1
|
Abruzzese GA, Arbocco FCV, Ferrer MJ, Silva AF, Motta AB. Role of Hormones During Gestation and Early Development: Pathways Involved in Developmental Programming. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1428:31-70. [PMID: 37466768 DOI: 10.1007/978-3-031-32554-0_2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2023]
Abstract
Accumulating evidence suggests that an altered maternal milieu and environmental insults during the intrauterine and perinatal periods of life affect the developing organism, leading to detrimental long-term outcomes and often to adult pathologies through programming effects. Hormones, together with growth factors, play critical roles in the regulation of maternal-fetal and maternal-neonate interfaces, and alterations in any of them may lead to programming effects on the developing organism. In this chapter, we will review the role of sex steroids, thyroid hormones, and insulin-like growth factors, as crucial factors involved in physiological processes during pregnancy and lactation, and their role in developmental programming effects during fetal and early neonatal life. Also, we will consider epidemiological evidence and data from animal models of altered maternal hormonal environments and focus on the role of different tissues in the establishment of maternal and fetus/infant interaction. Finally, we will identify unresolved questions and discuss potential future research directions.
Collapse
Affiliation(s)
- Giselle Adriana Abruzzese
- Laboratorio de Fisio-patología ovárica, Centro de Estudios Farmacológicos y Botánicos (CEFYBO), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Facultad de Medicina, Universidad de Buenos Aires (UBA), Buenos Aires, Argentina
| | - Fiorella Campo Verde Arbocco
- Laboratorio de Hormonas y Biología del Cáncer, Instituto de Medicina y Biología Experimental de Cuyo (IMBECU), CONICET, Mendoza, Argentina
- Laboratorio de Reproducción y Lactancia, IMBECU, CONICET, Mendoza, Argentina
- Facultad de Ciencias Médicas, Universidad de Mendoza, Mendoza, Argentina
| | - María José Ferrer
- Laboratorio de Fisio-patología ovárica, Centro de Estudios Farmacológicos y Botánicos (CEFYBO), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Facultad de Medicina, Universidad de Buenos Aires (UBA), Buenos Aires, Argentina
| | - Aimé Florencia Silva
- Laboratorio de Fisio-patología ovárica, Centro de Estudios Farmacológicos y Botánicos (CEFYBO), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Facultad de Medicina, Universidad de Buenos Aires (UBA), Buenos Aires, Argentina
| | - Alicia Beatriz Motta
- Laboratorio de Fisio-patología ovárica, Centro de Estudios Farmacológicos y Botánicos (CEFYBO), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Facultad de Medicina, Universidad de Buenos Aires (UBA), Buenos Aires, Argentina
| |
Collapse
|
2
|
Gestational Sympathetic Stress Programs the Fertility of Offspring: A Rat Multi-Generation Study. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19053044. [PMID: 35270735 PMCID: PMC8910085 DOI: 10.3390/ijerph19053044] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 02/28/2022] [Accepted: 03/03/2022] [Indexed: 02/06/2023]
Abstract
The exposure to sympathetic stress during the entire period of gestation (4 °C/3 h/day) strongly affects the postnatal reproductive performance of the first generation of female offspring and their fertility capacity. The aim of this work was to determine whether this exposure to sympathetic stress affects the reproductive capacity of the next three generations of female offspring as adults. Adult female Sprague–Dawley rats were mated with males of proven fertility. We studied the reproductive capacity of the second, third, and fourth generations of female offspring (the percentage of pregnancy and the number and weight of female offspring). The estrus cycle activity of the progenies was studied, and a morphological analysis of the ovaries was carried out to study the follicular population. The second generation had a lower number of pups per litter and a 20% decrease in fertile capacity. The estrus cycle activity of the third generation decreased even more, and they had a 50% decrease in their fertile capacity, and their ovaries presented polycystic morphology. The fourth generation however, recovered their reproductive capacity but not the amount of newborns pups. Most probably, the chronic intrauterine exposure to the sympathetic stress programs the female gonads to be stressed in a stressful environment; since the fourth generation was the first born with no direct exposure to stress during development, it opens studies on intrauterine factors affecting early follicular development.
Collapse
|
3
|
Corrie L, Gulati M, Singh SK, Kapoor B, Khursheed R, Awasthi A, Vishwas S, Chellappan DK, Gupta G, Jha NK, Anand K, Dua K. Recent updates on animal models for understanding the etiopathogenesis of polycystic ovarian syndrome. Life Sci 2021; 280:119753. [PMID: 34171379 DOI: 10.1016/j.lfs.2021.119753] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 06/16/2021] [Accepted: 06/17/2021] [Indexed: 12/17/2022]
Abstract
Polycystic ovarian syndrome (PCOS) is the primary cause of female infertility affecting several women worldwide. Changes in hormonal functions such as hyperandrogenism are considered a significant factor in developing PCOS in women. In addition, many molecular pathways are involved in the pathogenesis of PCOS in women. To have better insights about PCOS, it is data from clinical studies carried on women suffering from PCOS should be collected. However, this approach has several implications, including ethical considerations, cost involved and availability of subject. Moreover, during the early drug development process, it is always advisable to use non-human models mimicking human physiology as they are less expensive, readily available, have a shorter gestation period and less risk involved. Many animal models have been reported that resemble the PCOS pathways in human subjects. However, the models developed on rats and mice are more preferred over other rodent/non-rodent models due to their closer resemblance with human PCOS development mechanism. The most extensively reported PCOS models for rats and mice include those induced by using testosterone, letrozole and estradiol valerate. As the pathophysiology of PCOS is complex, none of the explored models completely surrogates the PCOS related conditions occurring in women. Hence, there is a need to develop an animal model that can resemble the pathophysiology of PCOS in women. The review focuses on various animal models explored to understand the pathophysiology of PCOS. The article also highlights some environmental and food-related models that have been used to induce PCOS.
Collapse
Affiliation(s)
- Leander Corrie
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab 144411, India
| | - Monica Gulati
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab 144411, India
| | - Sachin Kumar Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab 144411, India.
| | - Bhupinder Kapoor
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab 144411, India
| | - Rubiya Khursheed
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab 144411, India
| | - Ankit Awasthi
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab 144411, India
| | - Sukriti Vishwas
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab 144411, India
| | - Dinesh Kumar Chellappan
- Department of Life Sciences, School of Pharmacy, International Medical University, Bukit Jalil, 57000 Kuala Lumpur, Malaysia
| | - Gaurav Gupta
- School of Pharmacy, Suresh Gyan Vihar University, Mahal Road, Jagatpura, Jaipur, India
| | - Niraj Kumar Jha
- Department of Biotechnology, School of Engineering & Technology (SET), Sharda University, Greater Noida, Uttar Pradesh 201310, India
| | - Krishnan Anand
- Department of Chemical Pathology, School of Pathology, Faculty of Health Sciences, National Health Laboratory Service, University of the Free State, Bloemfontein, South Africa
| | - Kamal Dua
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Australia
| |
Collapse
|
4
|
Miazgowski T, Martopullo I, Widecka J, Miazgowski B, Brodowska A. National and regional trends in the prevalence of polycystic ovary syndrome since 1990 within Europe: the modeled estimates from the Global Burden of Disease Study 2016. Arch Med Sci 2021; 17:343-351. [PMID: 33747269 PMCID: PMC7959048 DOI: 10.5114/aoms.2019.87112] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2018] [Accepted: 02/10/2019] [Indexed: 01/10/2023] Open
Abstract
INTRODUCTION The exact prevalence of polycystic ovary syndrome (PCOS) is difficult to assess due to the clinical heterogeneity of this condition, the lack of a universal definition as well as the lack of studies comparing differences within and between ethnic groups across geographical regions. MATERIAL AND METHODS Using a modeling approach, we analyzed the data from Global Burden of Disease Study 2016 and extracted the national and regional estimates on PCOS prevalence since 1990 in females aged 15-49 years by country and three major European regions: Western, Central, and Eastern. RESULTS The average prevalence of PCOS in Europe was 276.4 cases per 100,000 (95% uncertainty interval (UI): 207.8-363.2). The estimates varied markedly across countries and regions, with the highest rates per 100,000 in the Czech Republic (460.6) and the lowest in Sweden (34.10); other Nordic countries, Germany, and the UK had relatively low rates as well. The rates in Central and Eastern Europe were more than three times higher than those in Western countries. They were comparable among Eastern countries, ranging from 406.4 in Lithuania to 443.1 in Russia. Within Central Europe, PCOS prevalence was lowest in Turkey and Albania, while in the majority of the remaining countries, the prevalence ranged between 420 and 440 per 100,000. Between 1990 and 2016, the rates across European regions were relatively stable. CONCLUSIONS We found highly variable national and regional prevalence of PCOS among European females. Our estimates encourage the search at the population level for new environmental and genetic determinants of PCOS.
Collapse
Affiliation(s)
- Tomasz Miazgowski
- Department of Hypertension and Internal Diseases, Pomeranian Medical University, Szczecin, Poland
| | - Ira Martopullo
- Institute for Health Metrics and Evaluation, University of Washington, Seattle, WA, USA
| | | | - Bartosz Miazgowski
- Doctoral Study, Pomeranian Medical University, Szczecin, Poland
- Center for Innovation in Medical Education, Pomeranian Medical University, Szczecin, Poland
| | - Agnieszka Brodowska
- Department of Gynecology, Endocrinology and Gynecologic Oncology, Pomeranian Medical University, Szczecin, Poland
| |
Collapse
|
5
|
Álvarez D, Ceballo K, Olguín S, Martinez-Pinto J, Maliqueo M, Fernandois D, Sotomayor-Zárate R, Cruz G. Prenatal metformin treatment improves ovarian function in offspring of obese rats. J Endocrinol 2018; 239:325-338. [PMID: 30334444 DOI: 10.1530/joe-18-0352] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Accepted: 09/10/2018] [Indexed: 01/05/2023]
Abstract
Maternal obesity causes a wide range of impairment in offspring, such as metabolic and reproductive dysfunctions. We previously demonstrated that female offspring of obese rats have increased serum estradiol levels during early postnatal life, probably because of decreased hepatic cytochrome P450 3A2 levels, which could lead to early onset of puberty and polycystic ovary condition in adulthood. Using metformin during pregnancy and nursing to improve the metabolic status of obese mothers could prevent the sequence of events that lead to an increase in postnatal serum estradiol levels in female offspring and, hence, reproductive dysfunction. We found that metformin prevented an increase in serum estradiol levels at postnatal day 14 in female offspring of obese mothers, which was associated with a restoration of hepatic cytochrome P450 3A2 levels to control values. Treatment using metformin could not prevent advanced puberty, but we observed that the number of antral follicles, follicular cysts and multi-oocyte follicles returned to control values in the female offspring of obese mothers treated with metformin. We also observed an increase in the levels of norepinephrine and the norepinephrine metabolite 3-methoxy-4-hydroxyphenylglycol in the ovaries, indicating increased sympathetic activity in female offspring induced by an obesogenic uterine environment. We found that this effect was prevented by metformin administration. From the results of this study, we concluded that metformin administration to obese mothers during pregnancy and nursing partially prevents ovarian dysfunction in female offspring during adulthood.
Collapse
Affiliation(s)
- Daniela Álvarez
- Laboratorio de Alteraciones Reproductivas y Metabólicas, Centro de Neurobiología y Plasticidad Cerebral (CNPC), Instituto de Fisiología, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
| | - Karina Ceballo
- Laboratorio de Alteraciones Reproductivas y Metabólicas, Centro de Neurobiología y Plasticidad Cerebral (CNPC), Instituto de Fisiología, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
| | - Sofía Olguín
- Laboratorio de Alteraciones Reproductivas y Metabólicas, Centro de Neurobiología y Plasticidad Cerebral (CNPC), Instituto de Fisiología, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
| | - Jonathan Martinez-Pinto
- Laboratorio de Neuroquímica y Neurofarmacología, Centro de Neurobiología y Plasticidad Cerebral (CNPC), Instituto de Fisiología, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
| | - Manuel Maliqueo
- Department of Medicine West Division, Endocrinology and Metabolism Laboratory, School of Medicine, University of Chile, Santiago, Chile
| | - Daniela Fernandois
- Laboratorio de Alteraciones Reproductivas y Metabólicas, Centro de Neurobiología y Plasticidad Cerebral (CNPC), Instituto de Fisiología, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
| | - Ramón Sotomayor-Zárate
- Laboratorio de Neuroquímica y Neurofarmacología, Centro de Neurobiología y Plasticidad Cerebral (CNPC), Instituto de Fisiología, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
| | - Gonzalo Cruz
- Laboratorio de Alteraciones Reproductivas y Metabólicas, Centro de Neurobiología y Plasticidad Cerebral (CNPC), Instituto de Fisiología, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
| |
Collapse
|
6
|
Abruzzese GA, Crisosto N, De Grava Kempinas W, Sotomayor-Zárate R. Developmental programming of the female neuroendocrine system by steroids. J Neuroendocrinol 2018; 30:e12632. [PMID: 29968423 DOI: 10.1111/jne.12632] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 06/03/2018] [Accepted: 07/01/2018] [Indexed: 12/30/2022]
Abstract
Developmental programming refers to processes that occur during early life that may have long-term consequences, modulating adult health and disease. Complex diseases, such as diabetes, cancer and cardiovascular disease, have a high prevalence in different populations, are multifactorial, and may have a strong environmental component. The environment interacts with organisms, affecting their behaviour, morphology and physiology. This interaction may induce permanent or long-term changes, and organisms may be more susceptible to environmental factors during certain developmental stages, such as the prenatal and early postnatal periods. Several factors have been identified as responsible for inducing the reprogramming of various reproductive and nonreproductive tissues. Among them, both natural and synthetic steroids, such as endocrine disruptors, are known to have either detrimental or positive effects on organisms depending on the dose of exposure, stage of development and biological sexual background. The present review focuses on the action of steroids and endocrine disruptors as agents involved in developmental programming and on their modulation and effects on female neuroendocrine functions.
Collapse
Affiliation(s)
- Giselle Adriana Abruzzese
- Laboratorio de Fisio-patología Ovárica, Centro de Estudios Farmacológicos y Botánicos (CEFYBO), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Facultad de Medicina, Universidad de Buenos Aires (UBA), Buenos Aires, Argentina
| | - Nicolás Crisosto
- Endocrinology and Metabolism Laboratory West Division, School of Medicine, University of Chile, Santiago, Chile
- Endocrinology Unit, Clínica Las Condes, Santiago, Chile
| | - Wilma De Grava Kempinas
- Laboratory of Reproductive and Developmental Biology and Toxicology, Department of Morphology, Institute of Biosciences, Universidade Estadual Paulista-UNESP, Botucatu, Sao Paulo, Brazil
| | - Ramón Sotomayor-Zárate
- Laboratorio de Neuroquímica y Neurofarmacología, Centro de Neurobiología y Fisiopatología Integrativa, Instituto de Fisiología, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
| |
Collapse
|
7
|
Hale MD, McCoy JA, Doheny BM, Galligan TM, Guillette LJ, Parrott BB. Embryonic estrogen exposure recapitulates persistent ovarian transcriptional programs in a model of environmental endocrine disruption†. Biol Reprod 2018; 100:149-161. [DOI: 10.1093/biolre/ioy165] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Accepted: 07/12/2018] [Indexed: 11/15/2022] Open
Affiliation(s)
- Matthew D Hale
- Savannah River Ecology Laboratory, Aiken, South Carolina, USA
- Odum School of Ecology, University of Georgia, Athens, Georgia, USA
| | | | - Brenna M Doheny
- School of Public Health, University of Minnesota, Minneapolis, Minnesota, USA
| | - Thomas M Galligan
- Department of Fish and Wildlife Conservation, Virginia Tech, Blacksburg, Virginia, USA
| | - Louis J Guillette
- Marine Biomedicine and Environmental Sciences Program, Hollings Marine Laboratory, Medical University of South Carolina, Charleston, South Carolina, USA
- Department of Obstetrics and Gynecology, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Benjamin B Parrott
- Savannah River Ecology Laboratory, Aiken, South Carolina, USA
- Odum School of Ecology, University of Georgia, Athens, Georgia, USA
| |
Collapse
|