and describes the mechanisms underlying the pharmacological treatment of oxidative stress in granulosa cells.
Collapse
Affiliation(s)
- Siheng Liu
- Queen Mary School, Jiangxi Medical College, Nanchang University, Nanchang 330006, China
| | - Yunbing Jia
- Queen Mary School, Jiangxi Medical College, Nanchang University, Nanchang 330006, China
| | - Shirui Meng
- Queen Mary School, Jiangxi Medical College, Nanchang University, Nanchang 330006, China
| | - Yiran Luo
- Queen Mary School, Jiangxi Medical College, Nanchang University, Nanchang 330006, China
| | - Qi Yang
- College of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang 330006, China
| | - Zezheng Pan
- College of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang 330006, China
| |
Collapse
|
12
|
Tang H, Jiang X, Hua Y, Li H, Zhu C, Hao X, Yi M, Li L. NEDD4L facilitates granulosa cell ferroptosis by promoting GPX4 ubiquitination and degradation. Endocr Connect 2023; 12:EC-22-0459. [PMID: 36662677 PMCID: PMC10083675 DOI: 10.1530/ec-22-0459] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Accepted: 01/19/2023] [Indexed: 01/21/2023]
Abstract
BACKGROUND Polycystic ovary syndrome (PCOS) is an androgen disorder and ovarian dysfunction disease in women of reproductive age. The cell death of granulosa cells (GCs) plays an important role in the development of PCOS. However, the mechanism of GC death is still unclear. METHODS In the current study, NEDD4L was found to be elevated in PCOS GEO (Gene Expression Omnibus) databases and mouse models. The cell viability was analyzed by CCK-8 and FDA staining. The expression of ferroptosis markers was assessed by ELISA and immunofluorescence. The direct interaction of GPX4 and NEDD4L was verified by co-immunoprecipitation assay. RESULT Functionally, results from CCK-8 and FDA staining demonstrated that NEDD4L inhibited the cell viability of KGN cells and NEDD4L increased the levels of iron, malonyldialdehyde, and reactive oxygen species and decreased glutathione levels. Moreover, the cell death of KGN induced by NEDD4L was blocked by ferroptosis inhibitor, suggesting that NEDD4L regulates KGN cell ferroptosis. Mechanistically, NEDD4L directly interacts with GPX4 and promotes GPX4 ubiquitination and degradation. CONCLUSION Taken together, our study indicated that NEDD4L facilitates GC ferroptosis by promoting GPX4 ubiquitination and degradation and contributes to the development of PCOS.
Collapse
Affiliation(s)
- Hong Tang
- Departments of Gynaecology and Obstetrics Seventh People’s Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xiaomei Jiang
- Departments of Gynaecology and Obstetrics Seventh People’s Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yu Hua
- Departments of Gynaecology and Obstetrics Seventh People’s Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Heyue Li
- Departments of Gynaecology and Obstetrics Seventh People’s Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Chunlan Zhu
- Departments of Gynaecology and Obstetrics Seventh People’s Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xiaobai Hao
- Departments of Gynaecology and Obstetrics Seventh People’s Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Minhui Yi
- Departments of Gynaecology and Obstetrics Seventh People’s Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Linxia Li
- Departments of Gynaecology and Obstetrics Seventh People’s Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Correspondence should be addressed to L Li:
| |
Collapse
|
13
|
Chen X, Song QL, Li ZH, Ji R, Wang JY, Cao ML, Mu XF, Zhang Y, Guo DY, Yang J. Pterostilbene ameliorates oxidative damage and ferroptosis in human ovarian granulosa cells by regulating the Nrf2/HO-1 pathway. Arch Biochem Biophys 2023; 738:109561. [PMID: 36898621 DOI: 10.1016/j.abb.2023.109561] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 02/16/2023] [Accepted: 03/05/2023] [Indexed: 03/11/2023]
Abstract
The survival of ovarian granulosa cells is of great significance to the physiological maintenance of the ovary. Oxidative damage to the ovarian granulosa cells can lead to various diseases related to ovarian dysfunction. Pterostilbene exerts many pharmacological effects, such as anti-inflammatory and cardiovascular protective effects. Moreover, pterostilbene was shown to have antioxidant properties. This study aimed to investigate the effect and underlying mechanism of pterostilbene on oxidative damage in ovarian granulosa cells. Ovarian granulosa cell (OGC) lines COV434 and KGN were exposed to H2O2 to establish an oxidative damage model. After treatment with different concentrations of H2O2 or pterostilbene, the cell viability, mitochondrial membrane potential, oxidative stress, and iron levels were detected, and the expression of ferroptosis-related and Nrf2/HO-1 signaling pathway-related proteins were evaluated. Pterostilbene treatment could effectively improve cell viability, reduce oxidative stress, and inhibit ferroptosis stimulated by H2O2. More importantly, pterostilbene could up-regulate Nrf2 transcription by stimulating histone acetylation, and inhibition of Nrf2 signaling could reverse the therapeutic effect of pterostilbene. In conclusion, this research shows that pterostilbene protects human OGCs from oxidative stress and ferroptosis through the Nrf2/HO-1 pathway.
Collapse
Affiliation(s)
- Xin Chen
- Reproductive Medical Center, Renmin Hospital of Wuhan University and Hubei Clinic Research Center for Assisted Reproductive Technology and Embryonic Development, Wuhan, Hubei, China
| | - Qian Lin Song
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Ze Hong Li
- Reproductive Medical Center, Renmin Hospital of Wuhan University and Hubei Clinic Research Center for Assisted Reproductive Technology and Embryonic Development, Wuhan, Hubei, China
| | - Rui Ji
- Reproductive Medical Center, Renmin Hospital of Wuhan University and Hubei Clinic Research Center for Assisted Reproductive Technology and Embryonic Development, Wuhan, Hubei, China
| | - Jia Yu Wang
- Reproductive Medical Center, Renmin Hospital of Wuhan University and Hubei Clinic Research Center for Assisted Reproductive Technology and Embryonic Development, Wuhan, Hubei, China
| | - Ming Liang Cao
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Xue Feng Mu
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yan Zhang
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, China.
| | - Duan Ying Guo
- Longgang District People's Hospital of Shenzhen, Shenzhen, China.
| | - Jing Yang
- Reproductive Medical Center, Renmin Hospital of Wuhan University and Hubei Clinic Research Center for Assisted Reproductive Technology and Embryonic Development, Wuhan, Hubei, China.
| |
Collapse
|
14
|
Islam MR, Rahman MM, Dhar PS, Nowrin FT, Sultana N, Akter M, Rauf A, Khalil AA, Gianoncelli A, Ribaudo G. The Role of Natural and Semi-Synthetic Compounds in Ovarian Cancer: Updates on Mechanisms of Action, Current Trends and Perspectives. Molecules 2023; 28:2070. [PMID: 36903316 PMCID: PMC10004182 DOI: 10.3390/molecules28052070] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/16/2023] [Accepted: 02/21/2023] [Indexed: 02/25/2023] Open
Abstract
Ovarian cancer represents a major health concern for the female population: there is no obvious cause, it is frequently misdiagnosed, and it is characterized by a poor prognosis. Additionally, patients are inclined to recurrences because of metastasis and poor treatment tolerance. Combining innovative therapeutic techniques with established approaches can aid in improving treatment outcomes. Because of their multi-target actions, long application history, and widespread availability, natural compounds have particular advantages in this connection. Thus, effective therapeutic alternatives with improved patient tolerance hopefully can be identified within the world of natural and nature-derived products. Moreover, natural compounds are generally perceived to have more limited adverse effects on healthy cells or tissues, suggesting their potential role as valid treatment alternatives. In general, the anticancer mechanisms of such molecules are connected to the reduction of cell proliferation and metastasis, autophagy stimulation and improved response to chemotherapeutics. This review aims at discussing the mechanistic insights and possible targets of natural compounds against ovarian cancer, from the perspective of medicinal chemists. In addition, an overview of the pharmacology of natural products studied to date for their potential application towards ovarian cancer models is presented. The chemical aspects as well as available bioactivity data are discussed and commented on, with particular attention to the underlying molecular mechanism(s).
Collapse
Affiliation(s)
- Md. Rezaul Islam
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh
| | - Md. Mominur Rahman
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh
| | - Puja Sutro Dhar
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh
| | - Feana Tasmim Nowrin
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh
| | - Nasrin Sultana
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh
| | - Muniya Akter
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh
| | - Abdur Rauf
- Department of Chemistry, University of Swabi, Anbar 23430, Pakistan
| | - Anees Ahmed Khalil
- University Institute of Diet and Nutritional Sciences, Faculty of Allied Health Sciences, The University of Lahore, Lahore 54000, Pakistan
| | - Alessandra Gianoncelli
- Dipartimento di Medicina Molecolare e Traslazionale, Università degli Studi di Brescia, Viale Europa 11, 25123 Brescia, Italy
| | - Giovanni Ribaudo
- Dipartimento di Medicina Molecolare e Traslazionale, Università degli Studi di Brescia, Viale Europa 11, 25123 Brescia, Italy
| |
Collapse
|
15
|
Sun P, Zhang Y, Sun L, Sun N, Wang J, Ma H. Kisspeptin regulates the proliferation and apoptosis of ovary granulosa cells in polycystic ovary syndrome by modulating the PI3K/AKT/ERK signalling pathway. BMC Womens Health 2023; 23:15. [PMID: 36627631 PMCID: PMC9832680 DOI: 10.1186/s12905-022-02154-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 12/30/2022] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND The development of polycystic ovary syndrome (PCOS) is closely correlated with apoptosis and oxidative stress in ovarian granulosa cells. Kisspeptin plays an important role in reproductive organ function. This study aimed to explore the role of kisspeptin in PCOS and oxidative stress-triggered apoptosis of ovarian granular cells. METHODS A PCOS rat model was established by injecting dehydroepiandrosterone (DHEA) and feeding the rats a high-fat diet. The RNA and protein levels of kisspeptin were analysed by quantitative PCR, western blotting, and histological staining. Tissue damage was evaluated using haematoxylin and eosin (H&E) staining. The viability and proliferation of human granulosa cell KGN were measured using the cell counting kit-8 (CCK-8) and 5-ethynyl-2'-deoxyuridine (EdU) assays. Cell cycle and apoptosis were analysed by flow cytometry. Oxidative stress was analysed by measuring reactive oxygen species (ROS), malondialdehyde (MDA), glutathione (GSH), superoxide dismutase (SOD), and catalase (CAT) levels. RESULTS Kisspeptin was downregulated in the ovarian granulosa cells of PCOS rats compared to those of control rats. Kisspeptin overexpression enhanced KGN cell proliferation and inhibited apoptosis. ROS generation was suppressed by kisspeptin, along with decreased levels of MDA and increased levels of the antioxidants GSH, SOD, and CAT. Kisspeptin activates PI3K/AKT and ERK signalling, and inactivation of ERK1/2 suppresses the protective role of kisspeptin in ovarian granulosa cells. CONCLUSION Kisspeptin improves proliferation and alleviates apoptosis and oxidative stress in ovarian granulosa cells by activating PI3K/AKT and ERK signalling.
Collapse
Affiliation(s)
- Pingping Sun
- grid.416966.a0000 0004 1758 1470Reproductive Medicine Center, Weifang People’s Hospital, No. 151, Guangwen Street, Kuiwen District, Weifang, 261000 Shandong China
| | - Yuemin Zhang
- grid.416966.a0000 0004 1758 1470Reproductive Medicine Center, Weifang People’s Hospital, No. 151, Guangwen Street, Kuiwen District, Weifang, 261000 Shandong China
| | - Lilan Sun
- grid.416966.a0000 0004 1758 1470Reproductive Medicine Center, Weifang People’s Hospital, No. 151, Guangwen Street, Kuiwen District, Weifang, 261000 Shandong China
| | - Na Sun
- grid.416966.a0000 0004 1758 1470Reproductive Medicine Center, Weifang People’s Hospital, No. 151, Guangwen Street, Kuiwen District, Weifang, 261000 Shandong China
| | - Jinguang Wang
- grid.416966.a0000 0004 1758 1470Reproductive Medicine Center, Weifang People’s Hospital, No. 151, Guangwen Street, Kuiwen District, Weifang, 261000 Shandong China
| | - Huagang Ma
- grid.416966.a0000 0004 1758 1470Reproductive Medicine Center, Weifang People’s Hospital, No. 151, Guangwen Street, Kuiwen District, Weifang, 261000 Shandong China
| |
Collapse
|
16
|
Fang J, Ma Y, Li Y, Li J, Zhang X, Han X, Ma S, Guan F. CCT4 knockdown enhances the sensitivity of cisplatin by inhibiting glycolysis in human esophageal squamous cell carcinomas. Mol Carcinog 2022; 61:1043-1055. [DOI: 10.1002/mc.23460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 08/20/2022] [Accepted: 08/29/2022] [Indexed: 11/09/2022]
Affiliation(s)
- Jiarui Fang
- School of Life Sciences Zhengzhou University Zhengzhou Henan China
| | - Yingchao Ma
- School of Life Sciences Zhengzhou University Zhengzhou Henan China
| | - Ya Li
- School of Life Sciences Zhengzhou University Zhengzhou Henan China
| | - Jianhui Li
- Department of Pathology Xuchang Central Hospital Affiliated to Henan University of Science and Technology Xuchang China
| | - Xishen Zhang
- School of Life Sciences Zhengzhou University Zhengzhou Henan China
| | - Xiao Han
- School of Life Sciences Zhengzhou University Zhengzhou Henan China
| | - Shanshan Ma
- School of Life Sciences Zhengzhou University Zhengzhou Henan China
| | - Fangxia Guan
- School of Life Sciences Zhengzhou University Zhengzhou Henan China
| |
Collapse
|
17
|
Taheri M, Roudbari NH, Amidi F, Parivar K. Investigating the effect of Sulforaphane on AMPK/AKT/NRF2 pathway in human granulosa-lutein cells under H 2O 2-induced oxidative stress. Eur J Obstet Gynecol Reprod Biol 2022; 276:125-133. [PMID: 35882072 DOI: 10.1016/j.ejogrb.2022.07.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 06/19/2022] [Accepted: 07/09/2022] [Indexed: 11/04/2022]
Abstract
Excessive production of reactive oxygen species (ROS) in granulosa cells (GCs) plays a role in pathogenesis of polycystic ovarian syndrome (PCOS) by developing oxidative stress (OS). It was shown that Sulforaphane (SFN), with known antioxidant properties, can have protective effects in different diseases through affecting the nuclear factor (erythroid-derived 2)-like 2 (NRF2) signaling pathway. Thus, the purpose of the current work was to examine the protective impact of SFN through the activation of the AMPK/AKT/NRF2 pathway against OS produced by H2O2 in granulosa-lutein cells (GLCs). Individuals' GLCs were obtained during ovum retrieval in intracytoplasmic sperm injection (ICSI) cycles. First, the induced OS model was created in GLCs using H2O2 exposure. To examine the protective effect of SFN against OS, the cells were cultured for 24 h in presence or absence of SFN. Eventually, the levels of intracellular ROS and apoptosis were measured by flow cytometry, and genes and proteins expression levels of AMPK, AKT, and NRF2 were evaluated using qRT-PCR and western blotting. Compared to the control group, the levels of intracellular ROS and apoptosis rose dramatically in GLCs with enhanced OS. SFN therapy decreased ROS and apoptosis levels and increased the overexpression of AMPK, AKT, and NRF2 genes and proteins. This study's results revealed that SFN exposure results in the alleviation of ROS and apoptosis levels possibly through activating the overexpression of genes and proteins of AMPK, AKT, and NRF2, and exerts its protective effects against OS in GLCs.
Collapse
Affiliation(s)
- Maryam Taheri
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Nasim Hayati Roudbari
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran.
| | - Fardin Amidi
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran; Department of Infertility, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran.
| | - Kazem Parivar
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran.
| |
Collapse
|