1
|
Holliman AG, Mackay L, Biancardi VC, Tao YX, Foradori CD. Atrazine's effects on mammalian physiology. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART B, CRITICAL REVIEWS 2025:1-40. [PMID: 40016167 DOI: 10.1080/10937404.2025.2468212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/01/2025]
Abstract
Atrazine is a chlorotriazine herbicide that is one of the most widely used herbicides in the USA and the world. For over 60 years atrazine has been used on major crops including corn, sorghum, and sugarcane to control broadleaf and grassy weed emergence and growth. Atrazine has exerted a major economic and environmental impact over that time, resulting in reduced production costs and increased conservation tillage practices. However, widespread use and a long half-life led to a high prevalence of atrazine in the environment. Indeed, atrazine is the most frequent herbicide contaminant detected in water sources in the USA. Due to its almost ubiquitous presence and questions regarding its safety, atrazine has been well-studied. First reported to affect reproduction with potential disruptive effects which were later linked to the immune system, cancer, stress response, neurological disorders, and cardiovascular ailments in experimental models. Atrazine impact on multiple interwoven systems broadens the significance of atrazine exposure. The endeavor to uncover the mechanisms underlying atrazine-induced dysfunction in mammals is ongoing, with new genetic and pharmacological targets being reported. This review aims to summarize the prominent effects of atrazine on mammalian physiology, primarily focusing on empirical studies conducted in lab animal models and establish correlations with epidemiological human studies when relevant. In addition, current common patterns of toxicity and potential underlying mechanisms of atrazine action will be examined.
Collapse
Affiliation(s)
- Anna G Holliman
- Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, AL, USA
| | - Laci Mackay
- Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, AL, USA
| | - Vinicia C Biancardi
- Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, AL, USA
| | - Ya-Xiong Tao
- Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, AL, USA
| | - Chad D Foradori
- Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, AL, USA
| |
Collapse
|
2
|
Hongoeb J, Tantimongcolwat T, Ayimbila F, Ruankham W, Phopin K. Herbicide-related health risks: key mechanisms and a guide to mitigation strategies. J Occup Med Toxicol 2025; 20:6. [PMID: 40001182 PMCID: PMC11863480 DOI: 10.1186/s12995-025-00448-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 01/06/2025] [Indexed: 02/27/2025] Open
Abstract
BACKGROUND Herbicides are a group of substances used to control undesired vegetation in both agricultural and non-agricultural settings. They are recorded as the most consumed class among other pesticides, reaching nearly two million tons worldwide. Despite their effectiveness in weed control, the extensive utilization of herbicides has raised concerns regarding adverse effects on human health. However, comprehensive reviews addressing herbicide-related human health risks remain limited. This work aims to compile scientific evidence and possible underlying mechanisms to emphasize the hazards that need to be acknowledged, as well as to explore novel strategies for minimizing the impact on human health. METHOD Scientific data on herbicide-related human health risks, including human-related data and non-human experimental research, were retrieved from databases such as PubMed, Scopus, and Google Scholar. Pre-determined eligibility criteria were applied to select the final studies. RESULT A narrative summary of evidence-based human incidence and laboratory experiments is presented to organize and highlight key findings. This indicates the life-threatening nature of herbicide exposure in humans, ranging from acute toxicity to the development of chronic diseases at any stage of life. CONCLUSION Herbicidal chemicals can harm individuals through various pathways, especially by inducing oxidative stress or directly disrupting molecular and cellular processes. Despite some conflicting findings, effective mitigation strategies are urgently needed to promote a safer society and protect human well-being.
Collapse
Affiliation(s)
- Juthamas Hongoeb
- Center for Research Innovation and Biomedical Informatics, Faculty of Medical Technology, Mahidol University, Bangkok, 10700, Thailand
| | - Tanawut Tantimongcolwat
- Center for Research Innovation and Biomedical Informatics, Faculty of Medical Technology, Mahidol University, Bangkok, 10700, Thailand
| | - Francis Ayimbila
- Center for Research Innovation and Biomedical Informatics, Faculty of Medical Technology, Mahidol University, Bangkok, 10700, Thailand
| | - Waralee Ruankham
- Center for Research Innovation and Biomedical Informatics, Faculty of Medical Technology, Mahidol University, Bangkok, 10700, Thailand
- Department of Clinical Chemistry, Faculty of Medical Technology, Mahidol University, Bangkok, 10700, Thailand
| | - Kamonrat Phopin
- Center for Research Innovation and Biomedical Informatics, Faculty of Medical Technology, Mahidol University, Bangkok, 10700, Thailand.
- Department of Clinical Microbiology and Applied Technology, Faculty of Medical Technology, Mahidol University, Bangkok, 10700, Thailand.
| |
Collapse
|
3
|
Zhao H, Qian H, Cui J, Ge Z, Shi J, Huo Y, Zhang Y, Ye L. Endocrine toxicity of atrazine and its underlying mechanisms. Toxicology 2024; 505:153846. [PMID: 38815618 DOI: 10.1016/j.tox.2024.153846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 05/20/2024] [Accepted: 05/24/2024] [Indexed: 06/01/2024]
Abstract
Atrazine (ATR) is one of the most widely utilized herbicides globally and is prevalent in the environment due to its extensive use and long half-life. It can infiltrate the human body through drinking water, ingestion, and dermal contact, and has been recognized as an environmental endocrine disruptor. This study aims to comprehensively outline the detrimental impacts of ATR on the endocrine system. Previous research indicates that ATR is harmful to various bodily systems, including the reproductive system, nervous system, adrenal glands, and thyroi d gland. The toxic effects of ATR on the endocrine system and its underlying molecular mechanisms are summarized as follows: influencing the expression of kisspeptin in the HPG axis, consequently affecting steroid synthesis; disrupting DNA synthesis and meiosis, as well as modifying DNA methylation levels, leading to reproductive and developmental toxicity; impacting dopamine by altering Nurr1, VMAT2, and DAT expression, consequently affecting dopamine synthesis and transporter expression, and influencing other neurotransmitters, resulting in neurotoxicity; and changing adipose tissue synthesis and metabolism by reducing basal metabolism, impairing cellular oxidative phosphorylation, and inducing insulin resistance. Additionally, a compilation of natural products used to mitigate the toxic effects of ATR has been provided, encompassing melatonin, curcumin, quercetin, lycopene, flavonoids, vitamin C, vitamin E, and other natural remedies. It is important to note that existing research predominantly relies on in vitro and ex vivo experiments, with limited population-based empirical evidence available.
Collapse
Affiliation(s)
- Haotang Zhao
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, Changchun, China
| | - Honghao Qian
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, Changchun, China
| | - Jianwei Cui
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, Changchun, China
| | - Zhili Ge
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, Changchun, China
| | - Jingjing Shi
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, Changchun, China
| | - Yingchao Huo
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, Changchun, China
| | - Yuezhu Zhang
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, Changchun, China.
| | - Lin Ye
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, Changchun, China.
| |
Collapse
|
4
|
Li XW, Guo K, Wang CC, Yang Y, Li W, Talukder M, Li XN, Li JL. The Nrf2/ARE pathway as a potential target to ameliorate atrazine-induced endocrine disruption in granulosa cells. Poult Sci 2024; 103:103730. [PMID: 38631229 PMCID: PMC11040167 DOI: 10.1016/j.psj.2024.103730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 03/27/2024] [Accepted: 03/31/2024] [Indexed: 04/19/2024] Open
Abstract
Atrazine (ATR) is widely used worldwide as a commercial herbicide, Diaminochlorotriazine (DACT) is the main metabolite of ATR in the organism. Both of them disrupt the production of steroids and induce abnormal reproductive development. The granulosa cells (GCs) are important for growth and reproduction of animals. However, the toxicity of ATR on the GCs of birds is not well clarified. To evaluate the effect of the environmental pollutant ATR on bird GCs. The quail GCs were allotted into 7 groups, C (The medium of M199), A20 (20 µM ATR), A100 (100 µM ATR), A250 (250 µM ATR), D20 (20 µM DACT), D100 (100 µM DACT) and D200 (200 µM DACT). The results demonstrated that ATR reduced the viability of GCs, disrupted mitochondrial structure (including mitochondrial cristae fragmentation and the mitochondrial morphology disappearance) and decreased mitochondrial membrane potential. Meanwhile, ATR interfered with the expression of key factors in the steroid synthesis pathway, inducing the secretion of the sex hormones E2 and P in GCs. which in turn induced apoptosis. Furthermore, the Nrf2/ARE pathway as a potential target to ameliorate ATR-induced endocrine disruption in GCs for proper reproductive functions. Our research provides a new perspective for understanding the effects of ATR on reproductive functions in birds.
Collapse
Affiliation(s)
- Xiao-Wei Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Kai Guo
- Chifeng Agriculture and Animal Husbandry Comprehensive Administrative Law Enforcement Detachment, Chifeng City, Inner Mongolia, 024000, China
| | - Chi-Chiu Wang
- Department of Obstetrics & Gynaecology; Li Ka Shing Institute of Health Sciences; School of Biomedical Sciences; and The Chinese University of Hong Kong-Sichuan University Joint Laboratory for Reproductive Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Yu Yang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Wei Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Milton Talukder
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China; Department of Physiology and Pharmacology, Faculty of Animal Science and Veterinary Medicine, Patuakhali Science and Technology University, Barishal, 8210, Bangladesh
| | - Xue-Nan Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China; Department of Obstetrics & Gynaecology; Li Ka Shing Institute of Health Sciences; School of Biomedical Sciences; and The Chinese University of Hong Kong-Sichuan University Joint Laboratory for Reproductive Medicine, The Chinese University of Hong Kong, Hong Kong, China; Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, Northeast Agricultural University, Harbin, 150030, China; Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, Northeast Agricultural University, Harbin, 150030, China.
| | - Jin-Long Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China; Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, Northeast Agricultural University, Harbin, 150030, China; Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, Northeast Agricultural University, Harbin, 150030, China.
| |
Collapse
|
5
|
Kay JE, Brody JG, Schwarzman M, Rudel RA. Application of the Key Characteristics Framework to Identify Potential Breast Carcinogens Using Publicly Available in Vivo, in Vitro, and in Silico Data. ENVIRONMENTAL HEALTH PERSPECTIVES 2024; 132:17002. [PMID: 38197648 PMCID: PMC10777819 DOI: 10.1289/ehp13233] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 11/27/2023] [Accepted: 12/04/2023] [Indexed: 01/11/2024]
Abstract
BACKGROUND Chemicals that induce mammary tumors in rodents or activate estrogen or progesterone signaling are likely to increase breast cancer (BC) risk. Identifying chemicals with these activities can prompt steps to protect human health. OBJECTIVES We compiled data on rodent tumors, endocrine activity, and genotoxicity to assess the key characteristics (KCs) of rodent mammary carcinogens (MCs), and to identify other chemicals that exhibit these effects and may therefore increase BC risk. METHODS Using authoritative databases, including International Agency for Research on Cancer (IARC) Monographs and the US Environmental Protection's (EPA) ToxCast, we selected chemicals that induce mammary tumors in rodents, stimulate estradiol or progesterone synthesis, or activate the estrogen receptor (ER) in vitro. We classified these chemicals by their genotoxicity and strength of endocrine activity and calculated the overrepresentation (enrichment) of these KCs among MCs. Finally, we evaluated whether these KCs predict whether a chemical is likely to induce mammary tumors. RESULTS We identified 279 MCs and an additional 642 chemicals that stimulate estrogen or progesterone signaling. MCs were significantly enriched for steroidogenicity, ER agonism, and genotoxicity, supporting the use of these KCs to predict whether a chemical is likely to induce rodent mammary tumors and, by inference, increase BC risk. More MCs were steroidogens than ER agonists, and many increased both estradiol and progesterone. Enrichment among MCs was greater for strong endocrine activity vs. weak or inactive, with a significant trend. DISCUSSION We identified hundreds of compounds that have biological activities that could increase BC risk and demonstrated that these activities are enriched among MCs. We argue that many of these should not be considered low hazard without investigating their ability to affect the breast, and chemicals with the strongest evidence can be targeted for exposure reduction. We describe ways to strengthen hazard identification, including improved assessments for mammary effects, developing assays for more KCs, and more comprehensive chemical testing. https://doi.org/10.1289/EHP13233.
Collapse
Affiliation(s)
| | | | - Megan Schwarzman
- School of Public Health, University of California, Berkeley, Berkeley, California, USA
- Family and Community Medicine, University of California, San Francisco, San Francisco, California, USA
| | | |
Collapse
|
6
|
Li XW, Yi BJ, Wang ZY, Guo K, Saleem MAU, Ma XY, Li XN, Li JL. The ROS/SIRT1/STAR axis as a target for melatonin ameliorating atrazine-induced mitochondrial dysfunction and steroid disorders in granulosa cells. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 269:115780. [PMID: 38056123 DOI: 10.1016/j.ecoenv.2023.115780] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 11/27/2023] [Accepted: 11/29/2023] [Indexed: 12/08/2023]
Abstract
The granulosa cells (GCs) of birds are essential for the reproduction and maintenance of populations in nature. Atrazine (ATR) is a potent endocrine disruptor that can interfere with reproductive function in females and Diaminochlorotriazine (DACT) is the primary metabolite of ATR in the organism. Melatonin (MT) is an endogenous hormone with antioxidant properties that plays a crucial role in development of animal germ cells. However, how ATR causes mitochondrial dysfunction, abnormal secretion of steroid hormones, and whether MT prevents ATR-induced female reproductive toxicity remains unclear. Thus, the purpose of this study is to investigate the protective effect of MT against ATR-induced female reproduction. In the present study, the GCs of quail were divided into 6 groups, as follows: C (Serum-free medium), MT (10 µM MT), A250 (250 µM ATR), MA250 (10 µM MT+250 µM ATR), D200 (200 µM DACT) and MD200 (10 µM MT+200 µM DACT), and were cultured for 24 h. The results revealed that ATR prevented GCs proliferation and decreased cell differentiation. ATR caused oxidative damage and mitochondrial dysfunction, leading to disruption of steroid synthesis, which posed a severe risk to GC's function. However, MT supplements reversed these changes. Mechanistically, our study exhibited that the ROS/SIRT1/STAR axis as a target for MT to ameliorate ATR-induced mitochondrial dysfunction and steroid disorders in GCs, which provides new insights into the role of MT in ATR-induced reproductive capacity and species conservation in birds.
Collapse
Affiliation(s)
- Xiao-Wei Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Bao-Jin Yi
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Zhao-Yi Wang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Kai Guo
- Chifeng Agriculture and Animal Husbandry Comprehensive Administrative Law Enforcement Detachment, No. 70, Quanning Street, Songshan District, Chifeng City, Inner Mongolia, 024000, PR China
| | | | - Xiang-Yu Ma
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Xue-Nan Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China; Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, Northeast Agricultural University, Harbin 150030, PR China; Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, Northeast Agricultural University, Harbin 150030, PR China.
| | - Jin-Long Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China; Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, Northeast Agricultural University, Harbin 150030, PR China; Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, Northeast Agricultural University, Harbin 150030, PR China.
| |
Collapse
|
7
|
Abarikwu SO, Ezim OE, Ikeji CN, Farombi EO. Atrazine: cytotoxicity, oxidative stress, apoptosis, testicular effects and chemopreventive Interventions. FRONTIERS IN TOXICOLOGY 2023; 5:1246708. [PMID: 37876981 PMCID: PMC10590919 DOI: 10.3389/ftox.2023.1246708] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Accepted: 09/19/2023] [Indexed: 10/26/2023] Open
Abstract
Atrazine (ATZ) is an environmental pollutant that interferes with several aspects of mammalian cellular processes including germ cell development, immunological, reproductive and neurological functions. At the level of human exposure, ATZ reduces sperm count and contribute to infertility in men. ATZ also induces morphological changes similar to apoptosis and initiates mitochondria-dependent cell death in several experimental models. When in vitro experimental models are exposed to ATZ, they are faced with increased levels of reactive oxygen species (ROS), cytotoxicity and decreased growth rate at dosages that may vary with cell types. This results in differing cytotoxic responses that are influenced by the nature of target cells, assay types and concentrations of ATZ. However, oxidative stress could play salient role in the observed cellular and genetic toxicity and apoptosis-like effects which could be abrogated by antioxidant vitamins and flavonoids, including vitamin E, quercetin, kolaviron, myricetin and bioactive extractives with antioxidant effects. This review focuses on the differential responses of cell types to ATZ toxicity, testicular effects of ATZ in both in vitro and in vivo models and chemopreventive strategies, so as to highlight the current state of the art on the toxicological outcomes of ATZ exposure in several experimental model systems.
Collapse
Affiliation(s)
- Sunny O. Abarikwu
- Reproductive Biology and Molecular Toxicology Research Group, Department of Biochemistry, University of Port Harcourt, Choba, Nigeria
| | - Ogechukwu E. Ezim
- Reproductive Biology and Molecular Toxicology Research Group, Department of Biochemistry, University of Port Harcourt, Choba, Nigeria
| | - Cynthia N. Ikeji
- Drug Metabolism and Toxicology Research Laboratories, Department of Biochemistry, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Ebenezer O. Farombi
- Drug Metabolism and Toxicology Research Laboratories, Department of Biochemistry, College of Medicine, University of Ibadan, Ibadan, Nigeria
| |
Collapse
|
8
|
Jin Y, Xiong W, Liu D, Wu Z, Xiao G, Wang S, Su H. Responses of straw foam-based aerobic granular sludge to atrazine: Insights from metagenomics and microbial community variations. CHEMOSPHERE 2023; 331:138828. [PMID: 37137392 DOI: 10.1016/j.chemosphere.2023.138828] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 04/26/2023] [Accepted: 04/29/2023] [Indexed: 05/05/2023]
Abstract
Atrazine (ATZ) has caused serious environmental pollution, but the biodegradation of ATZ is relatively slow and inefficient. Herein, a straw foam-based aerobic granular sludge (SF-AGS) was developed, the spatially ordered architectures of which could greatly improve the drug tolerance and biodegradation efficiency of ATZ. The results showed that, in the presence of ATZ, chemical oxygen demand (COD), ammonium nitrogen (NH4+-N), total phosphorus (TP), and total nitrogen (TN) were effectively removed within 6 h, and the removal efficiencies were as high as 93.37%, 85.33%, 84.7%, and 70%, respectively. Furthermore, ATZ stimulated microbial consortia to secrete three times more extracellular polymers compared to without ATZ. Illumina MiSeq sequencing results showed that bacterial diversity and richness decreased, leading to significant changes in microbial population structure and composition. ATZ-resistant bacteria including Proteobacteria, Actinobacteria, and Burkholderia laid the biological basis for the stability of aerobic particles, efficient removal of pollutants, and degradation of ATZ. The study demonstrated that SF-AGS is feasible for ATZ-laden low-strength wastewater treatment.
Collapse
Affiliation(s)
- Yu Jin
- Beijing Key Laboratory of Bioprocess, and Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China
| | - Wei Xiong
- Beijing Key Laboratory of Bioprocess, and Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China
| | - Dan Liu
- Beijing Key Laboratory of Bioprocess, and Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China
| | - Zhiqing Wu
- Beijing Key Laboratory of Bioprocess, and Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China
| | - Gang Xiao
- Beijing Key Laboratory of Bioprocess, and Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China
| | - Shaojie Wang
- Beijing Key Laboratory of Bioprocess, and Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China.
| | - Haijia Su
- Beijing Key Laboratory of Bioprocess, and Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China.
| |
Collapse
|
9
|
Reshi MS, Mustafa RA, Javaid D, Haque S. Pesticide Toxicity Associated with Infertility. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1391:59-69. [PMID: 36472816 DOI: 10.1007/978-3-031-12966-7_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Pesticides have benefited mankind in many ways like agriculture, industrial and health sectors. On the other hand, conversely their deleterious effects in both, humans and animals are also alarming. Pesticides including organophosphates, organochlorines, carbamates, pyrethrins and pyrethroids are found sufficiently in the environment resulting in everyday human exposure. This is of a huge concern because most of the pesticides are known to target all the physiological functions of both humans and animals. Indeed, reproduction, being one of the most important physiological processes, that is affected by the daily exposure to pesticides and leading to infertility issues. The present study summarizes the exposure of men and women to certain pesticides resulting in different infertility concerns like sperm abnormalities, decreased fertility, abnormal sperm count and motility, testicular atrophy, ovarian dysfunction, spontaneous abortions, disruption of hypothalamic-pituitary-gonadal axis, etc. So, this article will be helpful in perceiving the mechanism of reproductive toxicity of different pesticides and their management before any alarm of danger.
Collapse
Affiliation(s)
- Mohd Salim Reshi
- Toxicology and Pharmacology Laboratory, Department of Zoology, School of Biosciences and Biotechnology, Baba Ghulam Shah Badshah University, Rajouri, Jammu and Kashmir, India
| | - Rashaid Ali Mustafa
- Toxicology and Pharmacology Laboratory, Department of Zoology, School of Biosciences and Biotechnology, Baba Ghulam Shah Badshah University, Rajouri, Jammu and Kashmir, India
| | - Darakhshan Javaid
- Toxicology and Pharmacology Laboratory, Department of Zoology, School of Biosciences and Biotechnology, Baba Ghulam Shah Badshah University, Rajouri, Jammu and Kashmir, India
| | - Shafiul Haque
- Research and Scientific Studies Unit, College of Nursing and Allied Health Sciences, Jazan University, Jazan, Saudi Arabia.
| |
Collapse
|
10
|
Cardona B, Rudel RA. Application of an in Vitro Assay to Identify Chemicals That Increase Estradiol and Progesterone Synthesis and Are Potential Breast Cancer Risk Factors. ENVIRONMENTAL HEALTH PERSPECTIVES 2021; 129:77003. [PMID: 34287026 PMCID: PMC8293912 DOI: 10.1289/ehp8608] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
BACKGROUND Established breast cancer risk factors, such as hormone replacement therapy and reproductive history, are thought to act by increasing estrogen and progesterone (P4) activity. OBJECTIVE We aimed to use in vitro screening data to identify chemicals that increase the synthesis of estradiol (E2) or P4 and evaluate potential risks. METHOD Using data from a high-throughput (HT) in vitro steroidogenesis assay developed for the U.S. Environmental Protection Agency (EPA) ToxCast program, we identified chemicals that increased estradiol (E2-up) or progesterone (P4-up) in human H295R adrenocortical carcinoma cells. We prioritized chemicals by their activity. We compiled in vivo studies and assessments about carcinogenicity and reproductive/developmental (repro/dev) toxicity. We identified exposure sources and predicted intakes from the U.S. EPA's ExpoCast. RESULTS We found 296 chemicals increased E2 (182) or P4 (185), with 71 chemicals increasing both. In vivo data often showed effects consistent with this mechanism. Of the E2- and P4-up chemicals, about 30% were likely repro/dev toxicants or carcinogens, whereas only 5-13% were classified as unlikely. However, most of the chemicals had insufficient in vivo data to evaluate their effects. Of 45 chemicals associated with mammary gland effects, and also tested in the H294R assay, 29 increased E2 or P4, including the well-known mammary carcinogen 7,12-dimethylbenz(a)anthracene. E2- and P4-up chemicals include pesticides, consumer product ingredients, food additives, and drinking water contaminants. DISCUSSION The U.S. EPA's in vitro screening data identified several hundred chemicals that should be considered as potential risk factors for breast cancer because they increased E2 or P4 synthesis. In vitro data is a helpful addition to current toxicity assessments, which are not sensitive to mammary gland effects. Relevant effects on the mammary gland are often not noticed or are dismissed, including for 2,4-dichlorophenol and cyfluthrin. Fifty-three active E2-up and 59 active P4-up chemicals that are in consumer products, food, pesticides, or drugs have not been evaluated for carcinogenic potential and are priorities for study and exposure reduction. https://doi.org/10.1289/EHP8608.
Collapse
|
11
|
Ankley GT, Berninger JP, Blackwell BR, Cavallin JE, Collette TW, Ekman DR, Fay KA, Feifarek DJ, Jensen KM, Kahl MD, Mosley JD, Poole ST, Randolph EC, Rearick D, Schroeder AL, Swintek J, Villeneuve DL. Pathway-Based Approaches for Assessing Biological Hazards of Complex Mixtures of Contaminants: A Case Study in the Maumee River. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2021; 40:1098-1122. [PMID: 33270248 PMCID: PMC9554926 DOI: 10.1002/etc.4949] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 10/16/2020] [Accepted: 11/25/2020] [Indexed: 05/07/2023]
Abstract
Assessment of ecological risks of chemicals in the field usually involves complex mixtures of known and unknown compounds. We describe the use of pathway-based chemical and biological approaches to assess the risk of chemical mixtures in the Maumee River (OH, USA), which receives a variety of agricultural and urban inputs. Fathead minnows (Pimephales promelas) were deployed in cages for 4 d at a gradient of sites along the river and adjoining tributaries in 2012 and during 2 periods (April and June) in 2016, in conjunction with an automated system to collect composite water samples. More than 100 industrial chemicals, pharmaceuticals, and pesticides were detected in water at some of the study sites, with the greatest number typically found near domestic wastewater treatment plants. In 2016, there was an increase in concentrations of several herbicides from April to June at upstream agricultural sites. A comparison of chemical concentrations in site water with single chemical data from vitro high-throughput screening (HTS) assays suggested the potential for perturbation of multiple biological pathways, including several associated with induction or inhibition of different cytochrome P450 (CYP) isozymes. This was consistent with direct effects of water extracts in an HTS assay and induction of hepatic CYPs in caged fish. Targeted in vitro assays and measurements in the caged fish suggested minimal effects on endocrine function (e.g., estrogenicity). A nontargeted mass spectroscopy-based analysis suggested that hepatic endogenous metabolite profiles in caged fish covaried strongly with the occurrence of pesticides and pesticide degradates. These studies demonstrate the application of an integrated suite of measurements to help understand the effects of complex chemical mixtures in the field. Environ Toxicol Chem 2021;40:1098-1122. © 2020 SETAC. This article has been contributed to by US Government employees and their work is in the public domain in the USA.
Collapse
Affiliation(s)
- GT Ankley
- US Environmental Protection Agency, Great Lakes Toxicology and Ecology Division, Duluth, Minnesota, USA
- Corresponding Author: Gerald Ankley;
| | - JP Berninger
- US Environmental Protection Agency, Great Lakes Toxicology and Ecology Division, Duluth, Minnesota, USA
| | - BR Blackwell
- US Environmental Protection Agency, Great Lakes Toxicology and Ecology Division, Duluth, Minnesota, USA
| | - JE Cavallin
- US Environmental Protection Agency, Great Lakes Toxicology and Ecology Division, Duluth, Minnesota, USA
| | - TW Collette
- US Environmental Protection Agency, Ecosystem Processes Division, Athens, Georgia, USA
| | - DR Ekman
- US Environmental Protection Agency, Ecosystem Processes Division, Athens, Georgia, USA
| | - KA Fay
- US Environmental Protection Agency, Great Lakes Toxicology and Ecology Division, Duluth, Minnesota, USA
| | - DJ Feifarek
- US Environmental Protection Agency, Great Lakes Toxicology and Ecology Division, Duluth, Minnesota, USA
| | - KM Jensen
- US Environmental Protection Agency, Great Lakes Toxicology and Ecology Division, Duluth, Minnesota, USA
| | - MD Kahl
- US Environmental Protection Agency, Great Lakes Toxicology and Ecology Division, Duluth, Minnesota, USA
| | - JD Mosley
- US Environmental Protection Agency, Ecosystem Processes Division, Athens, Georgia, USA
| | - ST Poole
- US Environmental Protection Agency, Great Lakes Toxicology and Ecology Division, Duluth, Minnesota, USA
| | - EC Randolph
- US Environmental Protection Agency, Great Lakes Toxicology and Ecology Division, Duluth, Minnesota, USA
| | - D Rearick
- General Dynamics Information Technology, Great Lakes Toxicology and Ecology Division Duluth, Minnesota, USA
| | - AL Schroeder
- University of Minnesota – Crookston, Math, Science, and Technology Department, Crookston, Minnesota, USA
| | - J Swintek
- Badger Technical Services, Great Lakes Toxicology and Ecology Division, Duluth, Minnesota. USA
| | - DL Villeneuve
- US Environmental Protection Agency, Great Lakes Toxicology and Ecology Division, Duluth, Minnesota, USA
| |
Collapse
|
12
|
Abass K, Pelkonen O, Rautio A. Chloro-s-triazines-toxicokinetic, Toxicodynamic, Human Exposure, and Regulatory Considerations. Curr Drug Metab 2021; 22:645-656. [PMID: 34218777 PMCID: PMC8811613 DOI: 10.2174/1389200222666210701164945] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 01/14/2021] [Accepted: 02/09/2021] [Indexed: 11/22/2022]
Abstract
Chloro-s-triazines-atrazine, cyanazine, propazine, simazine, and terbuthylazine-are structurally similar herbicides, differing only in specific s-triazine4-and 6-N alkyl substituents. It is generally regarded that their toxicokinetics, such as, metabolic pathways, biological effects and toxicities, also share more similar features than the differences. Consequently, it is useful to compare their characteristics to potentially find useful structure-activity relationships or other similarities or differences regarding different active compounds, their metabolites, and biological effects including toxic outcomes. The ultimate goal of these exercises is to apply the summarized knowledge-as far as it is possible regarding a patchy and often inadequate database-to cross the in vitro-in vivo and animal-human borders and integrate the available data to enhance toxicological risk assessment for the benefit of humans and ecosystems.
Collapse
Affiliation(s)
- Khaled Abass
- Address correspondence to this author at the Faculty of Medicine, Arctic Health, University of Oulu, FI-90014 Oulu, Finland; E-mails: ,
| | | | | |
Collapse
|
13
|
Zimmerman AD, Mackay L, Kemppainen RJ, Jones MA, Read CC, Schwartz D, Foradori CD. The Herbicide Atrazine Potentiates Angiotensin II-Induced Aldosterone Synthesis and Release From Adrenal Cells. Front Endocrinol (Lausanne) 2021; 12:697505. [PMID: 34335472 PMCID: PMC8317615 DOI: 10.3389/fendo.2021.697505] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 06/22/2021] [Indexed: 12/06/2022] Open
Abstract
Atrazine is one of the most commonly used pre-emergence and early post-emergence herbicides in the world. We have shown previously that atrazine does not directly stimulate the pituitary or adrenal to trigger hormone release but acts centrally to activate a stress-like activation of the hypothalamic-pituitary-adrenal axis. In doing so, atrazine treatment has been shown to cause adrenal morphology changes characteristic of repeated stress. In this study, adrenals from atrazine treated and stressed animals were directly compared after 4 days of atrazine treatment or restraint stress. Both atrazine and stressed animals displayed reduced adrenocortical zona glomerulosa thickness and aldosterone synthase (CYP11B2) expression, indicative of repeated adrenal stimulation by adrenocorticotropic hormone. To determine if reduced CYP11B2 expression resulted in attenuated aldosterone synthesis, stressed and atrazine treated animals were challenged with angiotensin II (Ang II). As predicted, stressed animals produced less aldosterone compared to control animals when stimulated. However, atrazine treated animals had higher circulating aldosterone concentrations compared to both stressed and control groups. Ang II-induced aldosterone release was also potentiated in atrazine pretreated human adrenocortical carcinoma cells (H295R). Atrazine pretreated did not alter the expression of the rate limiting steroidogenic StAR protein or angiotensin II receptor 1. Atrazine treated animals also presented with higher basal blood pressure than vehicle treated control animals suggesting sustained elevations in circulating aldosterone levels. Our results demonstrate that treatment with the widely used herbicide, atrazine, directly increases stimulated production of aldosterone in adrenocortical cells independent of expression changes to rate limiting steroidogenic enzymes.
Collapse
|
14
|
Cardona B, Rudel RA. US EPA's regulatory pesticide evaluations need clearer guidelines for considering mammary gland tumors and other mammary gland effects. Mol Cell Endocrinol 2020; 518:110927. [PMID: 32645345 PMCID: PMC9183204 DOI: 10.1016/j.mce.2020.110927] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 06/03/2020] [Accepted: 06/23/2020] [Indexed: 01/05/2023]
Abstract
Breast cancer risk from pesticides may be missed if effects on mammary gland are not assessed in toxicology studies required for registration. Using US EPA's registration documents, we identified pesticides that cause mammary tumors or alter development, and evaluated how those findings were considered in risk assessment. Of 28 pesticides that produced mammary tumors, EPA's risk assessment acknowledges those tumors for nine and dismisses the remaining cases. For five pesticides that alter mammary gland development, the implications for lactation and cancer risk are not assessed. Many of the mammary-active pesticides activate pathways related to endocrine disruption: altering steroid synthesis in H295R cells, activating nuclear receptors, or affecting xenobiotic metabolizing enzymes. Clearer guidelines based on breast cancer biology would strengthen assessment of mammary gland effects, including sensitive histology and hormone measures. Potential cancer risks from several common pesticides should be re-evaluated, including: malathion, triclopyr, atrazine, propylene oxide, and 3-iodo-2-propynyl butylcarbamate (IPBC).
Collapse
|
15
|
Warner GR, Mourikes VE, Neff AM, Brehm E, Flaws JA. Mechanisms of action of agrochemicals acting as endocrine disrupting chemicals. Mol Cell Endocrinol 2020; 502:110680. [PMID: 31838026 PMCID: PMC6942667 DOI: 10.1016/j.mce.2019.110680] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 12/06/2019] [Accepted: 12/10/2019] [Indexed: 02/07/2023]
Abstract
Agrochemicals represent a significant class of endocrine disrupting chemicals that humans and animals around the world are exposed to constantly. Agrochemicals can act as endocrine disrupting chemicals through a variety of mechanisms. Recent studies have shown that several mechanisms of action involve the ability of agrochemicals to mimic the interaction of endogenous hormones with nuclear receptors such as estrogen receptors, androgen receptors, peroxisome proliferator activated receptors, the aryl hydrocarbon receptor, and thyroid hormone receptors. Further, studies indicate that agrochemicals can exert toxicity through non-nuclear receptor-mediated mechanisms of action. Such non-genomic mechanisms of action include interference with peptide, steroid, or amino acid hormone response, synthesis and degradation as well as epigenetic changes (DNA methylation and histone modifications). This review summarizes the major mechanisms of action by which agrochemicals target the endocrine system.
Collapse
Affiliation(s)
- Genoa R Warner
- Department of Comparative Biosciences, University of Illinois at Urbana-Champaign, Urbana, 61802, IL, United States
| | - Vasiliki E Mourikes
- Department of Comparative Biosciences, University of Illinois at Urbana-Champaign, Urbana, 61802, IL, United States
| | - Alison M Neff
- Department of Comparative Biosciences, University of Illinois at Urbana-Champaign, Urbana, 61802, IL, United States
| | - Emily Brehm
- Department of Comparative Biosciences, University of Illinois at Urbana-Champaign, Urbana, 61802, IL, United States
| | - Jodi A Flaws
- Department of Comparative Biosciences, University of Illinois at Urbana-Champaign, Urbana, 61802, IL, United States.
| |
Collapse
|
16
|
Piazza MJ, Urbanetz AA. Environmental toxins and the impact of other endocrine disrupting chemicals in women's reproductive health. JBRA Assist Reprod 2019; 23:154-164. [PMID: 30875185 PMCID: PMC6501744 DOI: 10.5935/1518-0557.20190016] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Accepted: 12/27/2018] [Indexed: 12/14/2022] Open
Abstract
This review aimed to look into agents and mechanisms characterized as endocrine disrupting chemicals (EDCs). These agents are known to cause several harmful effects to the reproductive system of women and wildlife. There is a wide range of chemicals, developed for commercial use mainly in agriculture, which may cause endocrine disruption. Numerous studies show evidence of environmental contamination. However, no one is being held liable for the damages. The most important potentially harmful agents are identified and described, along with the different effects they have on the female genital area. Brazil is a large consumer of pesticides and others chemicals that may interfere with a normal women's life. We analyzed and described the mode of action and the impacts of different EDCs (bisphenols, phthalates, atrazine, polychlorinated and polybrominated biphenyls, DDT-dichlorodiphenyltrichloroethane; DDE-dichlorodiphenyldichloroethylene; DDD-dichlorodiphenyldichloroethane; and DES-diethylstilbestrol) on the genital area, ovarian steroidogenesis, polycystic ovary syndrome, endometriosis, the structure of the uterus and the vagina, and on the formation of leiomyomas.
Collapse
Affiliation(s)
- Mauri José Piazza
- Tocogynecology Department, Universidade Federal do
Paraná – UFPR – Curitiba (PR), Brazil
| | - Almir Antônio Urbanetz
- Tocogynecology Department, Universidade Federal do
Paraná – UFPR – Curitiba (PR), Brazil
| |
Collapse
|
17
|
Foradori CD, Healy JE, Zimmerman AD, Kemppainen RJ, Jones MA, Read CC, White BD, Yi KD, Hinds LR, Lacagnina AF, Quihuis AM, Breckenridge CB, Handa RJ. Characterization of Activation of the Hypothalamic-Pituitary-Adrenal Axis by the Herbicide Atrazine in the Female Rat. Endocrinology 2018; 159:3378-3388. [PMID: 30060079 DOI: 10.1210/en.2018-00474] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 07/19/2018] [Indexed: 11/19/2022]
Abstract
Atrazine (ATR) is a commonly used pre-emergence and early postemergence herbicide. Rats gavaged with ATR and its chlorometabolites desethylatrazine (DEA) and deisopropylatrazine (DIA) respond with a rapid and dose-dependent rise in plasma corticosterone, whereas the major chlorometabolite, diaminochlorotriazine (DACT), has little or no effect on corticosterone levels. In this study, we investigated the possible sites of ATR activation of the hypothalamic-pituitary-adrenal (HPA) axis. ATR treatment had no effect on adrenal weights but altered adrenal morphology. Hypophysectomized rats or rats under dexamethasone suppression did not respond to ATR treatment, suggesting that ATR does not directly stimulate the adrenal gland to induce corticosterone synthesis. Immortalized mouse corticotrophs (AtT-20) and primary rat pituitary cultures were treated with ATR, DEA, DIA, or DACT. None of the compounds induced an increase in ACTH secretion or potentiated ACTH release in conjunction with CRH on ACTH release. In female rats gavaged with ATR, pretreatment with the CRH receptor antagonist astressin completely blocked the ATR-induced rise in corticosterone concentrations, implicating CRH release in ATR-induced HPA activation. Intracerebroventricular infusion of ATR, DEA, and DIA but not DACT at concentrations equivalent to peak plasma concentrations after gavage dosing resulted in an elevation of plasma corticosterone concentrations. However, ATR did not induce c-Fos immunoreactivity in the paraventricular nucleus of the hypothalamus. These results indicate that ATR activates the HPA axis centrally and requires CRH receptor activation, but it does not stimulate cellular pathways associated with CRH neuronal excitation.
Collapse
Affiliation(s)
- Chad D Foradori
- Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, Alabama
| | - Jessica E Healy
- Department of Basic Medical Sciences, College of Medicine-Phoenix, University of Arizona, Phoenix, Arizona
| | - Arthur D Zimmerman
- Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, Alabama
| | - Robert J Kemppainen
- Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, Alabama
| | - Melaney A Jones
- Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, Alabama
| | - Casey C Read
- Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, Alabama
| | - B Douglas White
- Nutrition, Dietetics, and Hospitality Management, College of Human Sciences, Auburn University, Auburn, Alabama
| | - Kun Don Yi
- Syngenta Crop Protection LLC, Greensboro, North Carolina
| | - Laura R Hinds
- Department of Basic Medical Sciences, College of Medicine-Phoenix, University of Arizona, Phoenix, Arizona
| | - Anthony F Lacagnina
- Department of Basic Medical Sciences, College of Medicine-Phoenix, University of Arizona, Phoenix, Arizona
| | - Alicia M Quihuis
- Department of Basic Medical Sciences, College of Medicine-Phoenix, University of Arizona, Phoenix, Arizona
| | | | - Robert J Handa
- Department of Basic Medical Sciences, College of Medicine-Phoenix, University of Arizona, Phoenix, Arizona
| |
Collapse
|
18
|
Grasselli F, Bussolati S, Ramoni R, Grolli S, Basini G. Simazine, a triazine herbicide, disrupts swine granulosa cell functions. Anim Reprod 2018; 15:3-11. [PMID: 33365088 PMCID: PMC7746213 DOI: 10.21451/1984-3143-2017-ar960] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The triazine herbicide simazine is a pesticide commonly detected in surface and ground waters,
although banned in most European countries since 2004. Concerns for humans and animal health
result from its potential endocrine disrupting action, that can lead to reproductive disorders.
The present in vitro study was undertaken to study simazine effects on
swine granulosa cell function, namely cell viability, proliferation, steroidogenesis
and NO production. Moreover, the ability of this substance to interfere with the angiogenetic
process, a crucial event in reproductive function, was taken into account. Our data document
that simazine treatment, at 0.1 or 10 μM concentration levels, stimulates granulosa
cell proliferation and viability and impairs steroidogenesis, increasing in particular
progesterone production. In addition, the in vitro angiogenesis bioassay
revealed a significant simazine stimulatory effect on immortalized porcine Aortic Endothelial
Cell proliferation. Collectively, these results show that simazine can display disruptive
effects on ovarian cell functional parameters, possibly resulting in reproductive dysfunction.
This hypothesis is also supported by the observed pro-angiogenetic properties of this herbicide,
as already suggested for different endocrine disruptors.
Collapse
|
19
|
Haggard DE, Karmaus AL, Martin MT, Judson RS, Woodrow Setzer R, Friedman KP. High-Throughput H295R Steroidogenesis Assay: Utility as an Alternative and a Statistical Approach to Characterize Effects on Steroidogenesis. Toxicol Sci 2018; 162:509-534. [PMID: 29216406 PMCID: PMC10716795 DOI: 10.1093/toxsci/kfx274] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The U.S. Environmental Protection Agency Endocrine Disruptor Screening Program and the Organization for Economic Co-operation and Development (OECD) have used the human adrenocarcinoma (H295R) cell-based assay to predict chemical perturbation of androgen and estrogen production. Recently, a high-throughput H295R (HT-H295R) assay was developed as part of the ToxCast program that includes measurement of 11 hormones, including progestagens, corticosteroids, androgens, and estrogens. To date, 2012 chemicals have been screened at 1 concentration; of these, 656 chemicals have been screened in concentration-response. The objectives of this work were to: (1) develop an integrated analysis of chemical-mediated effects on steroidogenesis in the HT-H295R assay and (2) evaluate whether the HT-H295R assay predicts estrogen and androgen production specifically via comparison with the OECD-validated H295R assay. To support application of HT-H295R assay data to weight-of-evidence and prioritization tasks, a single numeric value based on Mahalanobis distances was computed for 654 chemicals to indicate the magnitude of effects on the synthesis of 11 hormones. The maximum mean Mahalanobis distance (maxmMd) values were high for strong modulators (prochloraz, mifepristone) and lower for moderate modulators (atrazine, molinate). Twenty-five of 28 reference chemicals used for OECD validation were screened in the HT-H295R assay, and produced qualitatively similar results, with accuracies of 0.90/0.75 and 0.81/0.91 for increased/decreased testosterone and estradiol production, respectively. The HT-H295R assay provides robust information regarding estrogen and androgen production, as well as additional hormones. The maxmMd from this integrated analysis may provide a data-driven approach to prioritizing lists of chemicals for putative effects on steroidogenesis.
Collapse
Affiliation(s)
- Derik E. Haggard
- Oak Ridge Institute for Science and Education Postdoctoral Fellow, Oak Ridge, TN. 37831
- National Center for Computational Toxicology, Office of Research and Development, US Environmental Protection Agency, Durham, NC 27711
| | - Agnes L. Karmaus
- Oak Ridge Institute for Science and Education Postdoctoral Fellow, Oak Ridge, TN. 37831
- National Center for Computational Toxicology, Office of Research and Development, US Environmental Protection Agency, Durham, NC 27711
| | - Matthew T. Martin
- National Center for Computational Toxicology, Office of Research and Development, US Environmental Protection Agency, Durham, NC 27711
| | - Richard S. Judson
- National Center for Computational Toxicology, Office of Research and Development, US Environmental Protection Agency, Durham, NC 27711
| | - R. Woodrow Setzer
- National Center for Computational Toxicology, Office of Research and Development, US Environmental Protection Agency, Durham, NC 27711
| | - Katie Paul Friedman
- National Center for Computational Toxicology, Office of Research and Development, US Environmental Protection Agency, Durham, NC 27711
| |
Collapse
|
20
|
Martins-Santos E, Pimenta CG, Campos PRN, Oliveira AG, Mahecha GAB, Oliveira CA. Atrazine affects the morphophysiology, tissue homeostasis and aromatase expression in the efferent ductules of adult rats with mild alterations in the ventral prostate. CHEMOSPHERE 2018; 193:958-967. [PMID: 29874772 DOI: 10.1016/j.chemosphere.2017.11.124] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Revised: 11/20/2017] [Accepted: 11/22/2017] [Indexed: 06/08/2023]
Abstract
The widely used herbicide atrazine is a potent endocrine disruptor known to cause increased aromatase expression and transient increase in testicular weight followed by remarkable testis atrophy. However, whether the effects of atrazine on the testes are primary or secondary to dysfunctions in other components of male reproductive tract remains unknown. Given the high sensitivity of the efferent ductules to estrogen imbalance and the similarity to alterations previously described for other disruptors of these ductules function, and the testicular alterations observed after atrazine exposure, we hypothesized that the efferent ductules could be a target for atrazine. Herein we characterized the efferent ductules and the ventral prostate of adult Wistar rats treated with 200 mg/kg/day of atrazine for 7, 15, and 40 days. Additionally, we evaluated if the effects of atrazine in these organs could be reduced after discontinuation of the treatment. Atrazine exposure resulted in mild effects on the ventral prostate, but remarkable alterations on the efferent ductules, including luminal dilation, reduced epithelial height, and disruption of the epithelial homeostasis, which coincides with increased aromatase expression. Together with our previous data, these results suggest that at least part of the testicular effects of atrazine may be secondary to the alterations in the efferent ductules.
Collapse
Affiliation(s)
- Elisângela Martins-Santos
- Department of Morphology, Universidade Federal de Minas Gerais, Cx. Postal 486, CEP 31.270-901, Belo Horizonte, MG, Brazil
| | - Cristiano Guimarães Pimenta
- Department of Morphology, Universidade Federal de Minas Gerais, Cx. Postal 486, CEP 31.270-901, Belo Horizonte, MG, Brazil
| | - Pollyana Rabelo Nunes Campos
- Department of Morphology, Universidade Federal de Minas Gerais, Cx. Postal 486, CEP 31.270-901, Belo Horizonte, MG, Brazil
| | - André Gustavo Oliveira
- Department of Morphology, Universidade Federal de Minas Gerais, Cx. Postal 486, CEP 31.270-901, Belo Horizonte, MG, Brazil
| | | | - Cleida Aparecida Oliveira
- Department of Morphology, Universidade Federal de Minas Gerais, Cx. Postal 486, CEP 31.270-901, Belo Horizonte, MG, Brazil.
| |
Collapse
|
21
|
Wrobel MH, Mlynarczuk J. The inhibition of myometrial contractions by chlorinated herbicides (atrazine and linuron), and their disruptive effect on the secretory functions of uterine and ovarian cells in cow, in vitro. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2017; 142:44-52. [PMID: 29107246 DOI: 10.1016/j.pestbp.2017.01.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Revised: 11/25/2016] [Accepted: 01/02/2017] [Indexed: 06/07/2023]
Abstract
The effect of atrazine and linuron, the popular and widely used chlorinated herbicides, on both myometrial contractions and secretory functions of bovine uterus and ovaries in vitro, was investigated. The pesticides inhibited (P<0.05) the basal and oxytocin (OT)-stimulated myometrial strips contractions, as well as the effect of OT on secretion of prostaglandins (PGs: PGF2α and PGE2) from endometrium. But only linuron inhibits the effect of OT on myometrial contractions. Neither of herbicides affected PGs secretion from myometrium and PGF2α from endometrium. Only the lowest dose of both tested compounds decreased PGE2 secretion from endometrium. The pesticides increased (P<0.05) the OT secretion from granulosa. However, only linuron stimulated (P<0.05) the OT secretion from the luteal cells, and it increased (P<0.05) the expression of mRNA for the OT precursor. Both compounds stimulated (P<0.05) the secretion of testosterone and atrazine increased (P<0.05) also the secretion of estradiol from the granulosa cells. While atrazine and linuron reduced (P<0.05) the progesterone secretion from the luteal cells. The data show that atrazine and linuron altered the secretory functions of ovarian cells and inhibited the myometrial contractions in vitro.
Collapse
Affiliation(s)
- Michał H Wrobel
- Institute of Animal Reproduction and Food Research of the Polish Academy of Sciences, Tuwima Street 10, 10-748 Olsztyn, Poland.
| | - Jaroslaw Mlynarczuk
- Institute of Animal Reproduction and Food Research of the Polish Academy of Sciences, Tuwima Street 10, 10-748 Olsztyn, Poland
| |
Collapse
|
22
|
Persistent testicular structural and functional alterations after exposure of adult rats to atrazine. Reprod Toxicol 2017; 73:201-213. [PMID: 28847621 DOI: 10.1016/j.reprotox.2017.08.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Revised: 07/11/2017] [Accepted: 08/09/2017] [Indexed: 12/13/2022]
Abstract
Atrazine is an endocrine disruptor affecting testicular steroidogenesis, and promoting testicular atrophy and 3β-HSD reduction. However, it remains unknown whether these effects are reversible or permanent. To address this issue was the aim of this study. Exposition of rats to 200mg/kg of atrazine resulted in transient increase in testicular weight, seminiferous tubules dilation and atrophy, and reduction in Leydig cell 3β-HSD. Testicular atrophy and 3β-HSD reduction were more pronounced after the recovery period of 75days. There was increase in aromatase expression after long-term exposure but it returned to control level after recovery. Moreover, there was increase in ED1-/ED2+, ED1+/ED2+ and ED1+/ED2- macrophages, in the recovery group. These macrophages were positive for 3β-HSD, thereby raising possibility of their involvement in steroidogenesis. These findings further emphasize the adverse effects of atrazine on male reproduction, highlighting that testicular damages may be irreversible even after a recovery period longer than the spermatogenic cycle.
Collapse
|
23
|
Foradori CD, Zimmerman AD, Coder PS, Peachee VL, Handa RJ, Kimber I, Pruett SB, Breckenridge CB. Lack of immunotoxic effects of repeated exposure to atrazine associated with the adaptation of adrenal gland activation. Regul Toxicol Pharmacol 2017; 89:200-214. [PMID: 28736286 DOI: 10.1016/j.yrtph.2017.07.017] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Revised: 03/09/2017] [Accepted: 07/19/2017] [Indexed: 11/12/2022]
Abstract
T cell-dependent IgM antibody production and natural killer cell (NKC) activity were assessed in SD rats orally administered atrazine for 28 days to males (0, 6.5, 25, or 100 mg/kg/day) or females (0, 3, 6, or 50 mg/kg/day), or 30 or 500 ppm in diet (3 or 51 mg/kg/day). Anti-asialo GM1 antibodies (NKC) and cyclophosphamide (antibody-forming cell assay [AFC]) served as positive controls. Pituitary (ACTH, prolactin), adrenal (corticosterone, progesterone, aldosterone), and gonadal (androgens, estrogens) hormones were assessed after 1, 7, and/or 28 days of treatment. Food intake and body weights were significantly reduced in the highest dosed males, and transiently affected in females. Urinary corticosterone levels were not increased in atrazine-treated groups in either sex at any time point measured (10, 22, or 24 days). Corticosterone and progesterone were elevated in males after a single atrazine dose ≥6.5 mg/kg/day, but not after 7, 14, or 28 doses. There were no effects on adrenal, pituitary, or gonadal hormones in females. Atrazine did not suppress the AFC response or decrease NKC function after 28 days in males or females. Atrazine had no effect on spleen weights or spleen cell numbers in males or females, although thymus weights were elevated in males receiving the highest dose. The lack of immunotoxic effect of atrazine was associated with diminished adrenal activation over time in males, and no effects on adrenal hormones in females.
Collapse
Affiliation(s)
- Chad D Foradori
- Department of Anatomy, Physiology, and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, AL, United States
| | - Arthur D Zimmerman
- Department of Anatomy, Physiology, and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, AL, United States
| | - Pragati S Coder
- Charles River Laboratories Ashland LLC, Ashland, OH, United States
| | | | - Robert J Handa
- College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, United States
| | - Ian Kimber
- Faculty of Life Sciences, University of Manchester, UK
| | - Stephen B Pruett
- Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, MS, United States
| | | |
Collapse
|
24
|
Rattan S, Zhou C, Chiang C, Mahalingam S, Brehm E, Flaws JA. Exposure to endocrine disruptors during adulthood: consequences for female fertility. J Endocrinol 2017; 233:R109-R129. [PMID: 28356401 PMCID: PMC5479690 DOI: 10.1530/joe-17-0023] [Citation(s) in RCA: 199] [Impact Index Per Article: 24.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Accepted: 03/29/2017] [Indexed: 01/10/2023]
Abstract
Endocrine disrupting chemicals are ubiquitous chemicals that exhibit endocrine disrupting properties in both humans and animals. Female reproduction is an important process, which is regulated by hormones and is susceptible to the effects of exposure to endocrine disrupting chemicals. Disruptions in female reproductive functions by endocrine disrupting chemicals may result in subfertility, infertility, improper hormone production, estrous and menstrual cycle abnormalities, anovulation, and early reproductive senescence. This review summarizes the effects of a variety of synthetic endocrine disrupting chemicals on fertility during adult life. The chemicals covered in this review are pesticides (organochlorines, organophosphates, carbamates, pyrethroids, and triazines), heavy metals (arsenic, lead, and mercury), diethylstilbesterol, plasticizer alternatives (di-(2-ethylhexyl) phthalate and bisphenol A alternatives), 2,3,7,8-tetrachlorodibenzo-p-dioxin, nonylphenol, polychlorinated biphenyls, triclosan, and parabens. This review focuses on the hypothalamus, pituitary, ovary, and uterus because together they regulate normal female fertility and the onset of reproductive senescence. The literature shows that several endocrine disrupting chemicals have endocrine disrupting abilities in females during adult life, causing fertility abnormalities in both humans and animals.
Collapse
Affiliation(s)
- Saniya Rattan
- Department of Comparative BiosciencesUniversity of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Changqing Zhou
- Department of Comparative BiosciencesUniversity of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Catheryne Chiang
- Department of Comparative BiosciencesUniversity of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Sharada Mahalingam
- Department of Comparative BiosciencesUniversity of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Emily Brehm
- Department of Comparative BiosciencesUniversity of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Jodi A Flaws
- Department of Comparative BiosciencesUniversity of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| |
Collapse
|
25
|
Simultaneous profiling of 17 steroid hormones for the evaluation of endocrine-disrupting chemicals in H295R cells. Bioanalysis 2017; 9:67-69. [DOI: 10.4155/bio-2016-0149] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Aim: There is urgent need to develop a new protocol for the evaluation of chemical substances to potentially interact with the endocrine system and induce numerous pathological issues. The recently validated in vitro screening assay is limited on monitoring two steroid hormones. Methodology & results: The H295R model cell was exposed to seven endocrine disrupting chemicals (EDCs). The levels of 17 steroid hormones in cell extracts were subsequently determined by a quantitative targeted GC/MS/MS method. Through wide coverage, this system managed to capture the effects of exposure to increasing EDCs concentrations in the entire steroidogenic pathways. Conclusion: The developed approach could be beneficial for the mechanistic investigation of EDCs.
Collapse
|
26
|
Pogrmic-Majkic K, Fa S, Samardzija D, Hrubik J, Kaisarevic S, Andric N. Atrazine activates multiple signaling pathways enhancing the rapid hCG-induced androgenesis in rat Leydig cells. Toxicology 2016; 368-369:37-45. [DOI: 10.1016/j.tox.2016.08.016] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Revised: 08/17/2016] [Accepted: 08/19/2016] [Indexed: 01/07/2023]
|
27
|
Samardzija D, Pogrmic-Majkic K, Fa S, Glisic B, Stanic B, Andric N. Atrazine blocks ovulation via suppression of Lhr and Cyp19a1 mRNA and estradiol secretion in immature gonadotropin-treated rats. Reprod Toxicol 2016; 61:10-8. [DOI: 10.1016/j.reprotox.2016.02.009] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Revised: 02/13/2016] [Accepted: 02/19/2016] [Indexed: 01/15/2023]
|
28
|
Wirbisky SE, Weber GJ, Sepúlveda MS, Lin TL, Jannasch AS, Freeman JL. An embryonic atrazine exposure results in reproductive dysfunction in adult zebrafish and morphological alterations in their offspring. Sci Rep 2016; 6:21337. [PMID: 26891955 PMCID: PMC4759560 DOI: 10.1038/srep21337] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Accepted: 01/21/2016] [Indexed: 11/29/2022] Open
Abstract
The herbicide atrazine, a suspected endocrine disrupting chemical (EDC), frequently contaminates potable water supplies. Studies suggest alterations in the neuroendocrine system along the hypothalamus-pituitary-gonadal axis; however, most studies address either developmental, pubertal, or adulthood exposures, with few investigations regarding a developmental origins hypothesis. In this study, zebrafish were exposed to 0, 0.3, 3, or 30 parts per billion (ppb) atrazine through embryogenesis and then allowed to mature with no additional chemical exposure. Reproductive function, histopathology, hormone levels, offspring morphology, and the ovarian transcriptome were assessed. Embryonic atrazine exposure resulted in a significant increase in progesterone levels in the 3 and 30 ppb groups. A significant decrease in spawning and a significant increase in follicular atresia in the 30 ppb group were observed. In offspring, a decrease in the head length to body ratio in the 30 ppb group, along with a significant increase in head width to body ratio in the 0.3 and 3 ppb groups occurred. Transcriptomic alterations involved genes associated with endocrine system development and function, tissue development, and behavior. This study provides evidence to support atrazine as an EDC causing reproductive dysfunction and molecular alterations in adults exposed only during embryogenesis and morphological alterations in their offspring.
Collapse
Affiliation(s)
| | | | - Maria S Sepúlveda
- School of Health Sciences, West Lafayette, IN, 47907, USA.,Department of Forestry and Natural Resources, West Lafayette, IN, 47907, USA
| | - Tsang-Long Lin
- Department of Comparative Pathobiology, West Lafayette, IN, 47907, USA
| | - Amber S Jannasch
- Bindley Bioscience Center, Purdue University, West Lafayette, IN, 47907, USA
| | | |
Collapse
|
29
|
Gore AC, Chappell VA, Fenton SE, Flaws JA, Nadal A, Prins GS, Toppari J, Zoeller RT. EDC-2: The Endocrine Society's Second Scientific Statement on Endocrine-Disrupting Chemicals. Endocr Rev 2015; 36:E1-E150. [PMID: 26544531 PMCID: PMC4702494 DOI: 10.1210/er.2015-1010] [Citation(s) in RCA: 1417] [Impact Index Per Article: 141.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Accepted: 09/01/2015] [Indexed: 02/06/2023]
Abstract
The Endocrine Society's first Scientific Statement in 2009 provided a wake-up call to the scientific community about how environmental endocrine-disrupting chemicals (EDCs) affect health and disease. Five years later, a substantially larger body of literature has solidified our understanding of plausible mechanisms underlying EDC actions and how exposures in animals and humans-especially during development-may lay the foundations for disease later in life. At this point in history, we have much stronger knowledge about how EDCs alter gene-environment interactions via physiological, cellular, molecular, and epigenetic changes, thereby producing effects in exposed individuals as well as their descendants. Causal links between exposure and manifestation of disease are substantiated by experimental animal models and are consistent with correlative epidemiological data in humans. There are several caveats because differences in how experimental animal work is conducted can lead to difficulties in drawing broad conclusions, and we must continue to be cautious about inferring causality in humans. In this second Scientific Statement, we reviewed the literature on a subset of topics for which the translational evidence is strongest: 1) obesity and diabetes; 2) female reproduction; 3) male reproduction; 4) hormone-sensitive cancers in females; 5) prostate; 6) thyroid; and 7) neurodevelopment and neuroendocrine systems. Our inclusion criteria for studies were those conducted predominantly in the past 5 years deemed to be of high quality based on appropriate negative and positive control groups or populations, adequate sample size and experimental design, and mammalian animal studies with exposure levels in a range that was relevant to humans. We also focused on studies using the developmental origins of health and disease model. No report was excluded based on a positive or negative effect of the EDC exposure. The bulk of the results across the board strengthen the evidence for endocrine health-related actions of EDCs. Based on this much more complete understanding of the endocrine principles by which EDCs act, including nonmonotonic dose-responses, low-dose effects, and developmental vulnerability, these findings can be much better translated to human health. Armed with this information, researchers, physicians, and other healthcare providers can guide regulators and policymakers as they make responsible decisions.
Collapse
Affiliation(s)
- A C Gore
- Pharmacology and Toxicology (A.C.G.), College of Pharmacy, The University of Texas at Austin, Austin, Texas 78734; Division of the National Toxicology Program (V.A.C., S.E.F.), National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina 27709; Department of Comparative Biosciences (J.A.F.), University of Illinois at Urbana-Champaign, Urbana, Illinois 61802; Institute of Bioengineering and CIBERDEM (A.N.), Miguel Hernandez University of Elche, 03202 Elche, Alicante, Spain; Departments of Urology, Pathology, and Physiology & Biophysics (G.S.P.), College of Medicine, University of Illinois at Chicago, Chicago, Illinois 60612; Departments of Physiology and Pediatrics (J.T.), University of Turku and Turku University Hospital, 20520 Turku, Finland; and Biology Department (R.T.Z.), University of Massachusetts at Amherst, Amherst, Massachusetts 01003
| | - V A Chappell
- Pharmacology and Toxicology (A.C.G.), College of Pharmacy, The University of Texas at Austin, Austin, Texas 78734; Division of the National Toxicology Program (V.A.C., S.E.F.), National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina 27709; Department of Comparative Biosciences (J.A.F.), University of Illinois at Urbana-Champaign, Urbana, Illinois 61802; Institute of Bioengineering and CIBERDEM (A.N.), Miguel Hernandez University of Elche, 03202 Elche, Alicante, Spain; Departments of Urology, Pathology, and Physiology & Biophysics (G.S.P.), College of Medicine, University of Illinois at Chicago, Chicago, Illinois 60612; Departments of Physiology and Pediatrics (J.T.), University of Turku and Turku University Hospital, 20520 Turku, Finland; and Biology Department (R.T.Z.), University of Massachusetts at Amherst, Amherst, Massachusetts 01003
| | - S E Fenton
- Pharmacology and Toxicology (A.C.G.), College of Pharmacy, The University of Texas at Austin, Austin, Texas 78734; Division of the National Toxicology Program (V.A.C., S.E.F.), National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina 27709; Department of Comparative Biosciences (J.A.F.), University of Illinois at Urbana-Champaign, Urbana, Illinois 61802; Institute of Bioengineering and CIBERDEM (A.N.), Miguel Hernandez University of Elche, 03202 Elche, Alicante, Spain; Departments of Urology, Pathology, and Physiology & Biophysics (G.S.P.), College of Medicine, University of Illinois at Chicago, Chicago, Illinois 60612; Departments of Physiology and Pediatrics (J.T.), University of Turku and Turku University Hospital, 20520 Turku, Finland; and Biology Department (R.T.Z.), University of Massachusetts at Amherst, Amherst, Massachusetts 01003
| | - J A Flaws
- Pharmacology and Toxicology (A.C.G.), College of Pharmacy, The University of Texas at Austin, Austin, Texas 78734; Division of the National Toxicology Program (V.A.C., S.E.F.), National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina 27709; Department of Comparative Biosciences (J.A.F.), University of Illinois at Urbana-Champaign, Urbana, Illinois 61802; Institute of Bioengineering and CIBERDEM (A.N.), Miguel Hernandez University of Elche, 03202 Elche, Alicante, Spain; Departments of Urology, Pathology, and Physiology & Biophysics (G.S.P.), College of Medicine, University of Illinois at Chicago, Chicago, Illinois 60612; Departments of Physiology and Pediatrics (J.T.), University of Turku and Turku University Hospital, 20520 Turku, Finland; and Biology Department (R.T.Z.), University of Massachusetts at Amherst, Amherst, Massachusetts 01003
| | - A Nadal
- Pharmacology and Toxicology (A.C.G.), College of Pharmacy, The University of Texas at Austin, Austin, Texas 78734; Division of the National Toxicology Program (V.A.C., S.E.F.), National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina 27709; Department of Comparative Biosciences (J.A.F.), University of Illinois at Urbana-Champaign, Urbana, Illinois 61802; Institute of Bioengineering and CIBERDEM (A.N.), Miguel Hernandez University of Elche, 03202 Elche, Alicante, Spain; Departments of Urology, Pathology, and Physiology & Biophysics (G.S.P.), College of Medicine, University of Illinois at Chicago, Chicago, Illinois 60612; Departments of Physiology and Pediatrics (J.T.), University of Turku and Turku University Hospital, 20520 Turku, Finland; and Biology Department (R.T.Z.), University of Massachusetts at Amherst, Amherst, Massachusetts 01003
| | - G S Prins
- Pharmacology and Toxicology (A.C.G.), College of Pharmacy, The University of Texas at Austin, Austin, Texas 78734; Division of the National Toxicology Program (V.A.C., S.E.F.), National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina 27709; Department of Comparative Biosciences (J.A.F.), University of Illinois at Urbana-Champaign, Urbana, Illinois 61802; Institute of Bioengineering and CIBERDEM (A.N.), Miguel Hernandez University of Elche, 03202 Elche, Alicante, Spain; Departments of Urology, Pathology, and Physiology & Biophysics (G.S.P.), College of Medicine, University of Illinois at Chicago, Chicago, Illinois 60612; Departments of Physiology and Pediatrics (J.T.), University of Turku and Turku University Hospital, 20520 Turku, Finland; and Biology Department (R.T.Z.), University of Massachusetts at Amherst, Amherst, Massachusetts 01003
| | - J Toppari
- Pharmacology and Toxicology (A.C.G.), College of Pharmacy, The University of Texas at Austin, Austin, Texas 78734; Division of the National Toxicology Program (V.A.C., S.E.F.), National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina 27709; Department of Comparative Biosciences (J.A.F.), University of Illinois at Urbana-Champaign, Urbana, Illinois 61802; Institute of Bioengineering and CIBERDEM (A.N.), Miguel Hernandez University of Elche, 03202 Elche, Alicante, Spain; Departments of Urology, Pathology, and Physiology & Biophysics (G.S.P.), College of Medicine, University of Illinois at Chicago, Chicago, Illinois 60612; Departments of Physiology and Pediatrics (J.T.), University of Turku and Turku University Hospital, 20520 Turku, Finland; and Biology Department (R.T.Z.), University of Massachusetts at Amherst, Amherst, Massachusetts 01003
| | - R T Zoeller
- Pharmacology and Toxicology (A.C.G.), College of Pharmacy, The University of Texas at Austin, Austin, Texas 78734; Division of the National Toxicology Program (V.A.C., S.E.F.), National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina 27709; Department of Comparative Biosciences (J.A.F.), University of Illinois at Urbana-Champaign, Urbana, Illinois 61802; Institute of Bioengineering and CIBERDEM (A.N.), Miguel Hernandez University of Elche, 03202 Elche, Alicante, Spain; Departments of Urology, Pathology, and Physiology & Biophysics (G.S.P.), College of Medicine, University of Illinois at Chicago, Chicago, Illinois 60612; Departments of Physiology and Pediatrics (J.T.), University of Turku and Turku University Hospital, 20520 Turku, Finland; and Biology Department (R.T.Z.), University of Massachusetts at Amherst, Amherst, Massachusetts 01003
| |
Collapse
|
30
|
Atrazine Exposure and Reproductive Dysfunction through the Hypothalamus-Pituitary-Gonadal (HPG) Axis. TOXICS 2015; 3:414-450. [PMID: 28713818 PMCID: PMC5507375 DOI: 10.3390/toxics3040414] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Endocrine disrupting chemicals (EDC) are exogenous agents that alter endogenous hormone signaling pathways. These chemicals target the neuroendocrine system which is composed of organs throughout the body that work alongside the central nervous system to regulate biological processes. Of primary importance is the hypothalamic-pituitary-gonadal (HPG) axis which is vital for maintaining proper reproductive function. Atrazine (2-chloro-4-ethylamino-6-isopropylamino-1,3,5-triazine) is a pre-emergent herbicide used to prevent the growth of weeds on various crops. This herbicide is reported to widely contaminate potable water supplies everywhere it is applied. As such, the European Union banned the use of atrazine in 2004. Currently the United States Environmental Protection Agency regulates atrazine at 3 parts per billion (ppb; μg/L) in drinking water, while the World Health Organization recently changed their drinking water guideline to 100 ppb. Atrazine is implicated to be an EDC that alters reproductive dysfunction by targeting the HPG axis. However, questions remain as to the human health risks associated with atrazine exposure with studies reporting mixed results on the ability of atrazine to alter the HPG axis. In this review, the current findings for atrazine’s effects on the HPG axis are examined in mammalian, anuran, and fish models and in epidemiological studies.
Collapse
|
31
|
Karmaus AL, Zacharewski TR. Atrazine-Mediated Disruption of Steroidogenesis in BLTK1 Murine Leydig Cells. Toxicol Sci 2015; 148:544-54. [PMID: 26377646 DOI: 10.1093/toxsci/kfv204] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Atrazine (ATR) is a broad-spectrum triazine herbicide that disrupts steroidogenesis resulting in reproductive and developmental toxicity at high doses. Mouse BLTK1 Leydig cells were used as a steroidogenic model to investigate the effects of ATR on testosterone (T) biosynthesis. Induction of steroidogenesis by 3 ng/ml recombinant human chorionic gonadotropin (rhCG) induced intracellular 3',5' cyclic adenosine monophosphate (cAMP) approximately 20-fold and T approximately 3-fold at 4 h. Co-treatment with 300 μM ATR super-induced cAMP levels 100-fold yet antagonized rhCG-mediated induction of T approximately 20% at 4 h. ATR inhibited cAMP-specific phosphodiesterase (cPDE) with an IC50 of ≥98 μM, suggesting cPDE inhibition contributes to the super-induction of cAMP. However, concentrations of up to 3 mM db-cAMP did not antagonize rhCG induction of T levels, suggesting cAMP super-induction alone does not decrease T biosynthesis. Western analysis of cAMP-activated protein kinase A (PKA) target proteins identified ATR-mediated concentration-dependent alterations in phosphorylation including phospho-CREB. These results suggest the cPDE inhibition by ATR and super-induction of cAMP are independent of effects on T levels, and that altered phosphorylation of key steroidogenic regulatory proteins may underlie ATR-mediated disruption of steroidogenesis.
Collapse
Affiliation(s)
- Agnes L Karmaus
- Department of Biochemistry and Molecular Biology, Center for Integrative Toxicology, Michigan State University, East Lansing, Michigan
| | - Timothy R Zacharewski
- Department of Biochemistry and Molecular Biology, Center for Integrative Toxicology, Michigan State University, East Lansing, Michigan
| |
Collapse
|
32
|
Park S, Kim S, Jin H, Lee K, Bae J. Impaired development of female mouse offspring maternally exposed to simazine. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2014; 38:845-51. [PMID: 25461544 DOI: 10.1016/j.etap.2014.10.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2014] [Revised: 10/07/2014] [Accepted: 10/10/2014] [Indexed: 05/16/2023]
Abstract
Simazine is a suspected endocrine disruptor and the second most commonly detected pesticide in surface and groundwater worldwide. We evaluated the toxicity of simazine in female mouse offspring with in utero and lactational exposure to the agent. Pregnant mice were exposed to environmentally relevant doses (from 5 to 500μg/kg) of simazine via oral administration, and their female offspring were then analyzed. The female offspring showed shortened anogenital distance and decreased whole body, ovarian, and uterine weights. Their ovaries showed increased apoptotic granulosa cells. In addition, expression of critical genes involved in regulation of cellular apoptosis and proliferation was significantly downregulated in the ovaries of simazine-exposed mice. Moreover, in vitro exposure of human granulosa cell-derived KGN cells to simazine (0.003-1nM) resulted in decreased viability and proliferation. Thus, the present study demonstrates that maternal exposure to low doses of simazine impairs normal development of female offspring via disturbance of cellular apoptosis and proliferation.
Collapse
Affiliation(s)
- Seeun Park
- School of Pharmacy, Chung-Ang University, Seoul 156-756, Republic of Korea; Department of Life Science, Chung-Ang University, Seoul 156-756, Republic of Korea
| | - Sarang Kim
- School of Pharmacy, Chung-Ang University, Seoul 156-756, Republic of Korea
| | - Hong Jin
- School of Pharmacy, Chung-Ang University, Seoul 156-756, Republic of Korea
| | - Kangseok Lee
- Department of Life Science, Chung-Ang University, Seoul 156-756, Republic of Korea.
| | - Jeehyeon Bae
- School of Pharmacy, Chung-Ang University, Seoul 156-756, Republic of Korea.
| |
Collapse
|
33
|
Pogrmic-Majkic K, Samardzija D, Fa S, Hrubik J, Glisic B, Kaisarevic S, Andric N. Atrazine Enhances Progesterone Production Through Activation of Multiple Signaling Pathways in FSH-Stimulated Rat Granulosa Cells: Evidence for Premature Luteinization1. Biol Reprod 2014; 91:124. [DOI: 10.1095/biolreprod.114.122606] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
|
34
|
Riffle BW, Klinefelter GR, Cooper RL, Winnik WM, Swank A, Jayaraman S, Suarez J, Best D, Laws SC. Novel molecular events associated with altered steroidogenesis induced by exposure to atrazine in the intact and castrate male rat. Reprod Toxicol 2014; 47:59-69. [DOI: 10.1016/j.reprotox.2014.05.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2014] [Revised: 05/15/2014] [Accepted: 05/22/2014] [Indexed: 10/25/2022]
|
35
|
Su J, Cheng J, Sun HX, Diao ZY, Zhen X, Yang J, Ding LJ, Hu YL. Tripterygium glycosides impairs the proliferation of granulosa cells and decreases the reproductive outcomes in female rats. BIRTH DEFECTS RESEARCH. PART B, DEVELOPMENTAL AND REPRODUCTIVE TOXICOLOGY 2014; 101:283-291. [PMID: 24831781 DOI: 10.1002/bdrb.21111] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2014] [Accepted: 04/11/2014] [Indexed: 11/07/2022]
Abstract
This study was carried out to investigate the impact of tripterygium glycosides (TGs) on ovarian function of female rats in vitro and in vivo. In vitro studies showed that TG induced cells decrease at G1 phase and inhibited cell proliferation in rat granulosa cells. In vivo, female rats were intragastrically administered with TG at the dose of 60 mg/kg/day for consecutive 50 days. TG caused a prolonged estrous cycle, and a significant reduction in ovarian index, serum E2 level, and numbers of secondary and antral follicles (p < 0.05) in these rats. A significant reduction of viable embryos was demonstrated in TG-treated female rats after mating (p < 0.01). Further, we observed observed the reduced expression level of TGF-β1 after TG treatment in vitro and in vivo. Moreover, the expression of Smad2 and AKT was also decreased after TG treatment. These results suggest that TG can impair ovarian function through Smads-mediated TGF-β1 signal pathway.
Collapse
Affiliation(s)
- Jing Su
- Center for Reproductive Medicine, The Affiliated Nanjing Drum Tower Hospital of Nanjing University Medical School, Nanjing City, China
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Goldman JM, Davis LK, Murr AS, Cooper RL. Atrazine-induced elevation or attenuation of the LH surge in the ovariectomized, estrogen-primed female rat: role of adrenal progesterone. Reproduction 2013; 146:305-14. [DOI: 10.1530/rep-13-0011] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Multiple exposures to the herbicide atrazine (ATRZ) were shown to suppress the LH surge in both cycling female rats and those ovariectomized (OVX) and primed with estradiol (E2). A single ATRZ administration was found to induce a prompt and marked increase in progesterone (P4). As exogenous P4 is known to have a differential effect on the LH surge depending on its temporal relationship with the surge, it was hypothesized that a single treatment in an OVX, E2-primed rat would augment the surge, whereas several exposures would cause a decrease. Following four daily treatments with 100 mg/kg, LH surge was suppressed. In contrast, a single ATRZ exposure elevated the surge. Two treatments were without effect. The single administration caused a large increase in P4 at 30 and 60 min that was likely attributable to adrenal secretion. Four exposures also elevated P4 after the final treatment, although the duration of the increase was shortened. A single treatment with 0, 10, 30, and 100 mg/kg ATRZ showed similar elevations at the highest concentration in P4, the LH peak, and area under the curve (AUC), whereas four exposures reduced the AUC. An increase at 1 h in the expression of Kiss1 in the anteroventral periventricular nucleus suggests that this regional kisspeptin neuronal population has a role in the ATRZ augmentation of the surge. These data support the hypothesis that ATRZ-induced changes in adrenal P4 can either augment or attenuate the surge depending on the temporal proximity of exposure to the rise in LH.
Collapse
|
37
|
Fa S, Pogrmic-Majkic K, Samardzija D, Glisic B, Kaisarevic S, Kovacevic R, Andric N. Involvement of ERK1/2 signaling pathway in atrazine action on FSH-stimulated LHR and CYP19A1 expression in rat granulosa cells. Toxicol Appl Pharmacol 2013; 270:1-8. [DOI: 10.1016/j.taap.2013.03.031] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2013] [Revised: 03/12/2013] [Accepted: 03/22/2013] [Indexed: 01/27/2023]
|
38
|
Forgacs AL, D’Souza ML, Huhtaniemi IT, Rahman NA, Zacharewski TR. Triazine Herbicides and Their Chlorometabolites Alter Steroidogenesis in BLTK1 Murine Leydig Cells. Toxicol Sci 2013; 134:155-67. [DOI: 10.1093/toxsci/kft096] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
39
|
Reitsma M, Bovee TFH, Peijnenburg AACM, Hendriksen PJM, Hoogenboom RLAP, Rijk JCW. Endocrine-disrupting effects of thioxanthone photoinitiators. Toxicol Sci 2012. [PMID: 23208609 DOI: 10.1093/toxsci/kfs332] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Photoinitiators used in food packaging ink, such as 2-isopropylthioxanthone (2-ITX), have been shown to migrate into food and beverages. Recently, several studies indicated that 2-ITX might be an endocrine-disrupting chemical. In this work, the effects of 2-ITX, 4-isopropylthioxanthone (4-ITX), 2,4-diethylthio xanthone (2,4-diethyl-TX), 2-chlorothioxanthone (2-chloro-TX), and 1-chloro-4-propoxythioxanthone (1-chloro-4-propoxy-TX) on steroidogenesis and androgen and estrogen receptor-mediated transcription activation have been studied using human H295R adrenocarcinoma cells and yeast hormone bioassays, respectively. None of the compounds showed androgenic or estrogenic activities, but clear antiandrogenic and antiestrogenic activities were observed for 2-ITX, 4-ITX, and 2,4-diethyl-TX, whereas 2-chloro-TX showed only antiandrogenic activity. In an adapted version of the H295R steroidogenesis assay, using gas chromatography-tandem mass spectrometry analysis of H295R media, all five compounds increased levels of 17ß-estradiol and estrone. H295R cells incubated with 2-ITX also showed significantly reduced androgen and increased pregnenolone and progesterone levels. Expression of particular steroidogenic genes, including the one encoding for aromatase (CYP19A1), was significantly upregulated after incubation of H295R cells with 2-ITX, 4-ITX, and 2,4-diethyl-TX. In line with the increased CYP19A1 mRNA expression, 2-ITX increased catalytic activity of aromatase in H295R cells as measured by cognate aromatase assays. The results indicate that thioxanthone derivatives can act as potential endocrine disruptors both at the level of nuclear receptor signaling and steroid hormone production.
Collapse
Affiliation(s)
- Marit Reitsma
- RIKILT-Institute of Food Safety, Wageningen UR, Wageningen, The Netherlands
| | | | | | | | | | | |
Collapse
|
40
|
Basini G, Bianchi F, Bussolati S, Baioni L, Ramoni R, Grolli S, Conti V, Bianchi F, Grasselli F. Atrazine disrupts steroidogenesis, VEGF and NO production in swine granulosa cells. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2012; 85:59-63. [PMID: 22999709 DOI: 10.1016/j.ecoenv.2012.08.027] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2012] [Revised: 08/08/2012] [Accepted: 08/29/2012] [Indexed: 06/01/2023]
Abstract
Atrazine is one of the most widely employed herbicides. Due to its environmental persistence, it can be detected in ground and water thus becoming the subject of a serious concern because of its potential endocrine disrupting activity. In particular, several in vitro and in vivo studies point out adverse effects on reproduction. However, these data were mainly collected in the male, while studies on females are lacking. Present work was therefore set up on swine ovarian granulosa cells to investigate the effect of atrazine on steroidogenesis and proliferation. Moreover, since vessel growth is fundamental for reproductive function, we evaluated the herbicide's effect on two of the main angiogenesis signaling molecules, VEGF and NO. Our data show that atrazine markedly interferes with steroidogenesis while it does not modify cell proliferation; in addition, the herbicide has also been found to affect the production of the examined angiogenesis molecules. Collectively, these results indicate for the first time a potential negative effect of atrazine on ovarian functions in the swine species.
Collapse
Affiliation(s)
- Giuseppina Basini
- Dipartimento di Scienze Medico-Veterinarie, Università degli Studi di Parma, Via del Taglio 10, 43126 Parma, Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Taketa Y, Inoue K, Takahashi M, Yamate J, Yoshida M. Differential morphological effects in rat corpora lutea among ethylene glycol monomethyl ether, atrazine, and bromocriptine. Toxicol Pathol 2012; 41:736-43. [PMID: 23076038 DOI: 10.1177/0192623312464305] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Ethylene glycol monomethyl ether (EGME) or atrazine induces luteal cell hypertrophy in rats. Our previous study suggested that EGME stimulates both new and old corpora lutea (CL), while atrazine stimulates new CL. Bromocriptine (BRC) is known to suppress the luteolysis in rats. This study investigated the light- and electron-microscopic luteal changes induced by EGME, atrazine, or BRC. Female rats were treated with EGME (300 mg/kg/day), BRC (2 mg/kg/day), EGME and BRC (EGME + BRC), or atrazine (300 mg/kg/day) for 7 days. Luteal cell hypertrophy induced by EGME, EGME + BRC, and atrazine was subclassified into the following two types: CL hypertrophy, vacuolated type (CL-V) characterized by intracytoplasmic fine vacuoles, and CL hypertrophy, eosinophilic type (CL-E) characterized by eosinophilic and abundant cytoplasm. The proportions of CL-V and CL-E were different among the treatments. BRC-treated old CL showed lower proportion of endothelial cells and fibroblasts than normal old CL. Ultrastructural observation revealed that the luteal cells of CL-V contained abundant lipid droplets, whereas those of CL-E in EGME and EGME + BRC groups showed uniformly well-developed smooth endoplasmic reticulum. No clear ultrastructural difference was observed between the control CL and atrazine-treated CL-E. These results indicate that EGME, atrazine, and BRC have differential luteal morphological effects.
Collapse
Affiliation(s)
- Yoshikazu Taketa
- Division of Pathology, National Institute of Health Sciences, Tokyo 156-8501, Japan.
| | | | | | | | | |
Collapse
|
42
|
A comparison of two human cell lines and two rat gonadal cell primary cultures as in vitro screening tools for aromatase modulation. Toxicol In Vitro 2012; 26:107-18. [DOI: 10.1016/j.tiv.2011.11.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2011] [Revised: 10/25/2011] [Accepted: 11/09/2011] [Indexed: 11/20/2022]
|
43
|
Zhang J, Liu L, Mu X, Jiang Z, Zhang L. Effect of triptolide on estradiol release from cultured rat granulosa cells. Endocr J 2012; 59:473-81. [PMID: 22447140 DOI: 10.1507/endocrj.ej11-0407] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Triptolide, a major active component of Tripterygium wilfordii Hook F (TWHF), is known to have multiple pharmacological activities. However, studies have also shown that triptolide is highly toxic to the reproductive system by disrupting normal androgen and estrogen signaling. In the present study, we investigated the effect of triptolide (5, 10, or 20 nM for 24 h) on estradiol production by rat granulosa cells. Triptolide inhibited basal and human chorionic gonadotropin (HCG)- or 8-bromo-cAMP-stimulated estradiol production as revealed by RIA assay. Furthermore, the HCG-evoked increase in cellular cAMP content was also inhibited by triptolide, indicating that disruption of the cAMP/PKA signaling pathway may mediate the deleterious effects of triptolide on steroid hormone regulation. In addition, (3)H(2)O tests showed that aromatase activity was significantly inhibited by triptolide in granulosa cells. Western blot and quantitative real-time PCR (qRT-PCR) assays further revealed that triptolide decreased protein and mRNA expression of aromatase in granulosa cells. Moreover, mRNA expression of luteinizing hormone receptor (LHR) was induced by triptolide also using qRT-PCR method. In contrast, cell viability tests using Cell Counting Kit-8 (CCK-8) and 3-(4,5-dimethyl-thiazol-2-yl)-2,5- diphenyl-tetrazolium bromide (MTT) method indicated that triptolide did not cause measurable cell death at doses that suppressed steroidogenesis. The reproductive toxicity of triptolide may be mainly caused by disruption of cAMP/PKA-mediated expression of estrogen synthesis enzymes, leading to reduced estradiol synthesis and reproductive dysfunction.
Collapse
Affiliation(s)
- Juan Zhang
- Jiangsu Center of Drug Screening, China Pharmaceutical University, Nanjing, PR China
| | | | | | | | | |
Collapse
|
44
|
Enantioselective endocrine-disrupting effects of bifenthrin on hormone synthesis in rat ovarian cells. Toxicology 2011; 290:42-9. [DOI: 10.1016/j.tox.2011.08.016] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2011] [Revised: 08/12/2011] [Accepted: 08/12/2011] [Indexed: 12/19/2022]
|
45
|
Simpkins JW, Swenberg JA, Weiss N, Brusick D, Eldridge JC, Stevens JT, Handa RJ, Hovey RC, Plant TM, Pastoor TP, Breckenridge CB. Atrazine and breast cancer: a framework assessment of the toxicological and epidemiological evidence. Toxicol Sci 2011; 123:441-59. [PMID: 21768606 PMCID: PMC3179673 DOI: 10.1093/toxsci/kfr176] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The causal relationship between atrazine exposure and the occurrence of breast cancer in women was evaluated using the framework developed by Adami et al. (2011) wherein biological plausibility and epidemiological evidence were combined to conclude that a causal relationship between atrazine exposure and breast cancer is “unlikely”. Carcinogenicity studies in female Sprague-Dawley (SD) but not Fischer-344 rats indicate that high doses of atrazine caused a decreased latency and an increased incidence of combined adenocarcinoma and fibroadenoma mammary tumors. There were no effects of atrazine on any other tumor type in male or female SD or Fischer-344 rats or in three strains of mice. Seven key events that precede tumor expression in female SD rats were identified. Atrazine induces mammary tumors in aging female SD rats by suppressing the luteinizing hormone surge, thereby supporting a state of persistent estrus and prolonged exposure to endogenous estrogen and prolactin. This endocrine mode of action has low biological plausibility for women because women who undergo reproductive senescence have low rather than elevated levels of estrogen and prolactin. Four alternative modes of action (genotoxicity, estrogenicity, upregulation of aromatase gene expression or delayed mammary gland development) were considered and none could account for the tumor response in SD rats. Epidemiological studies provide no support for a causal relationship between atrazine exposure and breast cancer. This conclusion is consistent with International Agency for Research on Cancer’s classification of atrazine as “unclassifiable as to carcinogenicity” and the United States Environmental Protection Agency's classification of atrazine as “not likely to be carcinogenic.”
Collapse
Affiliation(s)
- James W Simpkins
- Department of Pharmacology and Neurosciences, University of North Texas Health Science Center, Fort Worth, Texas 76107, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|