1
|
Sun X, Teng R, Xu N, Sun Y, Zhang E, Chen X, Guo Q, Li S. PFOS exposure impairs porcine oocyte maturation and embryo development via mitochondria-dependent ferroptosis. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 374:126185. [PMID: 40189092 DOI: 10.1016/j.envpol.2025.126185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Revised: 03/30/2025] [Accepted: 04/01/2025] [Indexed: 04/14/2025]
Abstract
Perfluorooctane sulfonate (PFOS) is a widely utilized chemical known for its exceptional environmental stability over extended periods, its significant potential to bioaccumulate in living organisms, and its considerable risks to both health and the environment. Several studies have suggested that PFOS may pose reproductive risks in mammals; however, the exact mechanisms driving these effects are not well understood. In this study, we explored the possible mechanisms by which PFOS toxicity affects the maturation of mammalian oocytes and the embryonic development employing porcine oocytes as a model system. SMART-seq results suggested that PFOS may affect oocyte maturation through mechanisms involving ferroptosis, autophagy, and alterations in membrane structure. Our results suggest that PFOS exposure adversely affects mitochondrial function and structure, thereby influencing peroxisome biogenesis and contributing to oxidative stress. Most importantly, we found that exposure to PFOS significantly elevated Fe2+ levels, an indicator associated with ferroptosis in oocytes. Furthermore, malondialdehyde (MDA) levels in the PFOS group were significantly higher than those in the control group. Additionally, the mRNA expression levels of PCBP1 and PCBP2, which are related to ferroptosis, as well as the expression level of P53, were significantly reduced in the PFOS group. Overall, exposure to PFOS in vitro results in mitochondrial damage in porcine oocytes, which induces lipid peroxidation and subsequently leads to the occurrence of ferroptosis.
Collapse
Affiliation(s)
- Xiaoqing Sun
- Jilin Agricultural University, Xincheng Street 2888, Changchun, 130118, China
| | - Ran Teng
- Jilin Agricultural University, Xincheng Street 2888, Changchun, 130118, China
| | - Ning Xu
- Jilin Agricultural University, Xincheng Street 2888, Changchun, 130118, China
| | - Yutong Sun
- Affiliated Middle School to Jilin University, Changchun, 130000, China
| | - Enbo Zhang
- Jilin Agricultural University, Xincheng Street 2888, Changchun, 130118, China
| | - Xingfu Chen
- Jilin Agricultural University, Xincheng Street 2888, Changchun, 130118, China
| | - Qing Guo
- College of Animal Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang, 163319, China
| | - Suo Li
- Jilin Agricultural University, Xincheng Street 2888, Changchun, 130118, China.
| |
Collapse
|
2
|
Kong X, Wang X, Xia Q, Hu Q, Yu W, Huang Q, Li J, Wang C, Lin Z, Liu Y, Qi Y, Tan X, Zheng B, Yu J. Unveiling the nexus between environmental exposures and testicular damages: revelations from autophagy and oxidative stress imbalance. Cell Death Discov 2025; 11:258. [PMID: 40442097 PMCID: PMC12122914 DOI: 10.1038/s41420-025-02543-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 05/07/2025] [Accepted: 05/22/2025] [Indexed: 06/02/2025] Open
Abstract
Recent evidence consolidates the deleterious impact of environmental exposure on testicular damage. Environmental exposures can instigate testicular toxicity, causing damage to the Sertoli-Sertoli cell-mediated blood-testis barrier (BTB) integrity, alterations in hormone levels orchestrated by aberrant Leydig cells, and disruption of spermatogenesis. Despite diverse study designs and methodologies, a consensus is emerging on how environmental factors induce oxidative stress by elevating ROS levels, affecting autophagy through pathways such as the ROS-mediated mTOR signaling pathway, ultimately culminating in testicular damage. This review synthesizes existing literature on how environmental exposures, including metals, air pollutants, industrial contaminants, and pesticides, disturb testicular homeostasis via autophagy-mediated oxidative stress, highlighting recent significant advancements. It also explores interventions like antioxidant support and autophagy regulation to alleviate testicular damage. These findings underscore the importance of elucidating the mechanisms of autophagy influenced by environmental exposures in disrupting the equilibrium of oxidative stress, identifying potential drug targets, and establishing a groundwork for enhancing future treatments and clinical management of testicular injuries.
Collapse
Affiliation(s)
- Xiuwen Kong
- Institute of Reproductive Medicine, Jiangsu Province Key Laboratory in University for Inflammation and Molecular Drug Target, Medical School of Nantong University, Nantong University, Nantong, 226001, China
- Reproductive medicine Center, Affiliated Maternity and Child Health Care Hospital of Nantong University, Nantong, 226001, China
| | - Xinda Wang
- Institute of Reproductive Medicine, Jiangsu Province Key Laboratory in University for Inflammation and Molecular Drug Target, Medical School of Nantong University, Nantong University, Nantong, 226001, China
| | - Qiushi Xia
- Institute of Reproductive Medicine, Jiangsu Province Key Laboratory in University for Inflammation and Molecular Drug Target, Medical School of Nantong University, Nantong University, Nantong, 226001, China
| | - Qingqing Hu
- Institute of Reproductive Medicine, Jiangsu Province Key Laboratory in University for Inflammation and Molecular Drug Target, Medical School of Nantong University, Nantong University, Nantong, 226001, China
| | - Wenqian Yu
- Institute of Reproductive Medicine, Jiangsu Province Key Laboratory in University for Inflammation and Molecular Drug Target, Medical School of Nantong University, Nantong University, Nantong, 226001, China
| | - Qiuru Huang
- Institute of Reproductive Medicine, Jiangsu Province Key Laboratory in University for Inflammation and Molecular Drug Target, Medical School of Nantong University, Nantong University, Nantong, 226001, China
| | - Jiaxin Li
- Institute of Reproductive Medicine, Jiangsu Province Key Laboratory in University for Inflammation and Molecular Drug Target, Medical School of Nantong University, Nantong University, Nantong, 226001, China
| | - Chenyu Wang
- Institute of Reproductive Medicine, Jiangsu Province Key Laboratory in University for Inflammation and Molecular Drug Target, Medical School of Nantong University, Nantong University, Nantong, 226001, China
| | - Ziwen Lin
- Institute of Reproductive Medicine, Jiangsu Province Key Laboratory in University for Inflammation and Molecular Drug Target, Medical School of Nantong University, Nantong University, Nantong, 226001, China
| | - Yiheng Liu
- Institute of Reproductive Medicine, Jiangsu Province Key Laboratory in University for Inflammation and Molecular Drug Target, Medical School of Nantong University, Nantong University, Nantong, 226001, China
| | - Yujuan Qi
- Clinical Center of Reproductive Medicine, Xuzhou Central Hospital, Southeast University Affiliated Xuzhou Central Hospital, Xuzhou Clinical School of Xuzhou Medical University, Xuzhou, 221000, China.
| | - Xiaofang Tan
- Reproductive medicine Center, Affiliated Maternity and Child Health Care Hospital of Nantong University, Nantong, 226001, China.
| | - Bo Zheng
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Reproduction and Genetics, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, 215002, China.
| | - Jun Yu
- Institute of Reproductive Medicine, Jiangsu Province Key Laboratory in University for Inflammation and Molecular Drug Target, Medical School of Nantong University, Nantong University, Nantong, 226001, China.
| |
Collapse
|
3
|
Sabovic I, De Toni L, Di Nisio A, Radu CM, Gabbia D, De Martin S, Ferlin A. Additive effect of Bisphenol A and Pefluoro-sulphoctanoic acid exposure at subacute toxic levels, on a murine model of sertoli cell. J Endocrinol Invest 2025; 48:951-958. [PMID: 39556264 DOI: 10.1007/s40618-024-02498-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Accepted: 11/01/2024] [Indexed: 11/19/2024]
Abstract
PURPOSE Endocrine disruptors (EDs) interfere with the endocrine system leading to health consquences and reproductive derangements. Most EDs are environmental pollutants whose risk evaluation is hampered by the simultaneous exposure to a number of chemicals. Here we investigated the possible mechanistic involvement of Sertoli cells, the nurse cell population in the seminiferous tubule, in the reproductive toxicity of Bisphenol A (BPA) and perfluoro-octane sulphonate (PFOS), two acknowledged EDs, at recognized subacute toxic levels. METHODS Mouse Sertoli cell line TM4 were exposed for 24 h to 40 ng/mL BPA or 30 ng/mL PFOS or their association. Cell proliferation was measuerd by MTT assay. Cell apoptosis was evaluated with Annexin-V/propidium iodide staining. Protein expression analysis was peformed by western blotting. RESULTS Compared to unexposed controls (100.0 ± 3.5%), cells exposed to BPA (79.5 ± 3.5%) or PFOS (76.0 ± 7.9%) showed reduced survival rate (P < 0.001 vs control). The exposure to the mixture of BPA and PFOS was associated with a further reduction of cell survival (63.9 ± 7.2%, P < 0.001 vs control) and an increase of the percentage of apoptotic cells (13.7 ± 4.6% control, 40.3 ± 13.5% BPA, PFOS 28.7 ± 5.6%, 67.1 ± 19.6% BPA + PFOS P = 0.001 vs control; P = 0.022 vs BPA). The exposure to the combination of BPA and PFOS was associated with Akt-signaling pathway activation and with the downstream caspase 3 cleavage. In addition, the exposure to the combination of BPA and PFOS was associated with NF-κB activation and increased expression of FasL. CONCLUSION Subacute toxic levels of BPA and PFOS display additive effects on Sertoli cell apoptosis with the possible involvement of FasL-dependent germ cell apoptosis.
Collapse
Affiliation(s)
- I Sabovic
- Department of Medicine, Unit of Andrology and Reproductive Medicine, University of Padova, Padova, Italy
| | - L De Toni
- Department of Medicine, Unit of Andrology and Reproductive Medicine, University of Padova, Padova, Italy
| | - A Di Nisio
- Department of Medicine, Unit of Andrology and Reproductive Medicine, University of Padova, Padova, Italy
- Department of Health, Nutrition and Sport, Pegaso Telematic University, Naples, Italy
| | - C M Radu
- Department of Medicine, Thrombotic and Haemorrhagic Disease Unit and Haemophilia Center, University of Padova, Padova, Italy
| | - D Gabbia
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy
| | - S De Martin
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy
| | - A Ferlin
- Department of Medicine, Unit of Andrology and Reproductive Medicine, University of Padova, Padova, Italy.
| |
Collapse
|
4
|
Yang J, Li L, An Z, Lv Y, Li R, Li J, Guo M, Sun H, Yang H, Wang L, Liu Y, Guo H. Role of hepatocyte-specific FOXO1 in hepatic glucolipid metabolic disorders induced by perfluorooctane sulfonate. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 367:125632. [PMID: 39755352 DOI: 10.1016/j.envpol.2025.125632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 12/25/2024] [Accepted: 01/01/2025] [Indexed: 01/06/2025]
Abstract
Perfluorooctane sulfonate (PFOS), a prevalent perfluoroalkyl substance (PFAS), is widely present in various environmental media, animals, and even human bodies. It primarily accumulates in the liver, contributing to the disruption of hepatic metabolic homeostasis. However, the precise mechanism underlying PFOS-induced hepatic glucolipid metabolic disorders remains elusive. The transcription factor forkhead box protein O 1 (FOXO1) plays a crucial role in regulating hepatic glucolipid metabolism; however, its involvement in PFOS-induced hepatic glucolipid metabolic disorders has not been thoroughly explored. Molecular docking revealed high binding affinity between PFOS and FOXO1. Male C57BL/6 mice were exposed to PFOS at doses of 0.3, 1.0, and 3.0 mg/kg body weight for 12 weeks to assess its subchronic effects on hepatic glucolipid metabolism in this work. The results indicate that PFOS exposure increases hepatic acetylated FOXO1 expression, promotes liver lipid accumulation, suppresses gluconeogenesis, whereas fasting blood glucose levels remain unaffected but this dysregulation results in insulin resistance. Furthermore, hepatic deletion of FOXO1 in PFOS-exposed mice ameliorates liver injury and reduces lipid accumulation by suppressing hepatic autophagy without significantly affecting gluconeogenesis. In conclusion, FOXO1 may play a pivotal role in the development of PFOS-induced hepatic glucolipid metabolic disorder.
Collapse
Affiliation(s)
- Jing Yang
- Department of Toxicology, School of Public Health, Hebei Medical University, Shijiazhuang, 050017, PR China; Ningxia Hui Autonomous Region Center for Disease Control and Prevention, Yinchuan, 750001, PR China
| | - Longfei Li
- Department of Toxicology, School of Public Health, Hebei Medical University, Shijiazhuang, 050017, PR China
| | - Ziwen An
- Department of Toxicology, School of Public Health, Hebei Medical University, Shijiazhuang, 050017, PR China
| | - Yi Lv
- Department of Toxicology, School of Public Health, Hebei Medical University, Shijiazhuang, 050017, PR China
| | - Ran Li
- Department of Toxicology, School of Public Health, Hebei Medical University, Shijiazhuang, 050017, PR China
| | - Jing Li
- Department of Toxicology, School of Public Health, Hebei Medical University, Shijiazhuang, 050017, PR China
| | - Mingmei Guo
- Department of Toxicology, School of Public Health, Hebei Medical University, Shijiazhuang, 050017, PR China
| | - Heming Sun
- Department of Toxicology, School of Public Health, Hebei Medical University, Shijiazhuang, 050017, PR China
| | - Huiling Yang
- Department of Toxicology, School of Public Health, Hebei Medical University, Shijiazhuang, 050017, PR China
| | - Lei Wang
- Department of Medicinal Chemistry, Hebei Medical University, Shijiazhuang, 050017, PR China
| | - Yi Liu
- Department of Toxicology, School of Public Health, Hebei Medical University, Shijiazhuang, 050017, PR China.
| | - Huicai Guo
- Department of Toxicology, School of Public Health, Hebei Medical University, Shijiazhuang, 050017, PR China; Hebei Key Laboratory of Environment and Human Health, Hebei Province, Shijiazhuang, 050017, PR China.
| |
Collapse
|
5
|
He X, Sun Z, Sun J, Chen Y, Luo Y, Wang Z, Linghu D, Song M, Cao C. Single-cell transcriptomics reveal the microenvironment landscape of perfluorooctane sulfonate-induced liver injury in female mice. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 940:173562. [PMID: 38825197 DOI: 10.1016/j.scitotenv.2024.173562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 05/08/2024] [Accepted: 05/25/2024] [Indexed: 06/04/2024]
Abstract
Epidemic and animal studies have reported that perfluoroalkyl and polyfluoroalkyl substances (PFASs) are strongly associated with liver injury; however, to date, the effects of PFASs on the hepatic microenvironment remain largely unknown. In this study, we established perfluorooctane sulfonic acid (PFOS)-induced liver injury models by providing male and female C57BL/6 mice with water containing PFOS at varying doses for 4 weeks. Hematoxylin and eosin staining revealed that PFOS induced liver injury in both sexes. Elevated levels of serum aminotransferases including those of alanine aminotransferase and aspartate transaminase were detected in the serum of mice treated with PFOS. Female mice exhibited more severe liver injury than male mice. We collected the livers from female mice and performed single-cell RNA sequencing. In total, 36,529 cells were included and grouped into 10 major cell types: B cells, granulocytes, T cells, NK cells, monocytes, dendritic cells, macrophages, endothelial cells, fibroblasts, and hepatocytes. Osteoclast differentiation was upregulated and the T cell receptor signaling pathway was significantly downregulated in PFOS-treated livers. Further analyses revealed that among immune cell clusters in PFOS-treated livers, Tcf7+CD4+T cells were predominantly downregulated, whereas conventional dendritic cells and macrophages were upregulated. Among the fibroblast subpopulations, hepatic stellate cells were significantly enriched in PFOS-treated female mice. CellphoneDB analysis suggested that fibroblasts interact closely with endothelial cells. The major ligand-receptor pairs between fibroblasts and endothelial cells in PFOS-treated livers were Dpp4_Cxcl12, Ackr3_Cxcl12, and Flt1_complex_Vegfa. These genes are associated with directing cell migration and angiogenesis. Our study provides a general framework for understanding the microenvironment in the livers of female mice exposed to PFOS at the single-cell level.
Collapse
Affiliation(s)
- Xinrong He
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Zhichao Sun
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Jingyuan Sun
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Yiyao Chen
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Yongyi Luo
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Zhiyi Wang
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Dongli Linghu
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Miao Song
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Chuanhui Cao
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China; Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Guangzhou, Guangdong, China.
| |
Collapse
|