1
|
Qiao K, Wang S, Wang A, Liang Z, Yang S, Ma Y, Li S, Ye Q, Gui W. QSAR modeling on aromatase inhibitory activity of 23 triazole fungicides by tritium-water release assay. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 368:125832. [PMID: 39929427 DOI: 10.1016/j.envpol.2025.125832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 12/30/2024] [Accepted: 02/07/2025] [Indexed: 02/14/2025]
Abstract
The 1,2,4-triazole fungicides are extensively used in agriculture, and their impacts on aquatic organisms by continuous release are increasingly concerned. Aromatase, a rate-limiting enzyme for androgens converting to estrogens, is considered as a potential target for triazole fungicides. To reveal and predict the aromatase inhibition capacity of the existing and future developed triazole fungicides, 23 commonly used 1,2,4-triazole fungicides were used for the evaluation of their inhibitory effects (expressed as the 50% inhibitory concentration (IC50)) on human aromatase by 3H-H2O release assay in the present study. Result showed the IC50 values spanned four orders of magnitude from the strongest of 44 nM (flusilazole) to the lowest of 0.330 mM (bitertanol). The aromatase inhibitory activity of the triazoles was also verified in vivo by zebrafish use two triazoles with relatively weak inhibition. Subsequently, the Quantitative Structure-Activity Relationship (QSAR) modeling on the triazoles as aromatase inhibitors was constructed using stepwise regression analysis with the chemical structural descriptors including physicochemical, electronic and topological parameters. The optimal QSAR model was defined as pIC50 = -22.936-2.668 EHomo + 0.938 logD - 0.715 NHBD. The effectiveness and robustness of the model were evaluated by internal and external validation with residual assessment. The internal validation showed that the R2 and Radj2 were both higher than 0.700. The CCC and CCCExt were in acceptable levels as the cutoff value of 0.850. The cross-validation correlation coefficient Q2 and the external predictive correlation coefficients (Q2-F1, Q2-F2, and Q2-F3) were all greater than 0.600. The results of Y-Scrambling with 2000 iterations indicated the model had no accidental correlation as the average R2 of 0.166 and Q2 of -0.378. The findings offered data support for the potential risks associated with triazole fungicides in aquatic environment and provided theoretical guidance to expedite drug development and risk assessment.
Collapse
Affiliation(s)
- Kun Qiao
- Institute of Pesticide and Environmental Toxicology, Zhejiang University, Hangzhou, 310058, PR China; Institute of Nuclear-Agricultural Sciences, Zhejiang University, Hangzhou, 310058, PR China; Research Centre for the Oceans and Human Health, City University of Hong Kong Shenzhen Research Institute, Shenzhen, 518057, PR China
| | - Shuting Wang
- Hangzhou Center for Disease Control and Prevention (Hangzhou Health Supervision Institution), Hangzhou, Zhejiang, 310021, PR China
| | - Aoxue Wang
- Institute of Pesticide and Environmental Toxicology, Zhejiang University, Hangzhou, 310058, PR China
| | - Zhuoying Liang
- Institute of Pesticide and Environmental Toxicology, Zhejiang University, Hangzhou, 310058, PR China
| | - Siyu Yang
- Institute of Pesticide and Environmental Toxicology, Zhejiang University, Hangzhou, 310058, PR China
| | - Yongfang Ma
- Institute of Pesticide and Environmental Toxicology, Zhejiang University, Hangzhou, 310058, PR China
| | - Shuying Li
- Institute of Pesticide and Environmental Toxicology, Zhejiang University, Hangzhou, 310058, PR China; Ministry of Agriculture and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou, 310058, PR China; Zhejiang Key Laboratory of Biology and Ecological Regulation of Crop Pathogens and Insects, Hangzhou, 310058, PR China
| | - Qingfu Ye
- Institute of Nuclear-Agricultural Sciences, Zhejiang University, Hangzhou, 310058, PR China
| | - Wenjun Gui
- Institute of Pesticide and Environmental Toxicology, Zhejiang University, Hangzhou, 310058, PR China; Ministry of Agriculture and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou, 310058, PR China; Zhejiang Key Laboratory of Biology and Ecological Regulation of Crop Pathogens and Insects, Hangzhou, 310058, PR China.
| |
Collapse
|
2
|
Lachowicz-Radulska J, Widelski J, Nowaczyński F, Serefko A, Sobczyński J, Ludwiczuk A, Kasica N, Szopa A. Zebrafish as a Suitable Model for Utilizing the Bioactivity of Coumarins and Coumarin-Based Compounds. Int J Mol Sci 2025; 26:1444. [PMID: 40003910 PMCID: PMC11855297 DOI: 10.3390/ijms26041444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 02/03/2025] [Accepted: 02/06/2025] [Indexed: 02/27/2025] Open
Abstract
The aim of this review is to summarize the current knowledge on the use of coumarin-derived compounds in the zebrafish (Danio rerio) model. Coumarins, a class of naturally occurring compounds with diverse biological activities, including compounds such as coumarin, angelicin, and warfarin, have attracted considerable attention in the study of potential therapeutic agents for cancer, central nervous system disorders, and infectious diseases. The capabilities of coumarins as active compounds have led to synthesizing various derivatives with their own properties. While such variety is certainly promising, it is also cumbersome due to the large amount of research needed to find the most optimal compounds. The zebrafish model offers unique advantages for such studies, including high genetic and physiological homology to mammals, optical transparency of the embryos, and rapid developmental processes, facilitating the assessment of compound toxicity and underlying mechanisms of action. This review provides an in-depth analysis of the chemical properties of coumarins, their mechanisms of biological activity, and the results of previous studies evaluating the toxicity and efficacy of these compounds in zebrafish assays. The zebrafish model allows for a holistic assessment of the therapeutic potential of coumarin derivatives, offering valuable insights for advancing drug discovery and development.
Collapse
Affiliation(s)
- Joanna Lachowicz-Radulska
- Department of Clinical Pharmacy and Pharmaceutical Care, Medical University of Lublin, 7 Chodźki Street, 20-093 Lublin, Poland; (J.L.-R.); (F.N.); (A.S.); (J.S.)
| | - Jarosław Widelski
- Department of Pharmacognosy with Medicinal Plants Garden, Medical University of Lublin, 1 Chodźki Street, 20-093 Lublin, Poland; (J.W.); (A.L.)
| | - Filip Nowaczyński
- Department of Clinical Pharmacy and Pharmaceutical Care, Medical University of Lublin, 7 Chodźki Street, 20-093 Lublin, Poland; (J.L.-R.); (F.N.); (A.S.); (J.S.)
- Department of Pharmacognosy with Medicinal Plants Garden, Medical University of Lublin, 1 Chodźki Street, 20-093 Lublin, Poland; (J.W.); (A.L.)
| | - Anna Serefko
- Department of Clinical Pharmacy and Pharmaceutical Care, Medical University of Lublin, 7 Chodźki Street, 20-093 Lublin, Poland; (J.L.-R.); (F.N.); (A.S.); (J.S.)
| | - Jan Sobczyński
- Department of Clinical Pharmacy and Pharmaceutical Care, Medical University of Lublin, 7 Chodźki Street, 20-093 Lublin, Poland; (J.L.-R.); (F.N.); (A.S.); (J.S.)
| | - Agnieszka Ludwiczuk
- Department of Pharmacognosy with Medicinal Plants Garden, Medical University of Lublin, 1 Chodźki Street, 20-093 Lublin, Poland; (J.W.); (A.L.)
| | - Natalia Kasica
- Department of Animal Anatomy, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland;
| | - Aleksandra Szopa
- Department of Clinical Pharmacy and Pharmaceutical Care, Medical University of Lublin, 7 Chodźki Street, 20-093 Lublin, Poland; (J.L.-R.); (F.N.); (A.S.); (J.S.)
| |
Collapse
|
3
|
Qian ST, Chen LM, He MF, Li HJ. Zebrafish Larvae as a Predictive Model for the Risk of Chemical-Induced Cholestasis: Phenotypic Evaluation and Nomogram Formation. Chem Res Toxicol 2024; 37:1976-1988. [PMID: 39566033 DOI: 10.1021/acs.chemrestox.4c00324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2024]
Abstract
Chemical-induced cholestasis (CIC) has become a concern in chemical safety risk assessment in pharmaceutical, food, cosmetic, and industrial manufacturing. Currently, known animal and in vitro liver models are unsuitable as high-throughput screening tools due to their high cost, time-consuming, or poor screening accuracy. Herein, a cohort of chemicals validated as cholestatic hepatotoxic in humans, rodents, and in vitro liver models was established for testing. The accuracy and reliability of the detection of CIC in zebrafish larvae were assessed by liver phenotype, bile flow inhibition rate, bile acid distribution, biochemical indices, and RT-qPCR. In addition, the nomogram prediction model was constructed using binomial logistic regression analysis. The model was constructed with three variables: aspartate aminotransferase (AST.FC) level, total bile acid (TBA.FC) level, and fold change in the number of bile acid nodes per unit of bile ducts in the zebrafish liver (NPL.FC), which showed high predictive power (areas under the ROC curve: 0.983). Furthermore, this study demonstrated that zebrafish larvae have some model specificity for CIC risk assessment of estrogen endocrine disruptors and that testing after 10 dpf provides more scientific results. Overall, combining zebrafish larval phenotyping and nomograms is an efficient and powerful tool for CIC risk monitoring of chemicals.
Collapse
Affiliation(s)
- Si-Tong Qian
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, Jiangsu, China
| | - Liang-Min Chen
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, Jiangsu, China
| | - Ming-Fang He
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, Jiangsu, China
| | - Hui-Jun Li
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, Jiangsu, China
| |
Collapse
|
4
|
Kostić J, Đorđević Aleksić J, Višnjić-Jeftić Ž, Nikolić D, Marković Z, Kračun-Kolarević M, Tasić A, Jaćimović M. Aliens Among Us: Sensitivity of the Invasive Alien Fish Black Bullhead Ameiurus melas as a Bioindicator of Pollution and Its Safety for Human Consumption. TOXICS 2024; 12:849. [PMID: 39771064 PMCID: PMC11679168 DOI: 10.3390/toxics12120849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 11/22/2024] [Accepted: 11/24/2024] [Indexed: 01/11/2025]
Abstract
This study aims to evaluate the black bullhead Ameiurus melas, an invasive alien fish (IAF) in Serbia, as a bioindicator organism and assess the safety of natural and aquaculture specimens for human consumption. A set of biomarkers was analysed to assess the bioindicator potential at a site exposed to agricultural activities. The genotoxic response was determined by an alkaline comet assay and micronucleus assay in fish erythrocytes, and the metal pollution index (MPI) was calculated to assess the toxic element burden on fish. Water quality was evaluated using physicochemical parameters and faecal indicator bacteria, while sediment was analysed for the presence of pesticides. The concentration of metals and metalloids in fish muscle was monitored to assess the safety for human consumption, and the corresponding indices (MAC, THQ, HI) were calculated. All biomarker responses were linked by the integrated biomarker response (IBR). Water analyses indicated the absence of communal wastewater, while sediment analysis revealed the presence of paclobutrazol, bifenthrin, and cyfluthrin. The IBR showed that June and September had the highest stress indices, coinciding with peak pesticide use and precipitation. All indices confirmed the safety of black bullhead for human consumption. This study highlighted the uses of nature-based solutions to the problem of IAF.
Collapse
Affiliation(s)
- Jovana Kostić
- Department of Biology and Inland Waters Protection, Institute for Multidisciplinary Research, University of Belgrade, 11030 Belgrade, Serbia; (J.Đ.A.); (Ž.V.-J.); (D.N.); (M.J.)
| | - Jelena Đorđević Aleksić
- Department of Biology and Inland Waters Protection, Institute for Multidisciplinary Research, University of Belgrade, 11030 Belgrade, Serbia; (J.Đ.A.); (Ž.V.-J.); (D.N.); (M.J.)
| | - Željka Višnjić-Jeftić
- Department of Biology and Inland Waters Protection, Institute for Multidisciplinary Research, University of Belgrade, 11030 Belgrade, Serbia; (J.Đ.A.); (Ž.V.-J.); (D.N.); (M.J.)
| | - Dušan Nikolić
- Department of Biology and Inland Waters Protection, Institute for Multidisciplinary Research, University of Belgrade, 11030 Belgrade, Serbia; (J.Đ.A.); (Ž.V.-J.); (D.N.); (M.J.)
| | - Zoran Marković
- Department of Growing and Reproduction of Domestic and Raised Animals, Institute of Animal Science, Faculty of Agriculture, University of Belgrade, 11080 Belgrade, Serbia;
| | - Margareta Kračun-Kolarević
- Department of Hydroecology and Water Protection, Institute for Biological Research “Siniša Stanković” National Institute of the Republic of Serbia, University of Belgrade, 11108 Belgrade, Serbia;
| | - Aleksandra Tasić
- Scientific Institute of Veterinary Medicine of Serbia, 11107 Belgrade, Serbia
| | - Milica Jaćimović
- Department of Biology and Inland Waters Protection, Institute for Multidisciplinary Research, University of Belgrade, 11030 Belgrade, Serbia; (J.Đ.A.); (Ž.V.-J.); (D.N.); (M.J.)
| |
Collapse
|
5
|
Wang R, Wang B, Chen A. Application of machine learning in the study of development, behavior, nerve, and genotoxicity of zebrafish. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 358:124473. [PMID: 38945191 DOI: 10.1016/j.envpol.2024.124473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 05/26/2024] [Accepted: 06/28/2024] [Indexed: 07/02/2024]
Abstract
Machine learning (ML) as a novel model-based approach has been used in studying aquatic toxicology in the environmental field. Zebrafish, as an ideal model organism in aquatic toxicology research, has been widely used to study the toxic effects of various pollutants. However, toxicity testing on organisms may cause significant harm, consume considerable time and resources, and raise ethical concerns. Therefore, ML is used in related research to reduce animal experiments and assist researchers in conducting toxicological research. Although ML techniques have matured in various fields, research on ML-based aquatic toxicology is still in its infancy due to the lack of comprehensive large-scale toxicity databases for environmental pollutants and model organisms. Therefore, to better understand the recent research progress of ML in studying the development, behavior, nerve, and genotoxicity of zebrafish, this review mainly focuses on using ML modeling to assess and predict the toxic effects of zebrafish exposure to different toxic chemicals. Meanwhile, the opportunities and challenges faced by ML in the field of toxicology were analyzed. Finally, suggestions and perspectives were proposed for the toxicity studies of ML on zebrafish in future applications.
Collapse
Affiliation(s)
- Rui Wang
- Key Laboratory of Karst Georesources and Environment, Ministry of Education, (Guizhou University), Guiyang, Guizhou, 550025, China
| | - Bing Wang
- Key Laboratory of Karst Georesources and Environment, Ministry of Education, (Guizhou University), Guiyang, Guizhou, 550025, China; College of Resources and Environmental Engineering, Guizhou University, Guiyang, Guizhou, 550025, China.
| | - Anying Chen
- College of Resources and Environmental Engineering, Guizhou University, Guiyang, Guizhou, 550025, China
| |
Collapse
|
6
|
Lu C, Lv Y, Meng X, Yang T, Liu Y, Kou G, Yang X, Luo J. The potential toxic effects of estrogen exposure on neural and vascular development in zebrafish. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 283:116862. [PMID: 39128450 DOI: 10.1016/j.ecoenv.2024.116862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 08/01/2024] [Accepted: 08/08/2024] [Indexed: 08/13/2024]
Abstract
Estrogens and estrogenic chemicals are endocrine-disrupting chemicals (EDCs). The potential toxicity of EDCs to humans and aquatic organisms has become increasingly concerning. However, at present, the potential toxic mechanisms of EDCs on neural and vascular development are still being fully investigated. During the study, we utilized zebrafish to assess the developmental neural and vascular toxicity of different estrogens. The results indicated that zebrafish treated with different estrogens, especially E2, exhibit developmental malformations, including increased mortality, decreased body length, decreased heart rate, aberrant swimming behavior, and increased developmental malformations, including spinal curvature (SC), yolk edema (YE) and pericaidial edema (PE), in a dose-dependent manner with 72 h-treated. Further morphological evaluation revealed that E2 exposure significantly induced motor neural abnormalities in zebrafish embryos. In addition, treated with these three estrogens also impaired the vascular development in the early stage of zebrafish embryos. Mechanistically, the identification of downstream factors revealed that several key neural and vascular development-related genes, including syn2a, gfap, gap43, shha, kdr, flt1 and flt4, were transcriptionally downregulated after estrogen exposure in zebrafish, suggesting that estrogen exposure might cause neural and vascular toxicity by interfering the mRNA levels of genes relevant to neural and vascular development.
Collapse
Affiliation(s)
- Chunjiao Lu
- Engineering Research Center of Key Technique for Biotherapy of Guangdong Province, Shantou University Medical College, Shantou 515041, China
| | - Yuhang Lv
- Engineering Research Center of Key Technique for Biotherapy of Guangdong Province, Shantou University Medical College, Shantou 515041, China
| | - Xin Meng
- Engineering Research Center of Key Technique for Biotherapy of Guangdong Province, Shantou University Medical College, Shantou 515041, China
| | - Ting Yang
- Engineering Research Center of Key Technique for Biotherapy of Guangdong Province, Shantou University Medical College, Shantou 515041, China
| | - Yi Liu
- Engineering Research Center of Key Technique for Biotherapy of Guangdong Province, Shantou University Medical College, Shantou 515041, China
| | - Guanhua Kou
- Engineering Research Center of Key Technique for Biotherapy of Guangdong Province, Shantou University Medical College, Shantou 515041, China
| | - Xiaojun Yang
- Engineering Research Center of Key Technique for Biotherapy of Guangdong Province, Shantou University Medical College, Shantou 515041, China; Department of Neurosurgery, The First Affiliated Hospital of Shantou University Medical College, Shantou, China.
| | - Juanjuan Luo
- Engineering Research Center of Key Technique for Biotherapy of Guangdong Province, Shantou University Medical College, Shantou 515041, China.
| |
Collapse
|
7
|
Wang Y, Wang P, Fan T, Ren T, Zhang N, Zhao L, Zhong R, Sun G. From molecular descriptors to the developmental toxicity prediction of pesticides/veterinary drugs/bio-pesticides against zebrafish embryo: Dual computational toxicological approaches for prioritization. JOURNAL OF HAZARDOUS MATERIALS 2024; 476:134945. [PMID: 38905984 DOI: 10.1016/j.jhazmat.2024.134945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 06/03/2024] [Accepted: 06/15/2024] [Indexed: 06/23/2024]
Abstract
The escalating introduction of pesticides/veterinary drugs into the environment has necessitated a rapid evaluation of their potential risks to ecosystems and human health. The developmental toxicity of pesticides/veterinary drugs was less explored, and much less the large-scale predictions for untested pesticides, veterinary drugs and bio-pesticides. Alternative methods like quantitative structure-activity relationship (QSAR) are promising because their potential to ensure the sustainable and safe use of these chemicals. We collected 133 pesticides and veterinary drugs with half-maximal active concentration (AC50) as the zebrafish embryo developmental toxicity endpoint. The QSAR model development adhered to rigorous OECD principles, ensuring that the model possessed good internal robustness (R2 > 0.6 and QLOO2 > 0.6) and external predictivity (Rtest2 > 0.7, QFn2 >0.7, and CCCtest > 0.85). To further enhance the predictive performance of the model, a quantitative read-across structure-activity relationship (q-RASAR) model was established using the combined set of RASAR and 2D descriptors. Mechanistic interpretation revealed that dipole moment, the presence of C-O fragment at 10 topological distance, molecular size, lipophilicity, and Euclidean distance (ED)-based RA function were main factors influencing toxicity. For the first time, the established QSAR and q-RASAR models were combined to prioritize the developmental toxicity of a vast array of true external compounds (pesticides/veterinary drugs/bio-pesticides) lacking experimental values. The prediction reliability of each query molecule was evaluated by leverage approach and prediction reliability indicator. Overall, the dual computational toxicology models can inform decision-making and guide the design of new pesticides/veterinary drugs with improved safety profiles.
Collapse
Affiliation(s)
- Yutong Wang
- Beijing Key Laboratory of Environmental and Viral Oncology, College of Chemistry and Life Science, Beijing University of Technology, Beijing 100124, PR China
| | - Peng Wang
- Department of Neurosurgery, The First Medical Center of Chinese PLA General Hospital, Beijing 100853, China
| | - Tengjiao Fan
- Beijing Key Laboratory of Environmental and Viral Oncology, College of Chemistry and Life Science, Beijing University of Technology, Beijing 100124, PR China; Department of Medical Technology, Beijing Pharmaceutical University of Staff and Workers, Beijing 100079, China
| | - Ting Ren
- Beijing Key Laboratory of Environmental and Viral Oncology, College of Chemistry and Life Science, Beijing University of Technology, Beijing 100124, PR China
| | - Na Zhang
- Beijing Key Laboratory of Environmental and Viral Oncology, College of Chemistry and Life Science, Beijing University of Technology, Beijing 100124, PR China
| | - Lijiao Zhao
- Beijing Key Laboratory of Environmental and Viral Oncology, College of Chemistry and Life Science, Beijing University of Technology, Beijing 100124, PR China
| | - Rugang Zhong
- Beijing Key Laboratory of Environmental and Viral Oncology, College of Chemistry and Life Science, Beijing University of Technology, Beijing 100124, PR China
| | - Guohui Sun
- Beijing Key Laboratory of Environmental and Viral Oncology, College of Chemistry and Life Science, Beijing University of Technology, Beijing 100124, PR China.
| |
Collapse
|
8
|
Silva M, Capps S, London JK. Community-Engaged Research and the Use of Open Access ToxVal/ToxRef In Vivo Databases and New Approach Methodologies (NAM) to Address Human Health Risks From Environmental Contaminants. Birth Defects Res 2024; 116:e2395. [PMID: 39264239 PMCID: PMC11407745 DOI: 10.1002/bdr2.2395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 06/19/2024] [Accepted: 08/11/2024] [Indexed: 09/13/2024]
Abstract
BACKGROUND The paper analyzes opportunities for integrating Open access resources (Abstract Sifter, US EPA and NTP Toxicity Value and Toxicity Reference [ToxVal/ToxRefDB]) and New Approach Methodologies (NAM) integration into Community Engaged Research (CEnR). METHODS CompTox Chemicals Dashboard and Integrated Chemical Environment with in vivo ToxVal/ToxRef and NAMs (in vitro) databases are presented in three case studies to show how these resources could be used in Pilot Projects involving Community Engaged Research (CEnR) from the University of California, Davis, Environmental Health Sciences Center. RESULTS Case #1 developed a novel assay methodology for testing pesticide toxicity. Case #2 involved detection of water contaminants from wildfire ash and Case #3 involved contaminants on Tribal Lands. Abstract Sifter/ToxVal/ToxRefDB regulatory data and NAMs could be used to screen/prioritize risks from exposure to metals, PAHs and PFAS from wildfire ash leached into water and to investigate activities of environmental toxins (e.g., pesticides) on Tribal lands. Open access NAMs and computational tools can apply to detection of sensitive biological activities in potential or known adverse outcome pathways to predict points of departure (POD) for comparison with regulatory values for hazard identification. Open access Systematic Empirical Evaluation of Models or biomonitoring exposures are available for human subpopulations and can be used to determine bioactivity (POD) to exposure ratio to facilitate mitigation. CONCLUSIONS These resources help prioritize chemical toxicity and facilitate regulatory decisions and health protective policies that can aid stakeholders in deciding on needed research. Insights into exposure risks can aid environmental justice and health equity advocates.
Collapse
Affiliation(s)
- Marilyn Silva
- Co-Chair Community Stakeholders' Advisory Committee, University of California (UC Davis), Environmental Health Sciences Center (EHSC), Davis, California, USA
| | - Shosha Capps
- Co-Director Community Engagement Core, UC Davis EHSC, Davis, California, USA
| | - Jonathan K London
- Department of Human Ecology and Faculty Director Community Engagement Core, UC Davis EHSC, Sacramento, California, USA
| |
Collapse
|
9
|
Lin RH, Lin P, Wang CC, Tung CW. A novel multitask learning algorithm for tasks with distinct chemical space: zebrafish toxicity prediction as an example. J Cheminform 2024; 16:91. [PMID: 39095893 PMCID: PMC11297603 DOI: 10.1186/s13321-024-00891-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 07/27/2024] [Indexed: 08/04/2024] Open
Abstract
Data scarcity is one of the most critical issues impeding the development of prediction models for chemical effects. Multitask learning algorithms leveraging knowledge from relevant tasks showed potential for dealing with tasks with limited data. However, current multitask methods mainly focus on learning from datasets whose task labels are available for most of the training samples. Since datasets were generated for different purposes with distinct chemical spaces, the conventional multitask learning methods may not be suitable. This study presents a novel multitask learning method MTForestNet that can deal with data scarcity problems and learn from tasks with distinct chemical space. The MTForestNet consists of nodes of random forest classifiers organized in the form of a progressive network, where each node represents a random forest model learned from a specific task. To demonstrate the effectiveness of the MTForestNet, 48 zebrafish toxicity datasets were collected and utilized as an example. Among them, two tasks are very different from other tasks with only 1.3% common chemicals shared with other tasks. In an independent test, MTForestNet with a high area under the receiver operating characteristic curve (AUC) value of 0.911 provided superior performance over compared single-task and multitask methods. The overall toxicity derived from the developed models of zebrafish toxicity is well correlated with the experimentally determined overall toxicity. In addition, the outputs from the developed models of zebrafish toxicity can be utilized as features to boost the prediction of developmental toxicity. The developed models are effective for predicting zebrafish toxicity and the proposed MTForestNet is expected to be useful for tasks with distinct chemical space that can be applied in other tasks.Scieific contributionA novel multitask learning algorithm MTForestNet was proposed to address the challenges of developing models using datasets with distinct chemical space that is a common issue of cheminformatics tasks. As an example, zebrafish toxicity prediction models were developed using the proposed MTForestNet which provide superior performance over conventional single-task and multitask learning methods. In addition, the developed zebrafish toxicity prediction models can reduce animal testing.
Collapse
Affiliation(s)
- Run-Hsin Lin
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Miaoli County, 35053, Taiwan
- Graduate Institute of Data Science, College of Management, Taipei Medical University, Taipei, 10675, Taiwan
| | - Pinpin Lin
- National Institute of Environmental Health Sciences, National Health Research Institutes, Miaoli County, 35053, Taiwan
| | - Chia-Chi Wang
- Department and Graduate Institute of Veterinary Medicine, School of Veterinary Medicine, National Taiwan University, Taipei, 10617, Taiwan
| | - Chun-Wei Tung
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Miaoli County, 35053, Taiwan.
- Graduate Institute of Data Science, College of Management, Taipei Medical University, Taipei, 10675, Taiwan.
| |
Collapse
|
10
|
Xu Y, Han Y, Liu L, Han S, Zou S, Cheng B, Wang F, Xie X, Liang Y, Song M, Pang S. Highly sensitive response to the toxicity of environmental chemicals in transparent casper zebrafish. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 948:174865. [PMID: 39032757 DOI: 10.1016/j.scitotenv.2024.174865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 06/15/2024] [Accepted: 07/16/2024] [Indexed: 07/23/2024]
Abstract
The response sensitivity to toxic substances is the most concerned performance of animal model in chemical risk assessment. Casper (mitfaw2/w2;mpv17a9/a9), a transparent zebrafish mutant, is a useful in vivo model for toxicological assessment. However, the ability of casper to respond to the toxicity of exogenous chemicals is unknown. In this study, zebrafish embryos were exposed to five environmental chemicals, chlorpyrifos, lindane, α-endosulfan, bisphenol A, tetrabromobisphenol A (TBBPA), and an antiepileptic drug valproic acid. The half-lethal concentration (LC50) values of these chemicals in casper embryos were 62-87 % of that in the wild-type. After TBBPA exposure, the occurrence of developmental defects in the posterior blood island of casper embryos was increased by 67-77 % in relative to the wild-type, and the half-maximal effective concentration (EC50) in casper was 73 % of that in the wild-type. Moreover, the casper genetic background significantly increased the hyperlocomotion caused by chlorpyrifos and lindane exposure compared with the wild-type. These results demonstrated that casper had greater susceptibility to toxicity than wild-type zebrafish in acute toxicity, developmental toxicity and neurobehavioral toxicity assessments. Our data will inform future toxicological studies in casper and accelerate the development of efficient approaches and strategies for toxicity assessment via the use of casper.
Collapse
Affiliation(s)
- Yingjun Xu
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, School of Environment and Health, Jianghan University, Wuhan 430056, China; School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan 430205, China
| | - Yiming Han
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, School of Environment and Health, Jianghan University, Wuhan 430056, China
| | - Li Liu
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, School of Environment and Health, Jianghan University, Wuhan 430056, China; School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan 430205, China
| | - Shanshan Han
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, School of Environment and Health, Jianghan University, Wuhan 430056, China
| | - Shibiao Zou
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, School of Environment and Health, Jianghan University, Wuhan 430056, China
| | - Bo Cheng
- School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan 430205, China
| | - Fengbang Wang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Xunwei Xie
- China Zebrafish Resource Center, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Yong Liang
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, School of Environment and Health, Jianghan University, Wuhan 430056, China
| | - Maoyong Song
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, School of Environment and Health, Jianghan University, Wuhan 430056, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| | - Shaochen Pang
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, School of Environment and Health, Jianghan University, Wuhan 430056, China; School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan 430205, China.
| |
Collapse
|
11
|
Lundin BF, Knight GT, Fedorchak NJ, Krucki K, Iyer N, Maher JE, Izban NR, Roberts A, Cicero MR, Robinson JF, Iskandar BJ, Willett R, Ashton RS. RosetteArray ® Platform for Quantitative High-Throughput Screening of Human Neurodevelopmental Risk. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.01.587605. [PMID: 38798648 PMCID: PMC11118315 DOI: 10.1101/2024.04.01.587605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Neural organoids have revolutionized how human neurodevelopmental disorders (NDDs) are studied. Yet, their utility for screening complex NDD etiologies and in drug discovery is limited by a lack of scalable and quantifiable derivation formats. Here, we describe the RosetteArray® platform's ability to be used as an off-the-shelf, 96-well plate assay that standardizes incipient forebrain and spinal cord organoid morphogenesis as micropatterned, 3-D, singularly polarized neural rosette tissues (>9000 per plate). RosetteArrays are seeded from cryopreserved human pluripotent stem cells, cultured over 6-8 days, and immunostained images can be quantified using artificial intelligence-based software. We demonstrate the platform's suitability for screening developmental neurotoxicity and genetic and environmental factors known to cause neural tube defect risk. Given the presence of rosette morphogenesis perturbation in neural organoid models of NDDs and neurodegenerative disorders, the RosetteArray platform could enable quantitative high-throughput screening (qHTS) of human neurodevelopmental risk across regulatory and precision medicine applications.
Collapse
Affiliation(s)
- Brady F. Lundin
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI 53705, USA
- Medical Scientist Training Program, University of Wisconsin-Madison, School of Medicine and Public Health, Madison, WI, 53705 USA
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI 53715, USA
| | - Gavin T. Knight
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI 53715, USA
- Neurosetta LLC, 330 N. Orchard Street Rm 4140A, Madison, WI 53715 USA
| | | | - Kevin Krucki
- Neurosetta LLC, 330 N. Orchard Street Rm 4140A, Madison, WI 53715 USA
| | - Nisha Iyer
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI 53705, USA
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI 53715, USA
| | - Jack E. Maher
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI 53715, USA
| | - Nicholas R. Izban
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI 53715, USA
| | - Abilene Roberts
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI 53715, USA
| | - Madeline R. Cicero
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI 53715, USA
| | - Joshua F. Robinson
- Center of Reproductive Sciences, Department of Obstetrics, Gynecology and Reproductive Sciences, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Bermans J. Iskandar
- Department of Neurological Surgery, University of Wisconsin-Madison, School of Medicine and Public Health, Madison, WI 53705, USA
| | - Rebecca Willett
- Neurosetta LLC, 330 N. Orchard Street Rm 4140A, Madison, WI 53715 USA
- Departments of Statistics and Computer Science, University of Chicago, Chicago, IL 60637, USA
| | - Randolph S. Ashton
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI 53705, USA
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI 53715, USA
- Neurosetta LLC, 330 N. Orchard Street Rm 4140A, Madison, WI 53715 USA
| |
Collapse
|
12
|
Liu G, Li X, Guo Y, Zhang L, Liu H, Ai H. Ensemble multiclassification model for predicting developmental toxicity in zebrafish. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2024; 271:106936. [PMID: 38723470 DOI: 10.1016/j.aquatox.2024.106936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 04/29/2024] [Accepted: 05/01/2024] [Indexed: 05/21/2024]
Abstract
In recent years, with the rapid development of society, organic compounds have been released into aquatic environments in various forms, posing a significant threat to the survival of aquatic organisms. The assessment of developmental toxicity is an important part of environmental safety risk systems, helping to identify the potential impacts of organic compounds on the embryonic development of aquatic organisms and enabling early detection and warning of potential ecological risks. Additionally, binary classification models cannot accurately classify organic compounds. Therefore, it is crucial to construct a multiclassification model for predicting the developmental toxicity of organic compounds. In this study, binary and multiclassification models were developed based on the ToxCast™ Phase I chemical library and literature data. The random forest, support vector machine, extreme gradient boosting, adaptive gradient boosting, and C5.0 decision tree algorithms, as well as 8 types of molecular fingerprint were used to establish a multiclassification base model for predicting developmental toxicity through 5-fold cross-validation and external validation. Ultimately, a multiclassification ensemble model was derived through a voting method. The performance of the binary ensemble model, as measured by the balanced accuracy, was 0.918, while that of the multiclassification model was 0.819. The developmental toxicity voting ensemble model (DT-VEM) achieved accuracies of 0.804, 0.834, and 0.855. Furthermore, by utilizing the XGBoost machine learning algorithm to construct separate models for molecular descriptors and substructure molecular fingerprints, we identified several substructures and physical properties related to developmental toxicity. Our research contributes to a more detailed classification of developmental toxicity, providing a new and valuable tool for predicting the developmental toxicity effects of unknown compounds. This supplement addresses the limitations of previous tools, as it offers an enhanced ability to predict potential developmental toxicity in novel compounds.
Collapse
Affiliation(s)
- Gaohua Liu
- College of Life Science, Liaoning University, Shenyang, 110036, China
| | - Xinran Li
- College of Life Science, Liaoning University, Shenyang, 110036, China
| | - Yaxu Guo
- College of Life Science, Liaoning University, Shenyang, 110036, China
| | - Li Zhang
- College of Life Science, Liaoning University, Shenyang, 110036, China; China Research Center for Computer Simulating and Information Processing of Bio-macromolecules of Shenyang, China
| | - Hongsheng Liu
- College of Life Science, Liaoning University, Shenyang, 110036, China; China Research Center for Computer Simulating and Information Processing of Bio-macromolecules of Shenyang, China
| | - Haixin Ai
- College of Life Science, Liaoning University, Shenyang, 110036, China; China Research Center for Computer Simulating and Information Processing of Bio-macromolecules of Shenyang, China.
| |
Collapse
|
13
|
Yang D, Jian Z, Tang C, Chen Z, Zhou Z, Zheng L, Peng X. Zebrafish Congenital Heart Disease Models: Opportunities and Challenges. Int J Mol Sci 2024; 25:5943. [PMID: 38892128 PMCID: PMC11172925 DOI: 10.3390/ijms25115943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 05/18/2024] [Accepted: 05/23/2024] [Indexed: 06/21/2024] Open
Abstract
Congenital heart defects (CHDs) are common human birth defects. Genetic mutations potentially cause the exhibition of various pathological phenotypes associated with CHDs, occurring alone or as part of certain syndromes. Zebrafish, a model organism with a strong molecular conservation similar to humans, is commonly used in studies on cardiovascular diseases owing to its advantageous features, such as a similarity to human electrophysiology, transparent embryos and larvae for observation, and suitability for forward and reverse genetics technology, to create various economical and easily controlled zebrafish CHD models. In this review, we outline the pros and cons of zebrafish CHD models created by genetic mutations associated with single defects and syndromes and the underlying pathogenic mechanism of CHDs discovered in these models. The challenges of zebrafish CHD models generated through gene editing are also discussed, since the cardiac phenotypes resulting from a single-candidate pathological gene mutation in zebrafish might not mirror the corresponding human phenotypes. The comprehensive review of these zebrafish CHD models will facilitate the understanding of the pathogenic mechanisms of CHDs and offer new opportunities for their treatments and intervention strategies.
Collapse
|
14
|
Collins EMS, Hessel EVS, Hughes S. How neurobehavior and brain development in alternative whole-organism models can contribute to prediction of developmental neurotoxicity. Neurotoxicology 2024; 102:48-57. [PMID: 38552718 PMCID: PMC11139590 DOI: 10.1016/j.neuro.2024.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 03/01/2024] [Accepted: 03/23/2024] [Indexed: 04/12/2024]
Abstract
Developmental neurotoxicity (DNT) is not routinely evaluated in chemical risk assessment because current test paradigms for DNT require the use of mammalian models which are ethically controversial, expensive, and resource demanding. Consequently, efforts have focused on revolutionizing DNT testing through affordable novel alternative methods for risk assessment. The goal is to develop a DNT in vitro test battery amenable to high-throughput screening (HTS). Currently, the DNT in vitro test battery consists primarily of human cell-based assays because of their immediate relevance to human health. However, such cell-based assays alone are unable to capture the complexity of a developing nervous system. Whole organismal systems that qualify as 3 R (Replace, Reduce and Refine) models are urgently needed to complement cell-based DNT testing. These models can provide the necessary organismal context and be used to explore the impact of chemicals on brain function by linking molecular and/or cellular changes to behavioural readouts. The nematode Caenorhabditis elegans, the planarian Dugesia japonica, and embryos of the zebrafish Danio rerio are all suited to low-cost HTS and each has unique strengths for DNT testing. Here, we review the strengths and the complementarity of these organisms in a novel, integrative context and highlight how they can augment current cell-based assays for more comprehensive and robust DNT screening of chemicals. Considering the limitations of all in vitro test systems, we discuss how a smart combinatory use of these systems will contribute to a better human relevant risk assessment of chemicals that considers the complexity of the developing brain.
Collapse
Affiliation(s)
- Eva-Maria S Collins
- Swarthmore College, Biology, 500 College Avenue, Swarthmore, PA 19081, USA; Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Center of Excellence in Environmental Toxicology, University of Pennsylvania, Philadelphia, PA, USA.
| | - Ellen V S Hessel
- Centre for Health Protection, National Institute for Public Health and the Environment (RIVM), Antonie van Leeuwenhoeklaan 9, Bilthoven, 3721 MA, the Netherlands
| | - Samantha Hughes
- Department of Environmental Health and Toxicology, A-LIFE, Vrije Universiteit Amsterdam, de Boelelaan 1085, Amsterdam, 1081 HV, the Netherlands.
| |
Collapse
|
15
|
Liu X, Song J, Yan X, Li P, Zhang J, Wang B, Si J, Chen Y. N-nitrosodimethylamine exposure to zebrafish embryos/larvae causes cardiac and spinal developmental toxicity. Comp Biochem Physiol C Toxicol Pharmacol 2024; 277:109823. [PMID: 38158031 DOI: 10.1016/j.cbpc.2023.109823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 11/27/2023] [Accepted: 12/21/2023] [Indexed: 01/03/2024]
Abstract
N-nitrosodimethylamine (NDMA), one of the new nitrogen-containing disinfection by-products, is potentially cytotoxic, genotoxic, and carcinogenic. Its potential toxicological effects have attracted a wide range of attention, but the mechanism is still not sufficiently understood. To better understand the toxicological mechanisms of NDMA, zebrafish embryos were exposed to NDMA from 3 h post-fertilization (hpf) to 120hpf. Mortality and malformation were significantly increased, and hatching rate, heart rate, and swimming behavior were decreased in the exposure groups. The result indicated that NDMA exposure causes cardiac and spinal developmental toxicity. mRNA levels of genes involved in the apoptotic pathway, including p53, bax, and bcl-2 were significantly affected by NDMA exposure. Moreover, the genes associated with spinal and cardiac development (myh6, myh7, nkx2.5, eph, bmp2b, bmp4, bmp9, run2a, and run2b) were significantly downregulated after treatment with NDMA. Wnt and TGF-β signaling pathways, crucial for the development of diverse tissues and organs in the embryo and the establishment of the larval spine, were also significantly disturbed by NDMA treatment. In summary, the disinfection by-product, NDMA, exhibits spinal and cardiac developmental toxicity in zebrafish embryos, providing helpful information for comprehensive analyses and a better understanding the mechanism of its toxicity.
Collapse
Affiliation(s)
- Xiaoyi Liu
- College of Life Science, Lanzhou University, Lanzhou, China. https://twitter.com/@LanoLiu41230
| | - Jinge Song
- School of Stomatology, Lanzhou University, Lanzhou, China
| | - Xiaotao Yan
- Lanzhou Urban Water Supply (Group) Co., Ltd, Lanzhou, China
| | - Pingping Li
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Jinhua Zhang
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Bin Wang
- Lanzhou Urban Water Supply (Group) Co., Ltd, Lanzhou, China
| | - Jing Si
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China.
| | - Yong Chen
- College of Life Science, Lanzhou University, Lanzhou, China.
| |
Collapse
|
16
|
Cao C, Wang H, Yang JR, Chen Q, Guo YM, Chen JZ. MCPNET: Development of an interpretable deep learning model based on multiple conformations of the compound for predicting developmental toxicity. Comput Biol Med 2024; 171:108037. [PMID: 38377716 DOI: 10.1016/j.compbiomed.2024.108037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 12/21/2023] [Accepted: 01/26/2024] [Indexed: 02/22/2024]
Abstract
The development of deep learning models for predicting toxicological endpoints has shown great promise, but one of the challenges in the field is the accuracy and interpretability of these models. The bioactive conformation of a compound plays a critical role for it to bind in the target. It is a big issue to figure out the bioactive conformation in deep learning without the co-crystal structure or highly precise molecular simulations. In this study, we developed a deep learning framework of Multi-Conformation Point Network (MCPNET) to construct classification and regression models, respectively, based on electrostatic potential distributions on vdW surfaces around multiple conformations of the compound using a dataset of compounds with developmental toxicity in zebrafish embryo. MCPNET applied 3D multi-conformational surface point cloud to extract the molecular features for model training, which may be critical for capturing the structural diversity of compounds. The models achieved an accuracy of 85 % on the classification task and R2 of 0.66 on the regression task, outperforming traditional machine learning models and other deep learning models. The key feature of our model is its interpretability with the component visualization to identify the factors contributing to the prediction and to understand the compound action mechanism. MCPNET may predict the conformation quietly close to the bioactive conformation of a compound by attention-based multi-conformation pooling mechanism. Our results demonstrated the potential of deep learning based on 3D molecular representations in accurately predicting developmental toxicity. The source code is publicly available at https://github.com/Superlit-CC/MCPNET.
Collapse
Affiliation(s)
- Cheng Cao
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Rd., Hangzhou, Zhejiang, 310058, China; Polytechnic Institute, Zhejiang University, 269 Shixiang Rd, Hangzhou, Zhejiang, 310015, China
| | - Hao Wang
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Rd., Hangzhou, Zhejiang, 310058, China
| | - Jin-Rong Yang
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Rd., Hangzhou, Zhejiang, 310058, China; Polytechnic Institute, Zhejiang University, 269 Shixiang Rd, Hangzhou, Zhejiang, 310015, China
| | - Qiang Chen
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Rd., Hangzhou, Zhejiang, 310058, China
| | - Ya-Min Guo
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Rd., Hangzhou, Zhejiang, 310058, China
| | - Jian-Zhong Chen
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Rd., Hangzhou, Zhejiang, 310058, China.
| |
Collapse
|
17
|
Zhao W, Chen Y, Hu N, Long D, Cao Y. The uses of zebrafish (Danio rerio) as an in vivo model for toxicological studies: A review based on bibliometrics. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 272:116023. [PMID: 38290311 DOI: 10.1016/j.ecoenv.2024.116023] [Citation(s) in RCA: 30] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 01/20/2024] [Accepted: 01/24/2024] [Indexed: 02/01/2024]
Abstract
An in vivo model is necessary for toxicology. This review analyzed the uses of zebrafish (Danio rerio) in toxicology based on bibliometrics. Totally 56,816 publications about zebrafish from 2002 to 2023 were found in Web of Science Core Collection, with Toxicology as the top 6 among all disciplines. Accordingly, the bibliometric map reveals that "toxicity" has become a hot keyword. It further reveals that the most common exposure types include acute, chronic, and combined exposure. The toxicological effects include behavioral, intestinal, cardiovascular, hepatic, endocrine toxicity, neurotoxicity, immunotoxicity, genotoxicity, and reproductive and transgenerational toxicity. The mechanisms include oxidative stress, inflammation, autophagy, and dysbiosis of gut microbiota. The toxicants commonly evaluated by using zebrafish model include nanomaterials, arsenic, metals, bisphenol, and dioxin. Overall, zebrafish provide a unique and well-accepted model to investigate the toxicological effects and mechanisms. We also discussed the possible ways to address some of the limitations of zebrafish model, such as the combination of human organoids to avoid species differences.
Collapse
Affiliation(s)
- Weichao Zhao
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, Hengyang Medical School, University of South China, Hengyang 421001, PR China
| | - Yuna Chen
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, Hengyang Medical School, University of South China, Hengyang 421001, PR China
| | - Nan Hu
- Key Discipline Laboratory for National Defense for Biotechnology in Uranium Mining and Hydrometallurgy, University of South China, Hengyang 421001, PR China.
| | - Dingxin Long
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, Hengyang Medical School, University of South China, Hengyang 421001, PR China.
| | - Yi Cao
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, Hengyang Medical School, University of South China, Hengyang 421001, PR China.
| |
Collapse
|
18
|
Hamm JT, Hsieh JH, Roberts GK, Collins B, Gorospe J, Sparrow B, Walker NJ, Truong L, Tanguay RL, Dyballa S, Miñana R, Schiavone V, Terriente J, Weiner A, Muriana A, Quevedo C, Ryan KR. Interlaboratory Study on Zebrafish in Toxicology: Systematic Evaluation of the Application of Zebrafish in Toxicology's (SEAZIT's) Evaluation of Developmental Toxicity. TOXICS 2024; 12:93. [PMID: 38276729 PMCID: PMC10820928 DOI: 10.3390/toxics12010093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 01/04/2024] [Accepted: 01/16/2024] [Indexed: 01/27/2024]
Abstract
Embryonic zebrafish represent a useful test system to screen substances for their ability to perturb development. The exposure scenarios, endpoints captured, and data analysis vary among the laboratories who conduct screening. A lack of harmonization impedes the comparison of the substance potency and toxicity outcomes across laboratories and may hinder the broader adoption of this model for regulatory use. The Systematic Evaluation of the Application of Zebrafish in Toxicology (SEAZIT) initiative was developed to investigate the sources of variability in toxicity testing. This initiative involved an interlaboratory study to determine whether experimental parameters altered the developmental toxicity of a set of 42 substances (3 tested in duplicate) in three diverse laboratories. An initial dose-range-finding study using in-house protocols was followed by a definitive study using four experimental conditions: chorion-on and chorion-off using both static and static renewal exposures. We observed reasonable agreement across the three laboratories as 33 of 42 test substances (78.6%) had the same activity call. However, the differences in potency seen using variable in-house protocols emphasizes the importance of harmonization of the exposure variables under evaluation in the second phase of this study. The outcome of the Def will facilitate future practical discussions on harmonization within the zebrafish research community.
Collapse
Affiliation(s)
- Jon T. Hamm
- Inotiv, P.O. Box 13501, Research Triangle Park, NC 27709, USA
| | - Jui-Hua Hsieh
- Division of Translational Toxicology, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA
| | - Georgia K. Roberts
- Division of Translational Toxicology, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA
| | - Bradley Collins
- Division of Translational Toxicology, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA
| | - Jenni Gorospe
- Battelle Memorial Institute, Columbus, OH 43201, USA
| | | | - Nigel J. Walker
- Division of Translational Toxicology, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA
| | - Lisa Truong
- Department of Environmental and Molecular Toxicology, The Sinnhuber Aquatic Research Laboratory, The Environmental Health Sciences Center, Oregon State University, Corvallis, OR 97331, USA
| | - Robyn L. Tanguay
- Department of Environmental and Molecular Toxicology, The Sinnhuber Aquatic Research Laboratory, The Environmental Health Sciences Center, Oregon State University, Corvallis, OR 97331, USA
| | | | - Rafael Miñana
- ZeClinics SL., 08980 Barcelona, Spain
- CTI Laboratory Services Spain SL., 48160 Bilbao, Spain
| | | | | | - Andrea Weiner
- BBD BioPhenix SL. (Biobide), 20009 San Sebastian, Spain
| | | | - Celia Quevedo
- BBD BioPhenix SL. (Biobide), 20009 San Sebastian, Spain
| | - Kristen R. Ryan
- Division of Translational Toxicology, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA
| |
Collapse
|
19
|
Weiner AMJ, Irijalba I, Gallego MP, Ibarburu I, Sainz L, Goñi-de-Cerio F, Quevedo C, Muriana A. Validation of a zebrafish developmental defects assay as a qualified alternative test for its regulatory use following the ICH S5(R3) guideline. Reprod Toxicol 2024; 123:108513. [PMID: 38016617 DOI: 10.1016/j.reprotox.2023.108513] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 11/08/2023] [Accepted: 11/18/2023] [Indexed: 11/30/2023]
Abstract
Zebrafish is a popular toxicology model and provides an ethically acceptable small-scale analysis system with the complexity of a complete organism. Our goal is to further validate this model for its regulatory use for reproductive and developmental defects by testing the compounds indicated in the "Guideline on detection of reproductive and developmental toxicity for human pharmaceuticals" (ICH S5(R3) guideline.) To determine the embryotoxic and developmental risk of the 32 reference compounds listed in the ICH S5(R3) guideline, the presence of morphological alterations in zebrafish embryos was analyzed at two different stages to calculateLC50 and EC50 values for each stage. Teratogenic Indexes were established as the ratio between LC50 and EC50 critical for the proper compound classification as teratogenic when it is ≥ 2. A total of three biological replicates have been conducted to study the reproducibility of the assay. The chemicals' concentration in the medium and internally in the zebrafish embryos was evaluated. In this study, the 3 negative compounds were properly categorized while 23 compounds out of the 29 reference ones (sensitivity of 79.31%) were classified as teratogenic in zebrafish. The 6 that had false-negative results were classified 4 as inconclusive, 1 as not toxic, and 1 compound resulted toxic for zebrafish embryos under testing conditions. After the bioavailability experiments, some of the obtained inconclusive results were refined. The developmental defects assay in zebrafish gives an accuracy of 89.66%, sensitivity of 88.46%, specificity and repeatability of 100% compared to mammals; therefore, this is a well-integrated strategy using New Alternative Methods, to minimize the use of animals in developmental toxicity studies.
Collapse
Affiliation(s)
- A M J Weiner
- BBD BioPhenix SLU (BIOBIDE), San Sebastian, Spain.
| | - I Irijalba
- BBD BioPhenix SLU (BIOBIDE), San Sebastian, Spain
| | - M P Gallego
- BBD BioPhenix SLU (BIOBIDE), San Sebastian, Spain
| | - I Ibarburu
- BBD BioPhenix SLU (BIOBIDE), San Sebastian, Spain
| | - L Sainz
- GAIKER Technology Centre, Basque Research and Technology Alliance (BRTA), Zamudio, Spain
| | - F Goñi-de-Cerio
- GAIKER Technology Centre, Basque Research and Technology Alliance (BRTA), Zamudio, Spain
| | - C Quevedo
- BBD BioPhenix SLU (BIOBIDE), San Sebastian, Spain
| | - A Muriana
- BBD BioPhenix SLU (BIOBIDE), San Sebastian, Spain.
| |
Collapse
|
20
|
Settivari RS, Martini A, Wijeyesakere S, Toltin A, LeBaron MJ. Application of Evolving New Approach Methodologies for Chemical Safety Assessment. A COMPREHENSIVE GUIDE TO TOXICOLOGY IN NONCLINICAL DRUG DEVELOPMENT 2024:977-1015. [DOI: 10.1016/b978-0-323-85704-8.00026-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
21
|
Victoria S, Trine L, Hystad P, Roper C. Indoor and Personal PM 2.5 Samples Differ in Chemical Composition and Alter Zebrafish Behavior Based on Primary Fuel Source. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:21260-21271. [PMID: 38060427 DOI: 10.1021/acs.est.3c03585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2023]
Abstract
Fine particulate matter (PM2.5) exposure has been linked to diverse human health impacts. Little is known about the potential heterogeneous impacts of PM2.5 generated from different indoor fuel sources and how exposure differs between personal and indoor environments. Therefore, we used PM2.5 collected by one stationary sampler in a kitchen and personal samplers (female and male participants), in homes (n = 24) in Kheri, India, that used either biomass or liquified petroleum gas (LPG) as primary fuel sources. PM2.5 samples (pooled by fuel type and monitor placement) were analyzed for oxidative potential and chemical composition, including elements and 125 organic compounds. Zebrafish (Danio rerio) embryos were acutely exposed to varying concentrations of PM2.5 and behavioral analyses were conducted. We found relatively high PM2.5 concentrations (5-15 times above World Health Organization daily exposure guidelines) and varied human health-related chemical composition based on fuel type and monitor placement (up to 15% carcinogenic polycyclic aromatic hydrocarbon composition). Altered biological responses, including changes to mortality, morphology, and behavior, were elicited by exposure to all sample types. These findings reveal that although LPG is generally ranked the least harmful compared to biomass fuels, chemical characteristics and biological impacts were still present, highlighting the need for further research in determining the safety of indoor fuel sources.
Collapse
Affiliation(s)
- Shayla Victoria
- Department of BioMolecular Sciences, University of Mississippi, University, Mississippi 38677, United States
| | - Lisandra Trine
- Department of Chemistry, Oregon State University, Corvallis, Oregon 97331, United States
| | - Perry Hystad
- College of Public Health and Human Sciences, Oregon State University, Corvallis, Oregon 97331, United States
| | - Courtney Roper
- Department of BioMolecular Sciences, University of Mississippi, University, Mississippi 38677, United States
| |
Collapse
|
22
|
Wang L, Jiang J, Lu J, Long T, Guo Y, Dong S, Wu H. The Developmental Toxicity and Endocrine-Disrupting Effects of Fenpropathrin on Gobiocypris rarus during the Early Life Stage. TOXICS 2023; 11:1003. [PMID: 38133404 PMCID: PMC10747009 DOI: 10.3390/toxics11121003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/04/2023] [Accepted: 12/06/2023] [Indexed: 12/23/2023]
Abstract
In the present study, the developmental toxicity and endocrine-disrupting effects of fenpropathrin on Gobiocypris rarus during the early life stage were studied using a semi-static water exposure method. The results showed that the LOEC (lowest observed effect concentration) of fenpropathrin on the incubation of rare minnow embryos was above 2.5 μg·L-1. The LOEC and NOEC (no observed effect concentration) of fenpropathrin on the developmental malformations and death indicators were 2.0 and 1.5 μg·L-1, respectively. After exposure to 1.5 μg·L-1 of fenpropathrin for 31 days, the expressions of androgen receptor genes (AR) and sex hormone-synthesis-related genes (CYP17 and CYP19a) were significantly decreased and the expressions of thyroid hormone receptor genes (TRβ) and aryl hydrocarbon receptor genes (AhR1a and AhR2) were significantly increased in juvenile Gobiocypris rarus. The expression levels of the androgen receptor gene (AR), estrogen receptor gene (ER1), and the sex hormone-synthesis-related genes (HMGR, CYP17, and CYP19a) were significantly decreased, while the estrogen receptor gene (ER2a), thyroid hormone receptor gene (TRβ), and aromatic hydrocarbon receptor genes (AhR1a and AhR2) were upregulated in juvenile Gobiocypris rarus under exposure to 2.0 μg·L-1 of fenpropathrin. Relatively low concentrations of fenpropathrin can affect the expression of sex hormone receptor genes, genes related to sex hormone synthesis, thyroid hormone receptor genes, and aromatic hydrocarbon receptor genes, thus interfering with the reproductive system, thyroid system, and metabolic level in Gobiocypris rarus. Therefore, more attention should be paid to the endocrine-disrupting effect caused by the pyrethroid insecticides in the water environment. Furthermore, studies on the internal mechanism of the endocrine-disrupting effect of pyrethroid insecticides on fish is needed in the future.
Collapse
Affiliation(s)
- Lei Wang
- Key Laboratory of Soil Environmental Management and Pollution Control, Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China
- College of Agricultural Science and Engineering, Hohai University, Nanjing 210098, China
| | - Jinlin Jiang
- Key Laboratory of Soil Environmental Management and Pollution Control, Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China
| | - Jianwei Lu
- Key Laboratory of Soil Environmental Management and Pollution Control, Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China
| | - Tao Long
- Key Laboratory of Soil Environmental Management and Pollution Control, Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China
| | - Yang Guo
- Key Laboratory of Soil Environmental Management and Pollution Control, Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China
| | - Shunan Dong
- College of Agricultural Science and Engineering, Hohai University, Nanjing 210098, China
| | - Huiyi Wu
- Key Laboratory of Soil Environmental Management and Pollution Control, Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China
- College of Agricultural Science and Engineering, Hohai University, Nanjing 210098, China
| |
Collapse
|
23
|
Hsieh JH, Nolte S, Hamm JT, Wang Z, Roberts GK, Schmitt CP, Ryan KR. Systematic Evaluation of the Application of Zebrafish in Toxicology (SEAZIT): Developing a Data Analysis Pipeline for the Assessment of Developmental Toxicity with an Interlaboratory Study. TOXICS 2023; 11:toxics11050407. [PMID: 37235222 DOI: 10.3390/toxics11050407] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 04/09/2023] [Accepted: 04/11/2023] [Indexed: 05/28/2023]
Abstract
The embryonic zebrafish is a useful vertebrate model for assessing the effects of substances on growth and development. However, cross-laboratory developmental toxicity outcomes can vary and reported developmental defects in zebrafish may not be directly comparable between laboratories. To address these limitations for gaining broader adoption of the zebrafish model for toxicological screening, we established the Systematic Evaluation of the Application of Zebrafish in Toxicology (SEAZIT) program to investigate how experimental protocol differences can influence chemical-mediated effects on developmental toxicity (i.e., mortality and the incidence of altered phenotypes). As part of SEAZIT, three laboratories were provided a common and blinded dataset (42 substances) to evaluate substance-mediated effects on developmental toxicity in the embryonic zebrafish model. To facilitate cross-laboratory comparisons, all the raw experimental data were collected, stored in a relational database, and analyzed with a uniform data analysis pipeline. Due to variances in laboratory-specific terminology for altered phenotypes, we utilized ontology terms available from the Ontology Lookup Service (OLS) for Zebrafish Phenotype to enable additional cross-laboratory comparisons. In this manuscript, we utilized data from the first phase of screening (dose range finding, DRF) to highlight the methodology associated with the development of the database and data analysis pipeline, as well as zebrafish phenotype ontology mapping.
Collapse
Affiliation(s)
- Jui-Hua Hsieh
- Division of Translational Toxicology, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA
| | - Sue Nolte
- Office of Data Science, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA
| | | | - Zicong Wang
- Division of Translational Toxicology, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA
| | - Georgia K Roberts
- Division of Translational Toxicology, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA
| | - Charles P Schmitt
- Office of Data Science, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA
| | - Kristen R Ryan
- Division of Translational Toxicology, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA
| |
Collapse
|
24
|
Xu S, Chen F, Zhang H, Huang ZL, Li J, Wu D, Chen X. Development a high-throughput zebrafish embryo acute toxicity testing method based on OECD TG 236. Toxicol Mech Methods 2023; 33:104-112. [PMID: 35799369 DOI: 10.1080/15376516.2022.2099772] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The Organization for Economic Co-operation and Development (OECD)Test Guideline (TG) 236 for zebrafish embryo acute toxicity testing was adopted for chemical toxicity assessment in 2013. Due to the increasing demand for prediction and evaluation of the acute toxicity using zebrafish embryos, we developed a method based on OECD 236 test guideline with the aim to improve the testing efficiency. We used 4-128 cell stage zebrafish embryos and performed an exposure assay in a 96-well microtiter plate, observing the lethality endpoints of embryos at 48-h postexposure. A total of 32 chemicals (two batches) were used in the comparison study. Our results indicated that the logarithmic LC50 (half lethal concentration) obtained by the modified method exhibited good correlation with that obtained by the OECD 236 testing method, and the R2 of the linear regression analysis was 0.9717 (0.9621 and 0.9936 for the two batches, respectively). Additionally, the intra- and inter-laboratory coefficient of variation (CVs) for the LC50 from the testing chemicals (17 chemicals in second batch) was less than 30%, except for CuSO4. Therefore, the developed method was less time-consuming and demonstrated a higher throughput for toxicity testing compared to the prior method. We argue the developed method could be used as an additional choice for high-throughput zebrafish embryo acute toxicity test.
Collapse
Affiliation(s)
- Shisan Xu
- School of Life Sciences, Guangxi Normal University, Guilin, China.,Guangxi Universities Key Laboratory of Stem cell and Biopharmaceutical Technology, Guangxi Normal University, Guilin, China
| | - Fengyan Chen
- School of Life Sciences, Guangxi Normal University, Guilin, China.,Guangxi Universities Key Laboratory of Stem cell and Biopharmaceutical Technology, Guangxi Normal University, Guilin, China
| | - Huan Zhang
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong SAR, PRC
| | - Zhen-Lie Huang
- NMPA Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Toxicology, School of Public Health, Southern Medical University, Guangzhou, China
| | - Jianjun Li
- Guangdong Laboratory Animals Monitoring Institute, Guangdong Provincial Key Laboratory of Laboratory Animals, Guangzhou, China
| | - Desheng Wu
- Shenzhen Key Laboratory of Modern Toxicology, Shenzhen Medical Key Discipline of Health Toxicology (2020-2024), Shenzhen Center for Disease Control and Prevention, China
| | - Xueping Chen
- Vitargent (International) Biotechnology Limited, Shatin, Hong Kong SAR, China.,Centre for Biotech Big Data Research and Development, Research Institute of Tsinghua, Pearl River Delta, China
| |
Collapse
|
25
|
Patlewicz G, Richard AM, Williams AJ, Judson RS, Thomas RS. Towards reproducible structure-based chemical categories for PFAS to inform and evaluate toxicity and toxicokinetic testing. COMPUTATIONAL TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2022; 24:10.1016/j.comtox.2022.100250. [PMID: 36969381 PMCID: PMC10031514 DOI: 10.1016/j.comtox.2022.100250] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Per- and Polyfluoroalkyl substances (PFAS) are a class of synthetic chemicals that are in widespread use and present concerns for persistence, bioaccumulation and toxicity. Whilst a handful of PFAS have been characterised for their hazard profiles, the vast majority of PFAS have not been studied. The US Environmental Protection Agency (EPA) undertook a research project to screen ~150 PFAS through an array of different in vitro high throughput toxicity and toxicokinetic tests in order to inform chemical category and read-across approaches. A previous publication described the rationale behind the selection of an initial set of 75 PFAS, whereas herein, we describe how various category approaches were applied and extended to inform the selection of a second set of 75 PFAS from our library of approximately 430 commercially procured PFAS. In particular, we focus on the challenges in grouping PFAS for prospective analysis and how we have sought to develop and apply objective structure-based categories to profile the testing library and other PFAS inventories. We additionally illustrate how these categories can be enriched with other information to facilitate read-across inferences once experimental data become available. The availability of flexible, objective, reproducible and chemically intuitive categories to explore PFAS constitutes an important step forward in prioritising PFAS for further testing and assessment.
Collapse
Affiliation(s)
- Grace Patlewicz
- Center for Computational Toxicology and Exposure (CCTE), Office of Research and Development, US Environmental Protection Agency, 109 TW Alexander Dr, Research Triangle Park, NC 27711, USA
| | - Ann M. Richard
- Center for Computational Toxicology and Exposure (CCTE), Office of Research and Development, US Environmental Protection Agency, 109 TW Alexander Dr, Research Triangle Park, NC 27711, USA
| | - Antony J. Williams
- Center for Computational Toxicology and Exposure (CCTE), Office of Research and Development, US Environmental Protection Agency, 109 TW Alexander Dr, Research Triangle Park, NC 27711, USA
| | - Richard S. Judson
- Center for Computational Toxicology and Exposure (CCTE), Office of Research and Development, US Environmental Protection Agency, 109 TW Alexander Dr, Research Triangle Park, NC 27711, USA
| | - Russell S. Thomas
- Center for Computational Toxicology and Exposure (CCTE), Office of Research and Development, US Environmental Protection Agency, 109 TW Alexander Dr, Research Triangle Park, NC 27711, USA
| |
Collapse
|
26
|
Luijten M, Sprong RC, Rorije E, van der Ven LTM. Prioritization of chemicals in food for risk assessment by integrating exposure estimates and new approach methodologies: A next generation risk assessment case study. FRONTIERS IN TOXICOLOGY 2022; 4:933197. [PMID: 36199824 PMCID: PMC9527283 DOI: 10.3389/ftox.2022.933197] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 08/02/2022] [Indexed: 11/15/2022] Open
Abstract
Next generation risk assessment is defined as a knowledge-driven system that allows for cost-efficient assessment of human health risk related to chemical exposure, without animal experimentation. One of the key features of next generation risk assessment is to facilitate prioritization of chemical substances that need a more extensive toxicological evaluation, in order to address the need to assess an increasing number of substances. In this case study focusing on chemicals in food, we explored how exposure data combined with the Threshold of Toxicological Concern (TTC) concept could be used to prioritize chemicals, both for existing substances and new substances entering the market. Using a database of existing chemicals relevant for dietary exposure we calculated exposure estimates, followed by application of the TTC concept to identify substances of higher concern. Subsequently, a selected set of these priority substances was screened for toxicological potential using high-throughput screening (HTS) approaches. Remarkably, this approach resulted in alerts for a selection of substances that are already on the market and represent relevant exposure in consumers. Taken together, the case study provides proof-of-principle for the approach taken to identify substances of concern, and this approach can therefore be considered a supportive element to a next generation risk assessment strategy.
Collapse
Affiliation(s)
- Mirjam Luijten
- Centre for Health Protection, Bilthoven, Netherlands
- *Correspondence: Mirjam Luijten,
| | - R. Corinne Sprong
- Centre for Nutrition, Prevention and Health Services, Bilthoven, Netherlands
| | - Emiel Rorije
- Centre for Safety of Substances and Products, National Institute for Public Health and the Environment (RIVM), Bilthoven, Netherlands
| | | |
Collapse
|
27
|
El-Masri H, Paul Friedman K, Isaacs K, Wetmore BA. Advances in computational methods along the exposure to toxicological response paradigm. Toxicol Appl Pharmacol 2022; 450:116141. [PMID: 35777528 PMCID: PMC9619339 DOI: 10.1016/j.taap.2022.116141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 05/27/2022] [Accepted: 06/23/2022] [Indexed: 10/17/2022]
Abstract
Human health risk assessment is a function of chemical toxicity, bioavailability to reach target biological tissues, and potential environmental exposure. These factors are complicated by many physiological, biochemical, physical and lifestyle factors. Furthermore, chemical health risk assessment is challenging in view of the large, and continually increasing, number of chemicals found in the environment. These challenges highlight the need to prioritize resources for the efficient and timely assessment of those environmental chemicals that pose greatest health risks. Computational methods, either predictive or investigative, are designed to assist in this prioritization in view of the lack of cost prohibitive in vivo experimental data. Computational methods provide specific and focused toxicity information using in vitro high throughput screening (HTS) assays. Information from the HTS assays can be converted to in vivo estimates of chemical levels in blood or target tissue, which in turn are converted to in vivo dose estimates that can be compared to exposure levels of the screened chemicals. This manuscript provides a review for the landscape of computational methods developed and used at the U.S. Environmental Protection Agency (EPA) highlighting their potentials and challenges.
Collapse
Affiliation(s)
- Hisham El-Masri
- Center for Computational Toxicology and Exposure, Office of Research and Development, U. S. Environmental Protection Agency, Research Triangle Park, NC, USA.
| | - Katie Paul Friedman
- Center for Computational Toxicology and Exposure, Office of Research and Development, U. S. Environmental Protection Agency, Research Triangle Park, NC, USA
| | - Kristin Isaacs
- Center for Computational Toxicology and Exposure, Office of Research and Development, U. S. Environmental Protection Agency, Research Triangle Park, NC, USA
| | - Barbara A Wetmore
- Center for Computational Toxicology and Exposure, Office of Research and Development, U. S. Environmental Protection Agency, Research Triangle Park, NC, USA
| |
Collapse
|
28
|
Aquatic Freshwater Vertebrate Models of Epilepsy Pathology: Past Discoveries and Future Directions for Therapeutic Discovery. Int J Mol Sci 2022; 23:ijms23158608. [PMID: 35955745 PMCID: PMC9368815 DOI: 10.3390/ijms23158608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 07/29/2022] [Accepted: 07/30/2022] [Indexed: 12/04/2022] Open
Abstract
Epilepsy is an international public health concern that greatly affects patients’ health and lifestyle. About 30% of patients do not respond to available therapies, making new research models important for further drug discovery. Aquatic vertebrates present a promising avenue for improved seizure drug screening and discovery. Zebrafish (Danio rerio) and African clawed frogs (Xenopus laevis and tropicalis) are increasing in popularity for seizure research due to their cost-effective housing and rearing, similar genome to humans, ease of genetic manipulation, and simplicity of drug dosing. These organisms have demonstrated utility in a variety of seizure-induction models including chemical and genetic methods. Past studies with these methods have produced promising data and generated questions for further applications of these models to promote discovery of drug-resistant seizure pathology and lead to effective treatments for these patients.
Collapse
|
29
|
Fan S, Yang Y, Sun L, Yu B, Dai C, Qu Y. Different toxicity to liver and gill of zebrafish by selenium nanoparticles derived from bio/chemical methods. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:61512-61521. [PMID: 35445301 DOI: 10.1007/s11356-022-20295-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 04/12/2022] [Indexed: 06/14/2023]
Abstract
With the wide application of selenium nanoparticles (SeNPs) in pharmaceutical fields, the toxicity assessment is of great significance. In this study, zebrafish were selected as model organisms to compare the toxicity of SeNPs derived from biological and chemical methods. The results showed that the size of bio-SeNPs was about 5-fold bigger than chem-SeNPs. When exposed to SeNPs for 96 h, LC50 of bio-SeNPs and chem-SeNPs was 1.668 mg/L and 0.699 mg/L, respectively. Compared with the control, the results showed a significant increase in oxidative toxicity index (P < 0.05), such as glutathione (GSH), superoxide dismutase (SOD) of the liver, and gill in SeNPs-treated group. The neurotoxicity index, such as acetylcholinesterase (AchE) and Na+-K+-ATP enzyme activity, was significantly decreased both in the liver and gill (P < 0.05). It was found that the toxicity of bio-SeNPs to the liver and gill of zebrafish was lower than chem-SeNPs and the toxicity to the liver was higher than gill. In this study, the toxicity of chem-SeNPs and bio-SeNPs to the target organs of zebrafish were systematically evaluated, which provided the basis for the safe application of SeNPs synthesized by different pathways.
Collapse
Affiliation(s)
- Shuling Fan
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China
| | - Ying Yang
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China
| | - Lu Sun
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China
| | - Bin Yu
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China
| | - Chunxiao Dai
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China
| | - Yuanyuan Qu
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China.
| |
Collapse
|
30
|
Kämmer N, Erdinger L, Braunbeck T. The onset of active gill respiration in post-embryonic zebrafish (Danio rerio) larvae triggers an increased sensitivity to neurotoxic compounds. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2022; 249:106240. [PMID: 35863251 DOI: 10.1016/j.aquatox.2022.106240] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 07/10/2022] [Accepted: 07/11/2022] [Indexed: 06/15/2023]
Abstract
Originally designed as a general alternative to acute fish toxicity testing (AFT), the fish embryo toxicity test (FET) has become subject to concerns with respect to neurotoxic substances. Whereas oxygen uptake in the fish embryo primarily occurs via diffusion across the skin, juvenile and adult fish rely on active ventilation of the gills. As a consequence, substances including, e.g., neurotoxicants which prevent appropriate ventilation of gills ("respiratory failure syndrome") might lead to suffocation in juvenile and adult fish, but not in skin-breathing embryos. To investigate if this respiratory failure syndrome might play a role for the higher sensitivity of juvenile and adult fish to neurotoxicants, a modified acute toxicity test using post-embryonic, early gill-breathing life-stages of zebrafish was developed with chlorpyrifos, permethrin, lindane, aldicarb, ziram and aniline as test substances. Additionally, a comparative study into bioaccumulation of lipophilic substances with logKow > 3.5 and swimbladder deflation as potential side effects of the respiratory failure syndrome was performed with 4 d old skin-breathing and 12 d old gill-breathing zebrafish. With respect to acute toxicity, post-embryonic 12 d larvae proved to be more sensitive than both embryos (FET) and adult zebrafish (AFT) to all test substances except for permethrin. Accumulation of chlorpyrifos, lindane and permethrin was 1.3- to 5-fold higher in 4 d old than in 12 d old zebrafish, suggesting that (intermediate) storage of substances in the yolk might reduce bioavailability and prevent metabolization, which could be a further reason for lower toxicity in 4 d than in 12 d old zebrafish. Whereas ziram and aniline showed no significant effect on the swimbladder, zebrafish exposed to chlorpyrifos, lindane and permethrin showed significantly deflated swimbladders in 12 d old larvae; in the case of aldicarb, there was a significant hyperinflation in 4 d old larvae. Swimbladder deflation in post-embryonic 12 d zebrafish larvae might be hypothesized as a reason for a lack of internal oxygen supplies during the respiratory failure syndrome, whereas in 4 d old embryos cholinergic hyperinflation of the swimbladder dominates over other effects. Regarding acute lethality, the study provides further evidence that the switch from transcutaneous to branchial respiration in post-embryonic zebrafish life-stages might be the reason for the higher sensitivity of juvenile and adult fish to neurotoxic substances.
Collapse
Affiliation(s)
- Nadine Kämmer
- Aquatic Ecology and Toxicology Section, Centre for Organismal Studies, University of Heidelberg, Im Neuenheimer Feld 504, Heidelberg D-69210, Germany.
| | - Lothar Erdinger
- Department of Medical Microbiology and Hygiene, Im Neuenheimer Feld 324, Heidelberg D-69120, Germany
| | - Thomas Braunbeck
- Aquatic Ecology and Toxicology Section, Centre for Organismal Studies, University of Heidelberg, Im Neuenheimer Feld 504, Heidelberg D-69210, Germany.
| |
Collapse
|
31
|
Wlodkowic D, Bownik A, Leitner C, Stengel D, Braunbeck T. Beyond the behavioural phenotype: Uncovering mechanistic foundations in aquatic eco-neurotoxicology. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 829:154584. [PMID: 35306067 DOI: 10.1016/j.scitotenv.2022.154584] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 03/09/2022] [Accepted: 03/11/2022] [Indexed: 06/14/2023]
Abstract
During the last decade, there has been an increase in awareness of how anthropogenic pollution can alter behavioural traits of diverse aquatic organisms. Apart from understanding profound ecological implications, alterations in neuro-behavioural indices have emerged as sensitive and physiologically integrative endpoints in chemical risk assessment. Accordingly, behavioural ecotoxicology and broader eco-neurotoxicology are becoming increasingly popular fields of research that span a plethora of fundamental laboratory experimentations as well as applied field-based studies. Despite mounting interest in aquatic behavioural ecotoxicology studies, there is, however, a considerable paucity in deciphering the mechanistic foundations underlying behavioural alterations upon exposure to pollutants. The behavioural phenotype is indeed the highest-level integrative neurobiological phenomenon, but at its core lie myriads of intertwined biochemical, cellular, and physiological processes. Therefore, the mechanisms that underlie changes in behavioural phenotypes can stem among others from dysregulation of neurotransmitter pathways, electrical signalling, and cell death of discrete cell populations in the central and peripheral nervous systems. They can, however, also be a result of toxicity to sensory organs and even metabolic dysfunctions. In this critical review, we outline why behavioural phenotyping should be the starting point that leads to actual discovery of fundamental mechanisms underlying actions of neurotoxic and neuromodulating contaminants. We highlight potential applications of the currently existing and emerging neurobiology and neurophysiology analytical strategies that should be embraced and more broadly adopted in behavioural ecotoxicology. Such strategies can provide new mechanistic discoveries instead of only observing the end sum phenotypic effects.
Collapse
Affiliation(s)
- Donald Wlodkowic
- The Neurotox Laboratory, School of Science, RMIT University, Melbourne, Australia.
| | - Adam Bownik
- Department of Hydrobiology and Protection of Ecosystems, Faculty of Environmental Biology, University of Life Sciences, Lublin, Poland
| | - Carola Leitner
- Aquatic Ecology and Toxicology, Centre for Organismal Studies, University of Heidelberg, Im Neuenheimer Feld 504, D-69120 Heidelberg, Germany
| | - Daniel Stengel
- Aquatic Ecology and Toxicology, Centre for Organismal Studies, University of Heidelberg, Im Neuenheimer Feld 504, D-69120 Heidelberg, Germany
| | - Thomas Braunbeck
- Aquatic Ecology and Toxicology, Centre for Organismal Studies, University of Heidelberg, Im Neuenheimer Feld 504, D-69120 Heidelberg, Germany
| |
Collapse
|
32
|
Hsieh JH, Behl M, Parham F, Ryan K. Exploring the influence of experimental design on toxicity outcomes in zebrafish embryo tests. Toxicol Sci 2022; 188:198-207. [PMID: 35639960 DOI: 10.1093/toxsci/kfac053] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Compound toxicity data obtained from independent zebrafish laboratories can vary vastly, complicating the use of zebrafish screening for regulatory decisions. Differences in the assay protocol parameters are the primary source of variability. We investigated this issue by utilizing data from the NTP DNT-DIVER database (https://doi.org/10.22427/NTP-DATA-002-00062-0001-0000-1), which consists of data from zebrafish developmental toxicity (devtox) and locomotor response (designated as 'neurotox') screens from three independent laboratories, using the same set of 87 compounds. The data were analyzed using the benchmark concentration (BMC) modeling approach, which estimates the concentration of interest based on a predetermined response threshold. We compared the BMC results from three laboratories (A, B, C) in three toxicity outcome categories: mortality, cumulative devtox, and neurotox, in terms of activity calls and potency values. We found that for devtox screening, laboratories with similar/same protocol parameters (B vs C) had an active call concordance as high as 86% with negligible potency difference. For neurotox screening, active call concordances between paired laboratories are lower than devtox screening (highest 68%). When protocols with different protocol parameters were compared, the concordance dropped, and the potency shift was on average about 3.8-fold for the cumulative devtox outcome and 5.8-fold for the neurotox outcome. The potential contributing protocol parameters for potency shift are listed or ranked. This study provides a quantitative assessment of the source of variability in zebrafish screening protocols and sets the groundwork for the ongoing Systematic Evaluation of the Application of Zebrafish in Toxicology (SEAZIT) effort at the National Toxicology Program (NTP).
Collapse
Affiliation(s)
- Jui-Hua Hsieh
- Division of the National Toxicology Program, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina
| | - Mamta Behl
- Neurocrine Biosciences Inc, 12780 El Camino Real, San Diego, CA, 92130
| | - Frederick Parham
- Division of the National Toxicology Program, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina
| | - Kristen Ryan
- Division of the National Toxicology Program, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina
| |
Collapse
|
33
|
Piersma AH, Baker NC, Daston GP, Flick B, Fujiwara M, Knudsen TB, Spielmann H, Suzuki N, Tsaioun K, Kojima H. Pluripotent stem cell assays: Modalities and applications for predictive developmental toxicity. Curr Res Toxicol 2022; 3:100074. [PMID: 35633891 PMCID: PMC9130094 DOI: 10.1016/j.crtox.2022.100074] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 04/21/2022] [Accepted: 05/09/2022] [Indexed: 12/02/2022] Open
Abstract
This manuscript provides a review focused on embryonic stem cell-based models and their place within the landscape of alternative developmental toxicity assays. Against the background of the principles of developmental toxicology, the wide diversity of alternative methods using pluripotent stem cells developed in this area over the past half century is reviewed. In order to provide an overview of available models, a systematic scoping review was conducted following a published protocol with inclusion criteria, which were applied to select the assays. Critical aspects including biological domain, readout endpoint, availability of standardized protocols, chemical domain, reproducibility and predictive power of each assay are described in detail, in order to review the applicability and limitations of the platform in general and progress moving forward to implementation. The horizon of innovative routes of promoting regulatory implementation of alternative methods is scanned, and recommendations for further work are given.
Collapse
Affiliation(s)
- Aldert H. Piersma
- Center for Health Protection, National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | | | - George P. Daston
- Global Product Stewardship, The Procter & Gamble Company, Cincinnati, OH, USA
| | - Burkhard Flick
- Experimental Toxicology and Ecology, BASF SE, Ludwigshafen am Rhein, Germany
| | - Michio Fujiwara
- Drug Safety Research Labs, Astellas Pharma Inc., Tsukuba-shi, Japan
| | - Thomas B. Knudsen
- Center for Computational Toxicology and Exposure, U.S. Environmental Protection Agency, Research Triangle Park, USA
| | - Horst Spielmann
- Institute for Pharmacy, Faculty of Biology, Chemistry, and Pharmacy, Freie Universität, Berlin, Germany
| | - Noriyuki Suzuki
- Cell Science Group Environmental Health Science Laboratory, Sumitomo Chemical Co., Ltd., Osaka, Japan
| | - Katya Tsaioun
- Evidence-Based Toxicology Collaboration at Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Hajime Kojima
- National Institute of Health Sciences, Kawasaki, Japan
| |
Collapse
|
34
|
Ciallella HL, Russo DP, Sharma S, Li Y, Sloter E, Sweet L, Huang H, Zhu H. Predicting Prenatal Developmental Toxicity Based On the Combination of Chemical Structures and Biological Data. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:5984-5998. [PMID: 35451820 PMCID: PMC9191745 DOI: 10.1021/acs.est.2c01040] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
For hazard identification, classification, and labeling purposes, animal testing guidelines are required by law to evaluate the developmental toxicity potential of new and existing chemical products. However, guideline developmental toxicity studies are costly, time-consuming, and require many laboratory animals. Computational modeling has emerged as a promising, animal-sparing, and cost-effective method for evaluating the developmental toxicity potential of chemicals, such as endocrine disruptors, without the use of animals. We aimed to develop a predictive and explainable computational model for developmental toxicants. To this end, a comprehensive dataset of 1244 chemicals with developmental toxicity classifications was curated from public repositories and literature sources. Data from 2140 toxicological high-throughput screening assays were extracted from PubChem and the ToxCast program for this dataset and combined with information about 834 chemical fragments to group assays based on their chemical-mechanistic relationships. This effort revealed two assay clusters containing 83 and 76 assays, respectively, with high positive predictive rates for developmental toxicants identified with animal testing guidelines (PPV = 72.4 and 77.3% during cross-validation). These two assay clusters can be used as developmental toxicity models and were applied to predict new chemicals for external validation. This study provides a new strategy for constructing alternative chemical developmental toxicity evaluations that can be replicated for other toxicity modeling studies.
Collapse
Affiliation(s)
- Heather L. Ciallella
- Center for Computational and Integrative Biology, Rutgers University, Camden, NJ, 08103, USA
| | - Daniel P. Russo
- Center for Computational and Integrative Biology, Rutgers University, Camden, NJ, 08103, USA
- Department of Chemistry, Rutgers University, Camden, NJ, 08102, USA
| | - Swati Sharma
- Center for Computational and Integrative Biology, Rutgers University, Camden, NJ, 08103, USA
| | - Yafan Li
- The Lubrizol Corporation, Wickliffe, OH, 44092, USA
| | - Eddie Sloter
- The Lubrizol Corporation, Wickliffe, OH, 44092, USA
| | - Len Sweet
- The Lubrizol Corporation, Wickliffe, OH, 44092, USA
| | - Heng Huang
- Department of Electrical and Computer Engineering, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | - Hao Zhu
- Center for Computational and Integrative Biology, Rutgers University, Camden, NJ, 08103, USA
- Department of Chemistry, Rutgers University, Camden, NJ, 08102, USA
| |
Collapse
|
35
|
Xiong Y, Chen X, Li F, Chen Z, Qin Z. Zebrafish larvae acute toxicity test: A promising alternative to the fish acute toxicity test. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2022; 246:106143. [PMID: 35325807 DOI: 10.1016/j.aquatox.2022.106143] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 01/25/2022] [Accepted: 03/12/2022] [Indexed: 06/14/2023]
Abstract
Aquatic toxicity is a mandatory component in risk assessment of chemicals. The currently recommended used acute fish toxicity (AFT) test requires a large test system, bringing onerous experimental operation and discharge of much experimental wastewater. In this study, we established a more convenient and efficient test defined as the zebrafish larvae acute toxicity (FLT) test, which employed zebrafish larvae at four days post fertilization as the test organisms and implemented a 48-hour exposure in 6-well plates. Based on validated reproducibility, we applied this test to evaluate the acute toxicity of 35 chemicals. By comparing the results with the existing acute toxicity data reported in the literature, we found that most chemicals exhibited highly positive correlated LC50 in the FLT and the AFT test, with the same or similar toxicity grade. The FLT test showed more comparable sensitivity with the current AFT test than the previously recommended fish embryo acute toxicity test (FET). Moreover, the FLT test is easier to implement than the FET test which requires microscopic observation to identify the fertilization and development status of the embryos. Despite a limitation similar to the FET test in terms of detecting neurotoxicants, the FLT test could be a more promising alternative to the AFT test relative to the FET test.
Collapse
Affiliation(s)
- Yiming Xiong
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xuanyue Chen
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Feng Li
- Hebei Key Laboratory of Wetland Ecology and Conservation, Hebei 053000, China; Department of Life Sciences, Hengshui University, Hebei 053000, China
| | | | - Zhanfen Qin
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China; Department of Life Sciences, Hengshui University, Hebei 053000, China.
| |
Collapse
|
36
|
Schweizer M, von der Ohe PC, Gräff T, Kühnen U, Hebel J, Heid C, Kundy L, Kuttler J, Moroff FM, Schlösinger AF, Schulze-Berge P, Triebskorn R, Panagopoulou E, Damalas DE, Thomaidis NS, Köhler HR. Heart rate as an early warning parameter and proxy for subsequent mortality in Danio rerio embryos exposed to ionisable substances. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 818:151744. [PMID: 34808159 DOI: 10.1016/j.scitotenv.2021.151744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 11/13/2021] [Accepted: 11/13/2021] [Indexed: 06/13/2023]
Abstract
Environmental risk assessments of organic chemicals usually do not consider pH as a key factor. Hence, most substances are tested at a single pH only, which may underestimate the toxicity of ionisable substances with a pKa in the range of 4-10. Thus, the ability to consider the pH-dependent toxicity would be crucial for a more realistic assessment. Moreover, there is a tendency in acute toxicity tests to focus on mortality only, while little attention is paid to sublethal endpoints. We used Danio rerio embryos exposed to ten ionisable substances (the acids diclofenac, ibuprofen, naproxen and triclosan and the bases citalopram, fluoxetine, metoprolol, propranolol, tramadol and tetracaine) at four external pH levels, investigating the endpoints mortality (LC50) and heart rate (EC20). Dose-response curves were fitted with an ensemble-model to determine the true uncertainty and variation around the mean endpoints. The ensemble considers eight (heart rate) or twelve (mortality) individual models for binominal and Poisson distributed data, respectively, selected based on the Akaike Information Criterion (AIC). In case of equally good models, the mean endpoint of all models in the ensemble was calculated, resulting in more robust ECx estimates with lower 'standard errors' as compared to randomly selected individual models. We detected a high correlation between mortality (LC50) at 96 hpf and reduced heart rate (EC20) at 48 hpf for all compounds and all external pH levels (r = 0.98). Moreover, the observed pH-dependent effects were strongly associated with log D and thus, likely driven by differences in uptake (toxicokinetic) rather than internal (toxicodynamic) processes. Prospectively, the a priori consideration of pH-dependent effects of ionisable substances might make testing at different pH levels redundant, while the endpoint of mortality might even be replaced by a reliable sublethal proxy that would reduce the exposure, accelerating the evaluation process.
Collapse
Affiliation(s)
- Mona Schweizer
- Animal Physiological Ecology, Institute of Evolution and Ecology, University of Tübingen, Auf der Morgenstelle 5, D-72076 Tübingen, Germany
| | | | - Thomas Gräff
- German Environment Agency, Wörlitzer Platz 1, 06844 Dessau-Roßlau, Germany
| | - Ute Kühnen
- German Environment Agency, Wörlitzer Platz 1, 06844 Dessau-Roßlau, Germany
| | - Janine Hebel
- Animal Physiological Ecology, Institute of Evolution and Ecology, University of Tübingen, Auf der Morgenstelle 5, D-72076 Tübingen, Germany
| | - Christoph Heid
- Animal Physiological Ecology, Institute of Evolution and Ecology, University of Tübingen, Auf der Morgenstelle 5, D-72076 Tübingen, Germany
| | - Lone Kundy
- Animal Physiological Ecology, Institute of Evolution and Ecology, University of Tübingen, Auf der Morgenstelle 5, D-72076 Tübingen, Germany
| | - Julia Kuttler
- Animal Physiological Ecology, Institute of Evolution and Ecology, University of Tübingen, Auf der Morgenstelle 5, D-72076 Tübingen, Germany
| | - Friederike-Marie Moroff
- Animal Physiological Ecology, Institute of Evolution and Ecology, University of Tübingen, Auf der Morgenstelle 5, D-72076 Tübingen, Germany
| | - Anne-Frida Schlösinger
- Animal Physiological Ecology, Institute of Evolution and Ecology, University of Tübingen, Auf der Morgenstelle 5, D-72076 Tübingen, Germany
| | - Pia Schulze-Berge
- Animal Physiological Ecology, Institute of Evolution and Ecology, University of Tübingen, Auf der Morgenstelle 5, D-72076 Tübingen, Germany
| | - Rita Triebskorn
- Animal Physiological Ecology, Institute of Evolution and Ecology, University of Tübingen, Auf der Morgenstelle 5, D-72076 Tübingen, Germany; Steinbeis-Transfer Center Ecotoxicology and Ecophysiology, Blumenstrasse 13, D-72108 Rottenburg, Germany
| | - Elena Panagopoulou
- Laboratory of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, GR-15784 Athens, Greece
| | - Dimitrios E Damalas
- Laboratory of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, GR-15784 Athens, Greece
| | - Nikolaos S Thomaidis
- Laboratory of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, GR-15784 Athens, Greece
| | - Heinz-R Köhler
- Animal Physiological Ecology, Institute of Evolution and Ecology, University of Tübingen, Auf der Morgenstelle 5, D-72076 Tübingen, Germany
| |
Collapse
|
37
|
Thessen AE, Marvel S, Achenbach JC, Fischer S, Haendel MA, Hayward K, Klüver N, Könemann S, Legradi J, Lein P, Leong C, Mylroie JE, Padilla S, Perone D, Planchart A, Prieto RM, Muriana A, Quevedo C, Reif D, Ryan K, Stinckens E, Truong L, Vergauwen L, Vom Berg C, Wilbanks M, Yaghoobi B, Hamm J. Implementation of Zebrafish Ontologies for Toxicology Screening. FRONTIERS IN TOXICOLOGY 2022; 4:817999. [PMID: 35387429 PMCID: PMC8979167 DOI: 10.3389/ftox.2022.817999] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 01/24/2022] [Indexed: 01/16/2023] Open
Abstract
Toxicological evaluation of chemicals using early-life stage zebrafish (Danio rerio) involves the observation and recording of altered phenotypes. Substantial variability has been observed among researchers in phenotypes reported from similar studies, as well as a lack of consistent data annotation, indicating a need for both terminological and data harmonization. When examined from a data science perspective, many of these apparent differences can be parsed into the same or similar endpoints whose measurements differ only in time, methodology, or nomenclature. Ontological knowledge structures can be leveraged to integrate diverse data sets across terminologies, scales, and modalities. Building on this premise, the National Toxicology Program’s Systematic Evaluation of the Application of Zebrafish in Toxicology undertook a collaborative exercise to evaluate how the application of standardized phenotype terminology improved data consistency. To accomplish this, zebrafish researchers were asked to assess images of zebrafish larvae for morphological malformations in two surveys. In the first survey, researchers were asked to annotate observed malformations using their own terminology. In the second survey, researchers were asked to annotate the images from a list of terms and definitions from the Zebrafish Phenotype Ontology. Analysis of the results suggested that the use of ontology terms increased consistency and decreased ambiguity, but a larger study is needed to confirm. We conclude that utilizing a common data standard will not only reduce the heterogeneity of reported terms but increases agreement and repeatability between different laboratories. Thus, we advocate for the development of a zebrafish phenotype atlas to help laboratories create interoperable, computable data.
Collapse
Affiliation(s)
- Anne E. Thessen
- Center for Health AI, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
- *Correspondence: Anne E. Thessen,
| | - Skylar Marvel
- Department of Biological Sciences, Bioinformatics Research Center, North Carolina State University, Raleigh, NC, United States
| | - J. C. Achenbach
- Aquatic and Crop Resource Development Research Center, National Research Council of Canada, Halifax, NS, Canada
| | | | - Melissa A. Haendel
- Center for Health AI, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Kimberly Hayward
- Department of Environmental and Molecular Toxicology and the Sinnhuber Aquatic Research Laboratory, Oregon State University, Corvallis, OR, United States
| | - Nils Klüver
- Department Bioanalytical Ecotoxicology, Helmholtz Centre for Environmental Research (UFZ), Leipzig, Germany
| | - Sarah Könemann
- Environmental Toxicology, Swiss Federal Institute of Aquatic Science and Technology (Eawag), Dübendorf, Switzerland
| | - Jessica Legradi
- Environment & Health, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Pamela Lein
- Department of Molecular Biosciences, University of California, Davis, Davis, CA, United States
| | - Connor Leong
- Department of Environmental and Molecular Toxicology and the Sinnhuber Aquatic Research Laboratory, Oregon State University, Corvallis, OR, United States
| | - J. Erik Mylroie
- Environmental Laboratory, US Army Engineer Research and Development Center, Vicksburg, MS, United States
| | - Stephanie Padilla
- Center for Computational Toxicology and Exposure, Biomolecular and Computational Toxicology Division, U.S. Environmental Protection Agency, Research Triangle Park, NC, United States
| | - Dante Perone
- Department of Environmental and Molecular Toxicology and the Sinnhuber Aquatic Research Laboratory, Oregon State University, Corvallis, OR, United States
| | - Antonio Planchart
- Center for Human Health and the Environment, and Center for Environmental and Health Effects of PFAS, Biological Sciences, NC State University, Raleigh, NC, United States
| | | | | | | | - David Reif
- Department of Biological Sciences, Bioinformatics Research Center, North Carolina State University, Raleigh, NC, United States
| | - Kristen Ryan
- Division of the National Toxicology Program, National Institute of Environmental Health Sciences, Durham, NC, United States
| | - Evelyn Stinckens
- Zebrafishlab, Department of Veterinary Sciences, University of Antwerp, Wilrijk, Belgium
| | - Lisa Truong
- Department of Environmental and Molecular Toxicology and the Sinnhuber Aquatic Research Laboratory, Oregon State University, Corvallis, OR, United States
| | - Lucia Vergauwen
- Zebrafishlab, Department of Veterinary Sciences, University of Antwerp, Wilrijk, Belgium
| | - Colette Vom Berg
- Environmental Toxicology, Swiss Federal Institute of Aquatic Science and Technology (Eawag), Dübendorf, Switzerland
| | - Mitch Wilbanks
- Environmental Laboratory, US Army Engineer Research and Development Center, Vicksburg, MS, United States
| | - Bianca Yaghoobi
- Department of Molecular Biosciences, University of California, Davis, Davis, CA, United States
| | - Jon Hamm
- Integrated Laboratory Systems, LLC, Contractor supporting the National Toxicology Program Interagency Center for the Evaluation of Alternative Toxicological Methods, National Institute of Environmental Health Sciences, Durham, NC, United States
| |
Collapse
|
38
|
Grouping of chemicals into mode of action classes by automated effect pattern analysis using the zebrafish embryo toxicity test. Arch Toxicol 2022; 96:1353-1369. [PMID: 35254489 PMCID: PMC9013687 DOI: 10.1007/s00204-022-03253-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 02/15/2022] [Indexed: 11/17/2022]
Abstract
A central element of high throughput screens for chemical effect assessment using zebrafish is the assessment and quantification of phenotypic changes. By application of an automated and more unbiased analysis of these changes using image analysis, patterns of phenotypes may be associated with the mode of action (MoA) of the exposure chemical. The aim of our study was to explore to what extent compounds can be grouped according to their anticipated toxicological or pharmacological mode of action using an automated quantitative multi-endpoint zebrafish test. Chemical-response signatures for 30 endpoints, covering phenotypic and functional features, were generated for 25 chemicals assigned to 8 broad MoA classes. Unsupervised clustering of the profiling data demonstrated that chemicals were partially grouped by their main MoA. Analysis with a supervised clustering technique such as a partial least squares discriminant analysis (PLS-DA) allowed to identify markers with a strong potential to discriminate between MoAs such as mandibular arch malformation observed for compounds interfering with retinoic acid signaling. The capacity for discriminating MoAs was also benchmarked to an available battery of in vitro toxicity data obtained from ToxCast library indicating a partially similar performance. Further, we discussed to which extent the collected dataset indicated indeed differences for compounds with presumably similar MoA or whether other factors such as toxicokinetic differences could have an important impact on the determined response patterns.
Collapse
|
39
|
Reinwald H, Alvincz J, Salinas G, Schäfers C, Hollert H, Eilebrecht S. Toxicogenomic profiling after sublethal exposure to nerve- and muscle-targeting insecticides reveals cardiac and neuronal developmental effects in zebrafish embryos. CHEMOSPHERE 2022; 291:132746. [PMID: 34748799 DOI: 10.1016/j.chemosphere.2021.132746] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 10/15/2021] [Accepted: 10/29/2021] [Indexed: 06/13/2023]
Abstract
For specific primary modes of action (MoA) in environmental non-target organisms, EU legislation restricts the usage of active substances of pesticides or biocides. Corresponding regulatory hazard assessments are costly, time consuming and require large numbers of non-human animal studies. Currently, predictive toxicology of development compounds relies on their chemical structure and provides little insights into toxicity mechanisms that precede adverse effects. Using the zebrafish embryo model, we characterized transcriptomic responses to a range of sublethal concentrations of six nerve- and muscle-targeting insecticides with different MoA (abamectin, carbaryl, chlorpyrifos, fipronil, imidacloprid & methoxychlor). Our aim was to identify affected biological processes and suitable biomarker candidates for MoA-specific signatures. Abamectin showed the most divergent signature among the tested insecticides, linked to lipid metabolic processes. Differentially expressed genes (DEGs) after imidacloprid exposure were primarily associated with immune system and inflammation. In total, 222 early responsive genes to either MoA were identified, many related to three major processes: (1) cardiac muscle cell development and functioning (tcap, desma, bag3, hspb1, hspb8, flnca, myoz3a, mybpc2b, actc2, tnnt2c), (2) oxygen transport and hypoxic stress (alas2, hbbe1.1, hbbe1.3, hbbe2, hbae3, igfbp1a, hif1al) and (3) neuronal development and plasticity (npas4a, egr1, btg2, ier2a, vgf). The thyroidal function related gene dio3b was upregulated by chlorpyrifos and downregulated by higher abamectin concentrations. Important regulatory genes for cardiac muscle (tcap) and forebrain development (npas4a) were the most frequently ifferentially expressed across all insecticide treatments. We consider the identified gene sets as useful early warning biomarker candidates, i.e. for developmental toxicity targeting heart and brain in aquatic vertebrates. Our findings provide a better understanding about early molecular events in response to the analyzed MoA. Perceptively, this promotes the development for sensitive and informative biomarker-based in vitro assays for toxicological MoA prediction and AOP refinement, without the suffering of adult fish.
Collapse
Affiliation(s)
- Hannes Reinwald
- Fraunhofer Attract Eco'n'OMICs, Fraunhofer Institute for Molecular Biology and Applied Ecology, Schmallenberg, Germany; Department Evolutionary Ecology and Environmental Toxicology, Faculty Biological Sciences, Goethe University Frankfurt, Frankfurt, Germany
| | - Julia Alvincz
- Fraunhofer Attract Eco'n'OMICs, Fraunhofer Institute for Molecular Biology and Applied Ecology, Schmallenberg, Germany
| | - Gabriela Salinas
- NGS-Services for Integrative Genomics, University of Göttingen, Göttingen, Germany
| | - Christoph Schäfers
- Department of Ecotoxicology, Fraunhofer Institute for Molecular Biology and Applied Ecology, Schmallenberg, Germany
| | - Henner Hollert
- Department Evolutionary Ecology and Environmental Toxicology, Faculty Biological Sciences, Goethe University Frankfurt, Frankfurt, Germany
| | - Sebastian Eilebrecht
- Fraunhofer Attract Eco'n'OMICs, Fraunhofer Institute for Molecular Biology and Applied Ecology, Schmallenberg, Germany.
| |
Collapse
|
40
|
von Hellfeld R, Pannetier P, Braunbeck T. Specificity of time- and dose-dependent morphological endpoints in the fish embryo acute toxicity (FET) test for substances with diverse modes of action: the search for a "fingerprint". ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:16176-16192. [PMID: 34643865 PMCID: PMC8827326 DOI: 10.1007/s11356-021-16354-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 09/01/2021] [Indexed: 06/13/2023]
Abstract
The fish embryo acute toxicity (FET) test with the zebrafish (Danio rerio) embryo according to OECD TG 236 was originally developed as an alternative test method for acute fish toxicity testing according to, e.g., OECD TG 203. Given the versatility of the protocol, however, the FET test has found application beyond acute toxicity testing as a common tool in environmental hazard and risk assessment. Whereas the standard OECD guideline is restricted to four core endpoints (coagulation as well as lack of somite formation, heartbeat, and tail detachment) for simple, rapid assessment of acute toxicity, further endpoints can easily be integrated into the FET test protocol. This has led to the hypothesis that an extended FET test might allow for the identification of different classes of toxicants via a "fingerprint" of morphological observations. To test this hypothesis, the present study investigated a set of 18 compounds with highly diverse modes of action with respect to acute and sublethal endpoints. Especially at higher concentrations, most observations proved toxicant-unspecific. With decreasing concentrations, however, observations declined in number, but gained in specificity. Specific observations may at best be made at test concentrations ≤ EC10. The existence of a "fingerprint" based on morphological observations in the FET is, therefore, highly unlikely in the range of acute toxicity, but cannot be excluded for experiments at sublethal concentrations.
Collapse
Affiliation(s)
- Rebecca von Hellfeld
- Center for Organismal Studies, Aquatic Ecology and Toxicology Section, University of Heidelberg, Im Neuenheimer Feld 504, 69120, Heidelberg, Germany.
- University of Aberdeen, Institute of Biological and Environmental Science, 23 St Machar Drive, AB24 3UU, Aberdeen, UK.
| | - Pauline Pannetier
- Center for Organismal Studies, Aquatic Ecology and Toxicology Section, University of Heidelberg, Im Neuenheimer Feld 504, 69120, Heidelberg, Germany
| | - Thomas Braunbeck
- Center for Organismal Studies, Aquatic Ecology and Toxicology Section, University of Heidelberg, Im Neuenheimer Feld 504, 69120, Heidelberg, Germany.
| |
Collapse
|
41
|
Rericha Y, Cao D, Truong L, Simonich MT, Field JA, Tanguay RL. Sulfonamide functional head on short-chain perfluorinated substance drives developmental toxicity. iScience 2022; 25:103789. [PMID: 35146398 PMCID: PMC8819378 DOI: 10.1016/j.isci.2022.103789] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 12/23/2021] [Accepted: 01/13/2022] [Indexed: 01/09/2023] Open
Abstract
Per- and polyfluoroalkyl substances (PFAS) are ubiquitously detected in environmental and biological samples and cause adverse health effects. Studies have predominately focused on long-chain PFAS, with far fewer addressing short-chain alternatives. This study leveraged embryonic zebrafish to investigate developmental toxicity of a short-chain series: perfluorobutane sulfonate (PFBS), perfluoropentanoic acid (PFPeA), perfluorobutane sulfonamide (FBSA), and 4:2 fluorotelomer sulfonic acid (4:2 FTS). Following static exposures at 8 h postfertilization (hpf) to each chemical (1-100 μM), morphological and behavioral endpoints were assessed at 24 and 120 hpf. Only FBSA induced abnormal morphology, while exposure to all chemicals caused aberrant larval behavior. RNA sequencing at 48 hpf following 47 μM exposures revealed only FBSA significantly disrupted normal gene expression. Measured tissue concentrations were FBSA > PFBS > 4:2 FTS > PFPeA. This study demonstrates functional head groups impact bioactivity and bioconcentration.
Collapse
Affiliation(s)
- Yvonne Rericha
- Department of Environmental and Molecular Toxicology, College of Agricultural Sciences, Oregon State University, Corvallis, OR 97333, USA.,Sinnhuber Aquatic Research Laboratory, College of Agricultural Sciences, Oregon State University, Corvallis, OR 97333, USA
| | - Dunping Cao
- Department of Chemistry, College of Science, Oregon State University, Corvallis, OR 97333, USA
| | - Lisa Truong
- Department of Environmental and Molecular Toxicology, College of Agricultural Sciences, Oregon State University, Corvallis, OR 97333, USA.,Sinnhuber Aquatic Research Laboratory, College of Agricultural Sciences, Oregon State University, Corvallis, OR 97333, USA
| | - Michael T Simonich
- Department of Environmental and Molecular Toxicology, College of Agricultural Sciences, Oregon State University, Corvallis, OR 97333, USA.,Sinnhuber Aquatic Research Laboratory, College of Agricultural Sciences, Oregon State University, Corvallis, OR 97333, USA
| | - Jennifer A Field
- Department of Environmental and Molecular Toxicology, College of Agricultural Sciences, Oregon State University, Corvallis, OR 97333, USA
| | - Robyn L Tanguay
- Department of Environmental and Molecular Toxicology, College of Agricultural Sciences, Oregon State University, Corvallis, OR 97333, USA.,Sinnhuber Aquatic Research Laboratory, College of Agricultural Sciences, Oregon State University, Corvallis, OR 97333, USA
| |
Collapse
|
42
|
Kurach Ł, Chłopaś-Konowałek A, Budzyńska B, Zawadzki M, Szpot P, Boguszewska-Czubara A. Etazene induces developmental toxicity in vivo Danio rerio and in silico studies of new synthetic opioid derivative. Sci Rep 2021; 11:24269. [PMID: 34931035 PMCID: PMC8688443 DOI: 10.1038/s41598-021-03804-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 12/03/2021] [Indexed: 11/12/2022] Open
Abstract
Synthetic opioids are gaining more and more popularity among recreational users as well as regular abusers. One of such novel psychoactive substance, is etazene, which is the most popular opioid drug in the darknet market nowadays. Due to limited information available concerning its activity, we aimed to characterize its developmental toxicity, including cardiotoxicity with the use of in vivo Danio rerio and in silico tools. Moreover, we aimed, for the first time, to characterize the metabolite of etazene, which could become a potential marker of its use for future forensic analysis. The results of our study proved severe dose-dependent developmental toxicity of etazene (applied concentrations 10-300 µM), including an increase in mortality, developmental malformations, and serious cardiotoxic effects, as compared with well-known and used opioid-morphine (applied concentrations 1-50 mM). In silico findings indicate the high toxic potential of etazene which may lead to drug-drug interactions and accumulation of substances. Furthermore, phase I metabolite of etazene resulting from N-dealkylation reaction was identified, and therefore it should be considered as a target for toxicological screening. Nonetheless, the exact mechanism of observed effects in response to etazene should be further examined.
Collapse
Affiliation(s)
- Łukasz Kurach
- Independent Laboratory of Behavioral Studies, Medical University of Lublin, 4A Chodzki Str., 20-093, Lublin, Poland.
| | | | - Barbara Budzyńska
- Independent Laboratory of Behavioral Studies, Medical University of Lublin, 4A Chodzki Str., 20-093, Lublin, Poland
| | - Marcin Zawadzki
- Department of Forensic Medicine, Wroclaw Medical University, 4 J.Mikulicza-Radeckiego Str., 50-345, Wrocław, Poland
| | - Paweł Szpot
- Department of Forensic Medicine, Wroclaw Medical University, 4 J.Mikulicza-Radeckiego Str., 50-345, Wrocław, Poland
| | - Anna Boguszewska-Czubara
- Department of Medical Chemistry, Medical University of Lublin, 4A Chodzki Str., 20-093, Lublin, Poland
| |
Collapse
|
43
|
Jenkins JA, Hartop KR, Bukhari G, Howton DE, Smalling KL, Mize SV, Hladik ML, Johnson D, Draugelis-Dale RO, Brown BL. Juvenile African Clawed Frogs ( Xenopus laevis) Express Growth, Metamorphosis, Mortality, Gene Expression, and Metabolic Changes When Exposed to Thiamethoxam and Clothianidin. Int J Mol Sci 2021; 22:13291. [PMID: 34948092 PMCID: PMC8706403 DOI: 10.3390/ijms222413291] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 11/13/2021] [Accepted: 12/03/2021] [Indexed: 11/17/2022] Open
Abstract
Neonicotinoids (NEO) represent the main class of insecticides currently in use, with thiamethoxam (THX) and clothianidin (CLO) primarily applied agriculturally. With few comprehensive studies having been performed with non-target amphibians, the aim was to investigate potential biomarker responses along an adverse outcome pathway of NEO exposure, whereby data were collected on multiple biological hierarchies. Juvenile African clawed frogs, Xenopus laevis, were exposed to commercial formulations of THX and CLO at high (100 ppm) and low (20 ppm) concentrations of the active ingredient. Mortality, growth, development, liver metabolic enzyme activity, and gene expression endpoints were quantified. Tadpoles (n > 1000) from NF 47 through tail resorption stage (NF 66) were exposed to NEO or to NEO-free media treatments. Liver cell reductase activity and cytotoxicity were quantified by flow cytometry. Compared to control reference gene expressions, levels of expression for NEO receptor subunits, cell structure, function, and decontamination processes were measured by RT-qPCR by using liver and brain. Mortality in THX high was 21.5% compared to the control (9.1%); the metabolic conversion of THX to CLO may explain these results. The NF 57 control tadpoles were heavier, longer, and more developed than the others. The progression of development from NF 57-66 was reduced by THX low, and weight gain was impaired. Liver reductases were highest in the control (84.1%), with low NEO exhibiting the greatest reductions; the greatest cytotoxicity was seen with THX high. More transcriptional activity was noted in brains than in livers. Results affirm the utility of a study approach that considers multiple complexities in ecotoxicological studies with non-target amphibians, underscoring the need for simultaneously considering NEO concentration-response relationships with both whole-organism and biomarker endpoints.
Collapse
Affiliation(s)
- Jill A. Jenkins
- U.S. Geological Survey, Wetland and Aquatic Research Center, 700 Cajundome Boulevard, Lafayette, LA 70506, USA; (D.J.); (R.O.D.-D.)
| | - Katherine R. Hartop
- Department of Biology, Virginia Commonwealth University, Richmond, VA 23284, USA; (K.R.H.); (G.B.); (D.E.H.); (B.L.B.)
| | - Ghadeer Bukhari
- Department of Biology, Virginia Commonwealth University, Richmond, VA 23284, USA; (K.R.H.); (G.B.); (D.E.H.); (B.L.B.)
| | - Debra E. Howton
- Department of Biology, Virginia Commonwealth University, Richmond, VA 23284, USA; (K.R.H.); (G.B.); (D.E.H.); (B.L.B.)
| | - Kelly L. Smalling
- U.S. Geological Survey, New Jersey Water Science Center, Lawrenceville, NJ 08648, USA;
| | - Scott V. Mize
- U.S. Geological Survey, Lower Mississippi-Gulf Water Science Center, Baton Rouge, LA 70816, USA;
| | - Michelle L. Hladik
- U.S. Geological Survey, California Water Science Center, 6000 J Street, Placer Hall, Sacramento, CA 95819, USA;
| | - Darren Johnson
- U.S. Geological Survey, Wetland and Aquatic Research Center, 700 Cajundome Boulevard, Lafayette, LA 70506, USA; (D.J.); (R.O.D.-D.)
| | - Rassa O. Draugelis-Dale
- U.S. Geological Survey, Wetland and Aquatic Research Center, 700 Cajundome Boulevard, Lafayette, LA 70506, USA; (D.J.); (R.O.D.-D.)
| | - Bonnie L. Brown
- Department of Biology, Virginia Commonwealth University, Richmond, VA 23284, USA; (K.R.H.); (G.B.); (D.E.H.); (B.L.B.)
| |
Collapse
|
44
|
He Q, Song J, Li H, Zhao B, Zhang Y, Wang N, Liu B, Chen J, Nie Z, Liang T, Zhong W. Chloroperoxidase-catalyzed oxidative degradation of sulfur mustard. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 225:112715. [PMID: 34500382 DOI: 10.1016/j.ecoenv.2021.112715] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 07/28/2021] [Accepted: 08/25/2021] [Indexed: 06/13/2023]
Abstract
As a natural heme protein catalyzing the oxidation of sulfides to sulfoxides without sulfone formation, chloroperoxidase (CPO) is well suited for the degradation of sulfur mustard (HD), a persistent chemical warfare agent that has been widely disposed since World War II and continuously leaks into aquatic environments. Herein, we report the first systematic investigation of CPO-catalyzed degradation of HD and the potential application of CPO in destroying chemical weapons under mild conditions. The related Michaelis-Menten parameters (Km=0.17 mM, Vmax=0.06 mM s-1 (R2 =0.935), and kcat= 2717 s-1) indicated nearly a prominent enzymatic efficiency. Under optimal conditions, 80% of HD was transformed to bis(2-chloroethyl) sulfoxide as identified by mass spectroscopy and nuclear magnetic resonance (NMR) spectroscopy. Other metabolites were also generated during the decontamination process. A plausible oxidation mechanism was proposed based on the degradation products, NMR titration experiments, and molecular dynamics simulations. CPO also promoted the degradation of other chemical weapon agents, namely, Lewisite (L) and venomous agent X (VX), thereby exhibiting a broad substrate scope. The high potential of the developed system for the decontamination of aquatic environments was demonstrated by the successful hatching of zebrafish embryos after HD degradation and the survival of zebrafish (Danio rerio, AB strain) larvae after the degradation of Agent Yellow (L+HD).
Collapse
Affiliation(s)
- Qinghao He
- National Engineering Research Center for the Emergency Drug, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China
| | - Jian Song
- National Engineering Research Center for the Emergency Drug, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China
| | - Hongwei Li
- Beijing Nuclear Magnetic Resonance Center; College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Baoquan Zhao
- National Engineering Research Center for the Emergency Drug, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China
| | - Yanjin Zhang
- National Engineering Research Center for the Emergency Drug, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China
| | - Na Wang
- National Engineering Research Center for the Emergency Drug, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China
| | - Bo Liu
- The Institute of NBC Defense, Chinese PLA Army, Beijing 102205, China
| | | | - Zhiyong Nie
- National Engineering Research Center for the Emergency Drug, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China.
| | - Ting Liang
- The Institute of NBC Defense, Chinese PLA Army, Beijing 102205, China.
| | - Wu Zhong
- National Engineering Research Center for the Emergency Drug, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China.
| |
Collapse
|
45
|
Wang S, Lopez S, El Ahmadie N, Wengrovitz AS, Ganter J, Zhao YH, Souders CL, Martyniuk CJ. Assessing sub-lethal effects of the dinitroaniline herbicide pendimethalin in zebrafish embryos/larvae (Danio rerio). Neurotoxicol Teratol 2021; 89:107051. [PMID: 34813896 DOI: 10.1016/j.ntt.2021.107051] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 11/14/2021] [Accepted: 11/15/2021] [Indexed: 12/19/2022]
Abstract
Pendimethalin is a dinitroaniline herbicide used to control broadleaf weeds by inhibiting the formation of microtubules during cell division. Its use on a variety of crops leads to its potential entry into aquatic environments, but little is known about its sub-lethal toxicity to early developmental stages of aquatic vertebrates. To address this knowledge gap, we assessed the toxicity of pendimethalin to zebrafish embryos and larvae by measuring mortality, developmental abnormalities, oxidative respiration, reactive oxygen species, gene expression, and locomotor activity following exposure to the herbicide throughout early development. Embryos at ~6 h post-fertilization (hpf) were exposed to either a solvent control (0.1% DMSO, v/v), embryo rearing medium (ERM), or one dose of either 1, 2.5, 5, or 25 μM pendimethalin for up to 7-days post fertilization depending on the bioassay. Exposure to 25 μM pendimethalin resulted in high prevalence of spinal curvature, tail malformations, pericardial edema, and yolk sac edema at 4 dpf, while exposure to 5 μM pendimethalin induced pericardial edema and lordosis in the fish exposed over 7 dpf. Exposure to pendimethalin up to 5 μM did not negatively impact oxidative respiration (e.g., basal respiration, oligomycin-induced ATP production) in embryos following a 24-h exposure. Pendimethalin did not induce reactive oxygen species at concentrations of 1-5 μM. Levels of transcripts associated with oxidative respiration and damage response were altered in 7d-larvae; cox1 mRNA was increased in larvae fish exposed to 1 μM while cox5a1 and sod2 mRNA were decreased with 2.5 μM exposure. The Visual Motor Response (VMR) test for light-dark response revealed that larval activity in the dark period was reduced for zebrafish exposed to >1 μM pendimethalin compared to ERM and DMSO solvent control groups. These data inform on the sub-lethal toxicity of pendimethalin to early stages of fish embryos and larvae.
Collapse
Affiliation(s)
- Shuo Wang
- Department of Physiological Sciences and Center for Environmental and Human Toxicology, University of Florida Genetics Institute, Interdisciplinary Program in Biomedical Sciences Neuroscience, College of Veterinary Medicine, University of Florida, Gainesville, FL 32611, USA; State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, School of Environment, Northeast Normal University, Changchun, Jilin 130117, PR China
| | - Sofia Lopez
- Department of Physiological Sciences and Center for Environmental and Human Toxicology, University of Florida Genetics Institute, Interdisciplinary Program in Biomedical Sciences Neuroscience, College of Veterinary Medicine, University of Florida, Gainesville, FL 32611, USA
| | - Nader El Ahmadie
- Department of Physiological Sciences and Center for Environmental and Human Toxicology, University of Florida Genetics Institute, Interdisciplinary Program in Biomedical Sciences Neuroscience, College of Veterinary Medicine, University of Florida, Gainesville, FL 32611, USA
| | - Andrew S Wengrovitz
- Department of Physiological Sciences and Center for Environmental and Human Toxicology, University of Florida Genetics Institute, Interdisciplinary Program in Biomedical Sciences Neuroscience, College of Veterinary Medicine, University of Florida, Gainesville, FL 32611, USA
| | - Jade Ganter
- Department of Physiological Sciences and Center for Environmental and Human Toxicology, University of Florida Genetics Institute, Interdisciplinary Program in Biomedical Sciences Neuroscience, College of Veterinary Medicine, University of Florida, Gainesville, FL 32611, USA
| | - Yuan Hui Zhao
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, School of Environment, Northeast Normal University, Changchun, Jilin 130117, PR China.
| | - Christopher L Souders
- Department of Physiological Sciences and Center for Environmental and Human Toxicology, University of Florida Genetics Institute, Interdisciplinary Program in Biomedical Sciences Neuroscience, College of Veterinary Medicine, University of Florida, Gainesville, FL 32611, USA
| | - Christopher J Martyniuk
- Department of Physiological Sciences and Center for Environmental and Human Toxicology, University of Florida Genetics Institute, Interdisciplinary Program in Biomedical Sciences Neuroscience, College of Veterinary Medicine, University of Florida, Gainesville, FL 32611, USA.
| |
Collapse
|
46
|
Saavedra LM, Duchowicz PR. Predicting zebrafish (Danio rerio) embryo developmental toxicity through a non-conformational QSAR approach. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 796:148820. [PMID: 34328907 DOI: 10.1016/j.scitotenv.2021.148820] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 06/11/2021] [Accepted: 06/29/2021] [Indexed: 06/13/2023]
Abstract
For many years, the frequent use of synthetic chemicals in the manufacture of veterinary drugs and plague control products has raised negative effects on human health and other non-target organisms, promoting the need to employ a practical and suitable methodology for early risk identification of several thousand commercial compounds. The zebrafish (Danio rerio) embryo has been emerged as one sustainable animal model for measuring developmental toxicity, an endpoint that is included in the regulatory procedures to approve chemicals, avoiding conventional and costly toxicity assays based on animal testing. In this context, the Quantitative Structure-Activity Relationships (QSAR) theory is applied to develop a predictive model based on a well-defined zebrafish embryo developmental toxicity database reported by the ToxCast™ Phase I chemical library of the Environmental Protection Agency (U.S. EPA). By means of four freely available softwares, a set with 28,038 non-conformational descriptors that encode the largest amount of permanent structural features are readily calculated. The Replacement Method (RM) variable subset selection technique provided the best regression models. Thereby, a linear QSAR model with proper statistical quality (Rtrain2 = 0.64, RMSEtrain = 0.49) is established in agreement with the Organization for Economic Co-operation and Development principles, accomplishing each internal (loo, l15 % o, VIF and Y-randomization) and external (Rtest2,Rm2, QF12, QF22, QF32 and CCC) validation criterion. The present QSAR approach provides a useful computational tool to estimate zebrafish developmental toxicity of new, untasted or hypothetical compounds, and it can contribute to the general lack of QSAR models in the literature to predict this endpoint.
Collapse
Affiliation(s)
- Laura M Saavedra
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), CONICET, UNLP, Diag. 113 y 64, C.C. 16, Sucursal 4, 1900 La Plata, Argentina.
| | - Pablo R Duchowicz
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), CONICET, UNLP, Diag. 113 y 64, C.C. 16, Sucursal 4, 1900 La Plata, Argentina.
| |
Collapse
|
47
|
Su CH, Chen SP, Chen LY, Yang JJ, Lee YC, Lee SS, Chen HH, Ng YY, Kuan YH. 3-Bromofluoranthene-induced cardiotoxicity of zebrafish and apoptosis in the vascular endothelial cells via intrinsic and extrinsic caspase-dependent pathways. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 228:112962. [PMID: 34775346 DOI: 10.1016/j.ecoenv.2021.112962] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Revised: 10/28/2021] [Accepted: 10/31/2021] [Indexed: 06/13/2023]
Abstract
Fluoranthene, a high-molecular-weight polycyclic aromatic hydrocarbon (PAH), is widely present in air pollutants, including fine inhalable particulate matter. 3-Bromofluoranthene (3-BrFlu), which is a brominated fluoranthene and halogenated PAH, is generated from waste combustion, metallurgical processes, cement production, e-waste dismantling, and photoreaction. Vascular endothelial cells have key functions in the homeostasis and the development of the cardiovascular system. The zebrafish model has been widely employed to study cardiotoxicity and embryotoxicity. However, no evidence has indicated that 3-BrFlu induces cytotoxicity in vascular endothelial cells, or cardiotoxicity and embryotoxicity in zebrafish. In this study, 3-BrFlu induced concentration-dependent changes in embryo- and cardiotoxicity. Cytotoxicity was also induced by 3-BrFlu in a concentration-dependent manner through apoptosis and necrosis in vascular endothelial cells, SVEC4-10 cells. The activities of caspase-3, -8, and -9 were induced by 3-BrFlu via an intrinsic pathway constituting Bcl-2 downregulation, Bad upregulation, and mitochondrial dysfunction; the extrinsic pathway included the expression of death receptors, including tumour necrosis factor α and Fas receptors. These results indicated that 3-BrFlu caused cardio- and embryotoxicity in zebrafish through vascular endothelial cells cytotoxicity resulting from caspase-dependent apoptosis through intrinsic and extrinsic pathways.
Collapse
Affiliation(s)
- Chun-Hung Su
- Department of Internal Medicine, Chung Shan Medical University Hospital, Taichung, Taiwan, ROC; Department of Internal Medicine, School of Medicine, Chung Shan Medical University, Taichung, Taiwan, ROC; Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan, ROC
| | - Shih-Pin Chen
- Department of Internal Medicine, School of Medicine, Chung Shan Medical University, Taichung, Taiwan, ROC; Department of Internal Medicine, Chung Shan Medical University Hospital, Taichung, Taiwan, ROC
| | - Li-You Chen
- Department of Anatomy, School of Medicine, College of Medicine, Chung Shan Medical University, Taichung, Taiwan, ROC; Department of Medical Education, Chung Shan Medical University Hospital, Taichung, Taiwan, ROC
| | - Jiann-Jou Yang
- Department of BioMedical Sciences, Chung Shan Medical University, Taichung, Taiwan, ROC; Department of Medical Research, Chung Shan Medical University Hospital, Taichung, Taiwan, ROC
| | - Yi-Chia Lee
- Department of Pharmacology, School of Medicine, Chung Shan Medical University, Taichung, Taiwan, ROC; Department of Pharmacy, Chung Shan Medical University Hospital, Taichung, Taiwan, ROC
| | - Shiuan-Shinn Lee
- School of Public Health, Chung Shan Medical University, Taichung, Taiwan, ROC
| | - Hsin-Hung Chen
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Asia University Hospital, Taichung, Taiwan, ROC; School of Medicine, Institute of Medicine and public health, Chung Shan Medical University, Taichung, Taiwan, ROC; Chung Sheng Clinic, Nantou, Taiwan, ROC
| | - Yan-Yan Ng
- Department of Pediatric, Chung Kang branch, Cheng Ching Hospital, Taichung City, Taiwan, ROC
| | - Yu-Hsiang Kuan
- Department of Pharmacology, School of Medicine, Chung Shan Medical University, Taichung, Taiwan, ROC; Department of Pharmacy, Chung Shan Medical University Hospital, Taichung, Taiwan, ROC.
| |
Collapse
|
48
|
Luckmann MR, de Melo MS, Spricigo MC, da Silva NM, Nazari EM. Pyriproxyfen exposure induces DNA damage, cell proliferation impairments and apoptosis in the brain vesicles layers of chicken embryos. Toxicology 2021; 464:152998. [PMID: 34695508 DOI: 10.1016/j.tox.2021.152998] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 09/30/2021] [Accepted: 10/19/2021] [Indexed: 11/16/2022]
Abstract
Larvicide pyriproxyfen (PPF), used in drinking water reservoirs to control Aedes mosquitoes, has already been shown as a possible cause of congenital anomalies in the central nervous system. However, the neurotoxic effects of PPF on the development of vertebrate embryos are still underexplored. Thus, the aim of this study was to investigate the effects of PPF on the morphometric parameters of the head and brain, as well as on the cell layers of the forebrain and midbrain, using embryos of Gallus domesticus as a model. Two sublethal PPF concentrations (0.01 mg/L and 10 mg/L), as defined by a survival curve, were tested. Analysis of the biometry of embryos showed significant reduction in body and brain mass and also in measurements of the head and brain. A reduction in cell layer thickness of the forebrain and midbrain was observed, accompanied by a reduction in the numerical density of cells per area. Changes in brain and head sizes and in the thickness of the cell layers of the forebrain and midbrain were significant at 10 mg/L PPF. Notably, PPF caused DNA doublestrand breaks and induced apoptosis in embryos exposed to 10 mg/L, which were accompanied by a reduction in cell proliferation. Regarding neuronal and glial differentiation, no changes were observed in the number of neurons and glial cells on the analyzed layers. Furthermore, PPF did not impact the head ossification process. These findings reveal that PPF is a strong stressor for neurodevelopment, causing damage to the cell architecture of brain vesicles.
Collapse
Affiliation(s)
- Maico Roberto Luckmann
- Departamento de Biologia Celular, Embriologia e Genética, Universidade Federal de Santa Catarina, Florianópolis, Santa Catarina, Brazil.
| | - Madson Silveira de Melo
- Departamento de Biologia Celular, Embriologia e Genética, Universidade Federal de Santa Catarina, Florianópolis, Santa Catarina, Brazil.
| | - Mirian Celene Spricigo
- Departamento de Biologia Celular, Embriologia e Genética, Universidade Federal de Santa Catarina, Florianópolis, Santa Catarina, Brazil.
| | - Norma Machado da Silva
- Departamento de Biologia Celular, Embriologia e Genética, Universidade Federal de Santa Catarina, Florianópolis, Santa Catarina, Brazil.
| | - Evelise Maria Nazari
- Departamento de Biologia Celular, Embriologia e Genética, Universidade Federal de Santa Catarina, Florianópolis, Santa Catarina, Brazil.
| |
Collapse
|
49
|
Di Paolo C, Hoffmann S, Witters H, Carrillo JC. Minimum reporting standards based on a comprehensive review of the zebrafish embryo teratogenicity assay. Regul Toxicol Pharmacol 2021; 127:105054. [PMID: 34653553 DOI: 10.1016/j.yrtph.2021.105054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 09/08/2021] [Accepted: 10/04/2021] [Indexed: 11/20/2022]
Abstract
Reproductive toxicity chemical safety assessment involves extensive use of vertebrate animals for regulatory testing purposes. Although alternative methods such as the zebrafish embryo teratogenicity assay (identified in the present manuscript by the acronym ZETA) are promising for replacing tests with mammals, challenges to regulatory application involve lack of standardization and incomplete validation. To identify key protocol aspects and ultimately support improving this situation, a comprehensive review of the literature on the level of harmonization/standardization and validation status of the ZETA has been conducted. The gaps and needed advances of the available ZETA protocols were evaluated and discussed with respect to its applicability as an alternative approach for teratogenicity assessment. Based on the review outcomes, a set of minimum reporting standards for the experimental protocol is proposed. Together with other initiatives towards implementation of alternative approaches at the screening and regulatory levels, the application of minimum reporting requirements is anticipated to support future method standardization and validation, as well as identifying potential improvement aspects. Present findings are expected to ultimately support advancing the ongoing validation initiatives towards the regulatory acceptance of the ZETA.
Collapse
Affiliation(s)
- Carolina Di Paolo
- Shell Health, Shell International, B.V. Carel van Bylandtlaan 16, 2596, HR, The Hague, the Netherlands.
| | | | - Hilda Witters
- Flemish Institute for Technological Research (VITO), Unit Health, Boeretang 200, B-2400, Mol, Belgium
| | - Juan-Carlos Carrillo
- Shell Health, Shell International, B.V. Carel van Bylandtlaan 16, 2596, HR, The Hague, the Netherlands
| |
Collapse
|
50
|
He L, Chen Y, Hu Z, Zhang Y, Wang Y, Wei J, Fan Z, Xu J, Peng M, Zhao K, Zhang H, Liu C. Evaluation of 3,4,4,9-trichlorocarbanilide to zebrafish developmental toxicity based on transcriptomics analysis. CHEMOSPHERE 2021; 278:130349. [PMID: 33838424 DOI: 10.1016/j.chemosphere.2021.130349] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 03/10/2021] [Accepted: 03/18/2021] [Indexed: 06/12/2023]
Abstract
Triclocarban (TCC), considered an endocrine-disrupting, persistent, and bioaccumulating organic matter, has attracted a great deal of attention for its pollution and health risks. However, studies on its toxicological mechanism, especially for embryo development are limited. This article explores the cardiac developmental toxicity induced in zebrafish embryos after exposure to different TCC concentrations. First, liquid chromatography-tandem mass spectrometry was used in detecting TCC in embryos in vivo after exposure to various TCC. Results showed that embryonic TCC content reached 9.23 ng after exposure to 300 μg/L TCC, the heart rates of the embryos markedly decreased, heart abnormalities significantly increased. In addition, obvious pericardial effusion was observed in the larvae. Through transcriptome sequencing, 200 differential gene expression (DGE) patterns were detected in the TCC (300 μg/L) experimental and control groups. The results of GO function analysis and KEGG pathway of DGE showed that aryl hydrocarbon receptor (AhR) activation and cyp-related genes (cyp1a, cyp1b1 and cyp1c) were significantly up-regulated. these affected the normal development of zebrafish embryonic heart, tissue edema, and hemorrhage. TCC exhibited strong cardiac teratogenic effects and developmental toxicity, which is partly related to AhR activation. Transcriptome-based results are helpful in precisely determining the risk of TCC exposure. The potential mechanism between TCC and AhR should be further investigated.
Collapse
Affiliation(s)
- Liting He
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Hubei, 430030, PR China
| | - Yuanyao Chen
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Hubei, 430030, PR China
| | - Zhiyong Hu
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Hubei, 430030, PR China
| | - Yuan Zhang
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Hubei, 430030, PR China
| | - Yongfeng Wang
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Hubei, 430030, PR China
| | - Jiajing Wei
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Hubei, 430030, PR China; Sichuan Provincial Hospital for Women and Children, Sichuan, 610000, PR China
| | - Zunpan Fan
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Hubei, 430030, PR China
| | - Jia Xu
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Hubei, 430030, PR China
| | - Meilin Peng
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Hubei, 430030, PR China
| | - Kai Zhao
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Hubei, 430030, PR China
| | - Huiping Zhang
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Hubei, 430030, PR China.
| | - Chunyan Liu
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Hubei, 430030, PR China.
| |
Collapse
|