1
|
Stougiannou TM, Christodoulou KC, Karangelis D. In Vitro Models of Cardiovascular Disease: Embryoid Bodies, Organoids and Everything in Between. Biomedicines 2024; 12:2714. [PMID: 39767621 PMCID: PMC11726960 DOI: 10.3390/biomedicines12122714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 11/18/2024] [Accepted: 11/26/2024] [Indexed: 01/16/2025] Open
Abstract
Cardiovascular disease comprises a group of disorders affecting or originating within tissues and organs of the cardiovascular system; most, if not all, will eventually result in cardiomyocyte dysfunction or death, negatively impacting cardiac function. Effective models of cardiac disease are thus important for understanding crucial aspects of disease progression, while recent advancements in stem cell biology have allowed for the use of stem cell populations to derive such models. These include three-dimensional (3D) models such as stem cell-based models of embryos (SCME) as well as organoids, many of which are frequently derived from embryoid bodies (EB). Not only can they recapitulate 3D form and function, but the developmental programs governing the self-organization of cell populations into more complex tissues as well. Many different organoids and SCME constructs have been generated in recent years to recreate cardiac tissue and the complex developmental programs that give rise to its cellular composition and unique tissue morphology. It is thus the purpose of this narrative literature review to describe and summarize many of the recently derived cardiac organoid models as well as their use for the recapitulation of genetic and acquired disease. Owing to the cellular composition of the models examined, this review will focus on disease and tissue injury associated with embryonic/fetal tissues.
Collapse
Affiliation(s)
- Theodora M. Stougiannou
- Department of Cardiothoracic Surgery, Democritus University of Thrace University General Hospital, 68100 Alexandroupolis, Greece; (K.C.C.); (D.K.)
| | | | | |
Collapse
|
2
|
Calado AM, Seixas F, Pires MDA. Updating an Overview of Teratology. Methods Mol Biol 2024; 2753:1-38. [PMID: 38285332 DOI: 10.1007/978-1-0716-3625-1_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2024]
Abstract
In this chapter, the authors aim to update an overview of the principles of teratology, beginning with the definition of teratology, the critical point at which this process occurs, and some of the most common etiological agents that improve our understanding of teratology.Modern teratology has greatly improved in recent years with advances in new methods in molecular biology, toxicology, animal laboratory science, and genetics, increasing our knowledge of ambient influences. Nevertheless, there is a lot to do to reduce the influence of hazardous intervening agents, whether they target our genetics or not, that can negatively affect pregnancy and induce congenital development disorders, including morphological, biochemical, or behavioral defects.Certain agents might indeed be related to certain defects, but we have not been able to identify the cause of most congenital defects, which highlights the importance of finding and testing out new genetics techniques and conducting laboratory animal science to unravel the etiology and pathogenicity of each congenital defect.
Collapse
Affiliation(s)
- Ana Margarida Calado
- Animal and Veterinary Research Centre (CECAV), UTAD, and Associate Laboratory for Animal and Veterinary Science (AL4Animals), Department of Veterinary Sciences, School of Agrarian and Veterinary Sciences (ECAV), University of Trás-os-Montes e Alto Douro (UTAD), Vila Real, Portugal
| | - Fernanda Seixas
- Animal and Veterinary Research Centre (CECAV), UTAD, and Associate Laboratory for Animal and Veterinary Science (AL4Animals), Department of Veterinary Sciences, School of Agrarian and Veterinary Sciences (ECAV), University of Trás-os-Montes e Alto Douro (UTAD), Vila Real, Portugal
| | - Maria Dos Anjos Pires
- Animal and Veterinary Research Centre (CECAV), UTAD, and Associate Laboratory for Animal and Veterinary Science (AL4Animals), Department of Veterinary Sciences, School of Agrarian and Veterinary Sciences (ECAV), University of Trás-os-Montes e Alto Douro (UTAD), Vila Real, Portugal.
| |
Collapse
|
3
|
Kakhki S, Ahmadi-Soleimani SM. Experimental data on lithium salts: From neuroprotection to multi-organ complications. Life Sci 2022; 306:120811. [PMID: 35850248 DOI: 10.1016/j.lfs.2022.120811] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 07/03/2022] [Accepted: 07/12/2022] [Indexed: 10/17/2022]
Abstract
Lithium-salts stand on the first line of therapy for the management of specific psychiatric conditions, mainly bipolar mood disorder. It is also known to protect the brain against neurodegenerative processes such as Alzheimer's disease. Despite the mentioned merits, recent studies have revealed that high dose or prolonged lithium intake deteriorate the function of multiple key organs including heart, ovaries, thyroid gland and kidneys. Mechanistically, both positive and negative effects of lithium are mediated through methylation of β-catenin nuclear-binding proteins which is potentiated by lithium-induced inhibition of GSK-3 or inositol monophosphatase. The current study briefly reviews the recent experimental data on lithium therapy considering both positive (i.e., neuroprotective) and negative aspects. In this regard, the question is that whether doses of lithium administered in experimental research are comparable with the therapeutic doses, as currently prescribed in clinical practice. It should be noted that the experimental data on animal studies, as widely reviewed here, could not be directly generalized to clinic. This is mainly because lithium doses applied in animal models are usually higher than therapeutic doses, however, there are evidence indicating that even animal to human translated doses of lithium, cause serious complications and this has been reported by meta-analyses on human studies. Therefore, we suggest the clinicians to use lithium-salts with precaution particularly in pregnancy and precisely adjust lithium concentration considering the patient's general health status to avoid lithium toxicity. Indeed, alternative approaches are recommended when the subject is pregnant, prolonged therapy is required or specific organ dysfunction is diagnosed.
Collapse
Affiliation(s)
- Samaneh Kakhki
- Department of Clinical Biochemistry, School of Paramedical Sciences, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran
| | - S Mohammad Ahmadi-Soleimani
- Department of Physiology, School of Paramedical Sciences, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran; Neuroscience Research Center, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran.
| |
Collapse
|
4
|
Hoang P, Kowalczewski A, Sun S, Winston TS, Archilla AM, Lemus SM, Ercan-Sencicek AG, Gupta AR, Liu W, Kontaridis MI, Amack JD, Ma Z. Engineering spatial-organized cardiac organoids for developmental toxicity testing. Stem Cell Reports 2021; 16:1228-1244. [PMID: 33891865 PMCID: PMC8185451 DOI: 10.1016/j.stemcr.2021.03.013] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 03/13/2021] [Accepted: 03/15/2021] [Indexed: 12/16/2022] Open
Abstract
Emerging technologies in stem cell engineering have produced sophisticated organoid platforms by controlling stem cell fate via biomaterial instructive cues. By micropatterning and differentiating human induced pluripotent stem cells (hiPSCs), we have engineered spatially organized cardiac organoids with contracting cardiomyocytes in the center surrounded by stromal cells distributed along the pattern perimeter. We investigated how geometric confinement directed the structural morphology and contractile functions of the cardiac organoids and tailored the pattern geometry to optimize organoid production. Using modern data-mining techniques, we found that pattern sizes significantly affected contraction functions, particularly in the parameters related to contraction duration and diastolic functions. We applied cardiac organoids generated from 600 μm diameter circles as a developmental toxicity screening assay and quantified the embryotoxic potential of nine pharmaceutical compounds. These cardiac organoids have potential use as an in vitro platform for studying organoid structure-function relationships, developmental processes, and drug-induced cardiac developmental toxicity. Micropattern-based geometric confinement directs cardiac organoid development Cardiac organoid structure-function relationships are guided by organoid size Cardiac organoids can be used as an in vitro embryotoxicity assessment tool
Collapse
Affiliation(s)
- Plansky Hoang
- Department of Biomedical and Chemical Engineering, Syracuse University, Syracuse, NY, USA; BioInspired Syracuse Institute for Material and Living Systems, Syracuse, NY, USA
| | - Andrew Kowalczewski
- Department of Biomedical and Chemical Engineering, Syracuse University, Syracuse, NY, USA; BioInspired Syracuse Institute for Material and Living Systems, Syracuse, NY, USA
| | - Shiyang Sun
- Department of Biomedical and Chemical Engineering, Syracuse University, Syracuse, NY, USA; BioInspired Syracuse Institute for Material and Living Systems, Syracuse, NY, USA
| | - Tackla S Winston
- Department of Biomedical and Chemical Engineering, Syracuse University, Syracuse, NY, USA; BioInspired Syracuse Institute for Material and Living Systems, Syracuse, NY, USA
| | - Adriana M Archilla
- Department of Biomedical and Chemical Engineering, Syracuse University, Syracuse, NY, USA; BioInspired Syracuse Institute for Material and Living Systems, Syracuse, NY, USA
| | - Stephanie M Lemus
- Department of Biomedical and Chemical Engineering, Syracuse University, Syracuse, NY, USA; BioInspired Syracuse Institute for Material and Living Systems, Syracuse, NY, USA
| | | | - Abha R Gupta
- Department of Pediatrics, Child Study Center, Yale School of Medicine, New Haven, CT, USA
| | - Wenzhong Liu
- Department of Pediatrics, Child Study Center, Yale School of Medicine, New Haven, CT, USA
| | | | - Jeffrey D Amack
- BioInspired Syracuse Institute for Material and Living Systems, Syracuse, NY, USA; Department of Cell and Developmental Biology, State University of New York Upstate Medical University, Syracuse, NY, USA
| | - Zhen Ma
- Department of Biomedical and Chemical Engineering, Syracuse University, Syracuse, NY, USA; BioInspired Syracuse Institute for Material and Living Systems, Syracuse, NY, USA.
| |
Collapse
|
5
|
Abstract
In this chapter, we provide an overview of the basic principles of teratology, beginning with its definition, the critical point for teratogenesis to occur and the most evident etiological agents to improve the understanding of this science.Teratology is a recent science that began in the early twentieth century, and has greatly improved over the recent years with the advancements in molecular biology, toxicology, animal laboratory science, and genetics, as well as the improvement on the knowledge of the environmental influences.Nevertheless, more work is required to reduce the influence of hazardous products that could be deleterious during pregnancy, thus reducing teratogenic defects in the newborn. While some teratogenic defects are attributed to their agents with certainty, the same for a lot of other such defects is lacking, necessitating consistent studies to decipher the influence of various teratogenic agents on their corresponding teratogenic defects. It is here that the laboratory animal science is of great importance both in the present and in the future.
Collapse
Affiliation(s)
- Ana M Calado
- Departamento de Ciências Veterinárias, Universidade de Trás-os-Montes e Alto Douro (UTAD), Vila Real, Portugal.,Centro de Ciência Animal e Veterinária (CECAV), Universidade de Trás-os-Montes e Alto Douro (UTAD), Vila Real, Portugal
| | - Maria Dos Anjos Pires
- Departamento de Ciências Veterinárias, Universidade de Trás-os-Montes e Alto Douro (UTAD), Vila Real, Portugal. .,Centro de Ciência Animal e Veterinária (CECAV), Universidade de Trás-os-Montes e Alto Douro (UTAD), Vila Real, Portugal.
| |
Collapse
|
6
|
Al-Rubai AJ, Wigmore P, Pratten MK. Evaluation of a human neural stem cell culture method for prediction of the neurotoxicity of anti-epileptics. Altern Lab Anim 2017; 45:67-81. [PMID: 28598192 DOI: 10.1177/026119291704500202] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Human neural stem cells have been proposed as an in vitro model to predict neurotoxicity. In this study, the potential of in vitro cultures of human-derived neurospheres to predict the effects of various anti-epileptic drugs (sodium valproate, phenytoin, carbamazepine and phenobarbitone) was evaluated. In general, these drugs had no significant effects on cell viability, total cellular protein, and neuronal process length at low doses, but at high doses these parameters were reduced significantly. Therapeutic doses of sodium valproate and phenytoin had a clear effect on neurosphere size and cell migration, with a significant reduction in both parameters when compared with the control group. The other drugs (carbamazepine and phenobarbitone) reduced neurosphere size and cell migration only at higher doses. The expression levels of glial fibrillary protein and tubulin III, which were used to identify astrocytes and neuronal cells, respectively, were reduced in a dose-dependent manner that became significant at high doses. The levels of glial fibrillary protein did not indicate any occurrence of reactive astrocytosis.
Collapse
Affiliation(s)
- Abdal-Jabbar Al-Rubai
- College of Medicine, Almustansiriyah University, Baghdad, Iraq and School of Life Sciences, The University of Nottingham, Queen's Medical Centre, Nottingham, UK
| | - Peter Wigmore
- School of Life Sciences, The University of Nottingham, Queen's Medical Centre, Nottingham, UK
| | - Margaret K Pratten
- School of Life Sciences, The University of Nottingham, Queen's Medical Centre, Nottingham, UK
| |
Collapse
|
7
|
Mohammed OJ, Latif ML, Pratten MK. Diabetes-induced effects on cardiomyocytes in chick embryonic heart micromass and mouse embryonic D3 differentiated stem cells. Reprod Toxicol 2017; 69:242-253. [PMID: 28286266 DOI: 10.1016/j.reprotox.2017.03.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Revised: 03/03/2017] [Accepted: 03/07/2017] [Indexed: 11/16/2022]
Abstract
Diabetes mellitus during pregnancy is a considerable medical challenge, since it is related to augmented morbidity and mortality concerns for both the fetus and the pregnant woman. Records show that the etiology of diabetic embryopathy is complicated, as many teratological factors might be involved in the mechanisms of diabetes mellitus-induced congenital malformation. In this study, the potential cardiotoxic effect of hyperglycemia with hyperketonemia was investigated by using two in vitro models; primary chick embryonic cardiomyocytes and stem cell derived cardiomyocytes, where adverse effects were recorded in both systems. The cells were evaluated by changes in beating activity, cell activity, protein content, ROS production, DNA damage and differentiating stem cell migration. The diabetic formulae used produced an increase in DNA damage and a decline in cell migration in mouse embryonic stem cells. These results provide an additional insight into adverse effects during gestational diabetes mellitus and a recommendation for expectant mothers and maternity staff to monitor glycaemic levels months ahead of conception. This study also supports the recommendation of using antioxidants during pregnancy to prevent DNA damage by the production of ROS, which might result in heart defects as well as other developmental anomalies.
Collapse
Affiliation(s)
- Omar J Mohammed
- School of Life Sciences, Faculty of Medicine and Health Sciences, Medical School, University of Nottingham, Nottingham NG7 2UH, United Kingdom
| | - Muhammad Liaque Latif
- School of Life Sciences, Faculty of Medicine and Health Sciences, Medical School, University of Nottingham, Nottingham NG7 2UH, United Kingdom
| | - Margaret K Pratten
- School of Life Sciences, Faculty of Medicine and Health Sciences, Medical School, University of Nottingham, Nottingham NG7 2UH, United Kingdom.
| |
Collapse
|
8
|
Skalova S, Svadlakova T, Shaikh Qureshi WM, Dev K, Mokry J. Induced pluripotent stem cells and their use in cardiac and neural regenerative medicine. Int J Mol Sci 2015; 16:4043-67. [PMID: 25689424 PMCID: PMC4346943 DOI: 10.3390/ijms16024043] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2014] [Revised: 01/27/2015] [Accepted: 02/02/2015] [Indexed: 12/20/2022] Open
Abstract
Stem cells are unique pools of cells that are crucial for embryonic development and maintenance of adult tissue homeostasis. The landmark Nobel Prize winning research by Yamanaka and colleagues to induce pluripotency in somatic cells has reshaped the field of stem cell research. The complications related to the usage of pluripotent embryonic stem cells (ESCs) in human medicine, particularly ESC isolation and histoincompatibility were bypassed with induced pluripotent stem cell (iPSC) technology. The human iPSCs can be used for studying embryogenesis, disease modeling, drug testing and regenerative medicine. iPSCs can be diverted to different cell lineages using small molecules and growth factors. In this review we have focused on iPSC differentiation towards cardiac and neuronal lineages. Moreover, we deal with the use of iPSCs in regenerative medicine and modeling diseases like myocardial infarction, Timothy syndrome, dilated cardiomyopathy, Parkinson’s, Alzheimer’s and Huntington’s disease. Despite the promising potential of iPSCs, genome contamination and low efficacy of cell reprogramming remain significant challenges.
Collapse
Affiliation(s)
- Stepanka Skalova
- Department of Histology and Embryology, Medical Faculty in Hradec Kralove, Charles University in Prague, Simkova 870, Hradec Kralove 50038, Czech Republic.
| | - Tereza Svadlakova
- Department of Histology and Embryology, Medical Faculty in Hradec Kralove, Charles University in Prague, Simkova 870, Hradec Kralove 50038, Czech Republic.
| | - Wasay Mohiuddin Shaikh Qureshi
- Department of Histology and Embryology, Medical Faculty in Hradec Kralove, Charles University in Prague, Simkova 870, Hradec Kralove 50038, Czech Republic.
| | - Kapil Dev
- Department of Histology and Embryology, Medical Faculty in Hradec Kralove, Charles University in Prague, Simkova 870, Hradec Kralove 50038, Czech Republic.
| | - Jaroslav Mokry
- Department of Histology and Embryology, Medical Faculty in Hradec Kralove, Charles University in Prague, Simkova 870, Hradec Kralove 50038, Czech Republic.
| |
Collapse
|
9
|
Shaikh Qureshi WM, Latif ML, Parker TL, Pratten MK. Evaluation of Bupropion Hydrochloride Developmental Cardiotoxic Effects in Chick Cardiomyocyte Micromass Culture and stem cell derived Cardiomyocyte Systems. ACTA ACUST UNITED AC 2014; 101:371-8. [DOI: 10.1002/bdrb.21121] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2014] [Accepted: 08/04/2014] [Indexed: 01/23/2023]
Affiliation(s)
- W. M. Shaikh Qureshi
- School of Biomedical Sciences; Queen's Medical Centre; University of Nottingham; Nottinghamshire United Kingdom
| | - Muhammad Liaque Latif
- School of Biomedical Sciences; Queen's Medical Centre; University of Nottingham; Nottinghamshire United Kingdom
| | - Terry L. Parker
- School of Biomedical Sciences; Queen's Medical Centre; University of Nottingham; Nottinghamshire United Kingdom
| | - Margaret K. Pratten
- School of Biomedical Sciences; Queen's Medical Centre; University of Nottingham; Nottinghamshire United Kingdom
| |
Collapse
|