1
|
LaPointe S, Lee JC, Nagy ZP, Shapiro DB, Chang HH, Wang Y, Russell AG, Hipp HS, Gaskins AJ. Air pollution exposure in vitrified oocyte donors and male recipient partners in relation to fertilization and embryo quality. ENVIRONMENT INTERNATIONAL 2024; 193:109147. [PMID: 39547088 PMCID: PMC11890188 DOI: 10.1016/j.envint.2024.109147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 11/08/2024] [Accepted: 11/11/2024] [Indexed: 11/17/2024]
Abstract
BACKGROUND Studies on air pollution and outcomes of in vitro fertilization (IVF) have focused on couples undergoing autologous IVF, in which it is challenging to disentangle maternal and paternal exposures during gametogenesis. We sought to evaluate the independent associations between air pollution exposure during oogenesis and spermatogenesis on fertilization and embryo quality in non-identified donor oocyte IVF cycles. METHODS Our study included 500 oocyte donors and 915 male recipient partners who contributed 1,095 oocyte thaw cycles (2008-2019). Daily ambient air pollutant exposure was estimated using spatio-temporal models based on residential address and averaged over folliculogenesis (i.e., three months prior to initiation of controlled ovarian stimulation), controlled ovarian stimulation, and spermatogenesis (i.e., 72 days prior to oocyte thaw). We used multivariable generalized estimating equations to estimate the adjusted odds ratios (aOR) and 95 % confidence intervals (CI) for an interquartile range increase in pollutant exposure in relation to the proportion of oocytes surviving thaw, oocytes fertilized, and usable embryos. RESULTS Oocyte donors with higher exposure to organic carbon (OC) (aOR = 0.86 95 %CI 0.79,0.94) and particulate matter < 10 µm (aOR = 0.69 95 %CI 0.54,0.90) during folliculogenesis had a lower proportion of oocytes surviving thaw. During ovarian stimulation, higher particulate matter < 2.5 µm (aOR = 0.78 95 %CI 0.66, 0.91), nitrate (aOR = 0.83 95 % CI 0.69,0.99), and OC (aOR = 0.86 95 % CI 0.80,0.93) exposure was associated with a lower proportion of surviving oocytes while nitrogen dioxide (aOR = 1.11 95 %CI 1.00,1.23) and ozone (aOR = 1.19 95 %CI 1.04,1.37) exposure was associated with a higher proportion of fertilized oocytes and usable embryos. Elemental carbon (aOR = 0.93 95 %CI 0.87,1.00) and OC (aOR = 0.95 95 %CI 0.90,1.00) exposure during spermatogenesis was associated with a slightly lower proportion of usable embryos. On the day of oocyte thaw, higher ambient OC at the IVF clinic was associated with lower oocyte survival and higher ozone was associated with lower fertilization. CONCLUSIONS Both maternal and paternal air pollution exposures during gametogenesis have independent, largely detrimental, effects on early embryological outcomes.
Collapse
Affiliation(s)
- Sarah LaPointe
- Department of Epidemiology, Emory University Rollins School of Public Heath, Atlanta, GA, USA.
| | - Jaqueline C Lee
- Division of Reproductive Endocrinology and Infertility, Department of Gynecology and Obstetrics, Emory University School of Medicine, Atlanta, GA, USA
| | - Zsolt P Nagy
- Reproductive Biology Associates, Sandy Springs, GA, USA
| | | | - Howard H Chang
- Department of Biostatistics and Bioinformatics, Emory University Rollins School of Public Heath, Atlanta, GA, USA
| | - Yifeng Wang
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - Armistead G Russell
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - Heather S Hipp
- Division of Reproductive Endocrinology and Infertility, Department of Gynecology and Obstetrics, Emory University School of Medicine, Atlanta, GA, USA
| | - Audrey J Gaskins
- Department of Epidemiology, Emory University Rollins School of Public Heath, Atlanta, GA, USA
| |
Collapse
|
2
|
Park Y, Lee I, Lee MJ, Park H, Jung GS, Kim N, Im W, Kim H, Lee JH, Cho S, Choi YS. Particulate matter exposure induces adverse effects on endometrium and fertility via aberrant inflammatory and apoptotic pathways in vitro and in vivo. CHEMOSPHERE 2024; 361:142466. [PMID: 38810796 DOI: 10.1016/j.chemosphere.2024.142466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 04/27/2024] [Accepted: 05/26/2024] [Indexed: 05/31/2024]
Abstract
This study aimed to evaluate the adverse effects of particulate matter (PM) exposure on endometrial cells and fertility and to identify possible underlying mechanisms. Thirteen women (aged 15-52 years) were included in this study. Enrolled patients underwent laparoscopic surgery at Gangnam Severance Hospital between 1 January and 31 December 2021. For in vivo experiments, 36 female and nine male C57BL/6 mice were randomly divided into control(vehicle), low-dose(10 mg/kg/d), and high-dose exposure groups(20 mg/kg/d). PM was inhaled nasally for four weeks and natural mating was performed. NIST® SRM® 1648a was used for PM exposure. qRT-PCR, western blotting and Masson's trichrome staining were performed. PM treatment in human endometrial stromal cells induced inflammation with significant upregulation of IL-1β, p-NF-kB, and p-c-Jun compared to those of controls. Additionally, PM treatment significantly increased apoptosis in human endometrial stromal cells by downregulating p-AKT and upregulating p-p53/p53, Cas-3, BAX/Bcl-2, p-AMPK, and p-ERK. After PM treatment, the relative expression of IL-1β, IL-6, TNF-α, p-NF-κB, p-c-Jun, and p-Nrf2/Nrf2 significantly increased in murine endometrium compared to those of the controls. Expression of apoptotic proteins p53, p27, and Cas-3, was also significantly elevated in murine endometrium of the PM exposure group compared to that of the controls. A significant increase in expression of procollagen Ⅰ, and Masson's trichrome staining scores in the murine endometrium was noted after PM treatment. PM treatment significantly decreased ERα expression. After natural mating, all 3 female mice in the control group gave birth to 25 offspring (mean 8.1), whereas in the low-dose PM treatment group, two of three female mice gave birth to nine offspring (mean 4.5). No pregnant mice or offspring was present in the high-dose PM treatment group. PM exposure induces adverse effects on the endometrium through aberrant activation of inflammatory and apoptotic pathways and is associated with detrimental effects on murine fertility.
Collapse
Affiliation(s)
- Yunjeong Park
- Department of Obstetrics and Gynecology, Guro Hospital, Korea University College of Medicine, Seoul, 08308, Republic of Korea
| | - Inha Lee
- Department of Obstetrics and Gynecology, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, 06229, Republic of Korea; Institute of Women's Life Medical Science, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
| | - Min Jung Lee
- Department of Obstetrics and Gynecology, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, 06229, Republic of Korea; Institute of Women's Life Medical Science, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
| | - Hyemin Park
- Department of Obstetrics and Gynecology, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, 06229, Republic of Korea
| | - Gee Soo Jung
- Department of Medical Device Engineering and Management, Yonsei University College of Medicine, Seoul, 06229, Republic of Korea
| | - Nara Kim
- Department of Medical Device Engineering and Management, Yonsei University College of Medicine, Seoul, 06229, Republic of Korea
| | - Wooseok Im
- Department of Obstetrics and Gynecology, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, 06229, Republic of Korea; Institute of Women's Life Medical Science, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
| | - Heeyon Kim
- Department of Obstetrics and Gynecology, Severance Hospital, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
| | - Jae Hoon Lee
- Department of Obstetrics and Gynecology, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, 06229, Republic of Korea; Institute of Women's Life Medical Science, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
| | - SiHyun Cho
- Department of Obstetrics and Gynecology, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, 06229, Republic of Korea; Institute of Women's Life Medical Science, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea.
| | - Young Sik Choi
- Institute of Women's Life Medical Science, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea; Department of Obstetrics and Gynecology, Severance Hospital, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
| |
Collapse
|
3
|
Deng L, Chen G, Duan T, Xie J, Huang G, Li X, Huang S, Zhang J, Luo Z, Liu C, Zhu S, He G, Dong X, Liu T, Ma W, Gong Y, Shen X, Yang P. Mixed effects of ambient air pollutants on oocyte-related outcomes: A novel insight from women undergoing assisted reproductive technology. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 280:116525. [PMID: 38852468 DOI: 10.1016/j.ecoenv.2024.116525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 05/19/2024] [Accepted: 05/28/2024] [Indexed: 06/11/2024]
Abstract
Air pollution is widely acknowledged as a significant risk factor for human health, especially reproductive health. Nevertheless, many studies have disregarded the potentially mixed effects of air pollutants on reproductive outcomes. We performed a retrospective cohort study involving 8048 women with 9445 cycles undergoing In Vitro Fertilization (IVF) and Intracytoplasmic Sperm Injection (ICSI) in China, from 2017 to 2021. A land-use random forest model was applied to estimate daily residential exposure to air pollutants, including sulfur dioxide (SO2), nitrogen dioxide (NO2), carbon monoxide (CO), ozone (O3), and fine particulate matter (PM2.5). Individual and joint associations between air pollutants and oocyte-related outcomes of ART were evaluated. In 90 days prior to oocyte pick-up to oocyte pick-up (period A), NO2, O3 and CO was negatively associated with total oocyte yield. In the 90 days prior to oocyte pick-up to start of gonadotropin medication (Gn start, period B), there was a negative dose-dependent association of exposure to five air pollutants with total oocyte yield and mature oocyte yield. In Qgcomp analysis, increasing the multiple air pollutants mixtures by one quartile was related to reducing the number of oocyte pick-ups by -2.00 % (95 %CI: -2.78 %, -1.22 %) in period A, -2.62 % (95 %CI: -3.40 %, -1.84 %) in period B, and -0.98 % (95 %CI: -1.75 %, -0.21 %) in period C. During period B, a 1-unit increase in the WQS index of multiple air pollutants exposure was associated with fewer number of total oocyte (-1.27 %, 95 %CI: -2.16 %, -0.36 %) and mature oocyte (-1.42 %, 95 %CI: -2.41 %, -0.43 %). O3 and NO2 were major contributors with adverse effects on the mixed associations. Additionally, period B appears to be the susceptible window. Our study implies that exposure to air pollution adversely affects oocyte-related outcomes, which raises concerns about the potential adverse impact of air pollution on women's reproductive health.
Collapse
Affiliation(s)
- Langjing Deng
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangdong, Guangzhou 510632, PR China; China Greater Bay Area Research Center of Environmental Health, School of Medicine, Jinan University, Guangdong, Guangzhou 510632, PR China
| | - Guimin Chen
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong 510060, PR China
| | - Tiantian Duan
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangdong, Guangzhou 510632, PR China; China Greater Bay Area Research Center of Environmental Health, School of Medicine, Jinan University, Guangdong, Guangzhou 510632, PR China
| | - Jinying Xie
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangdong, Guangzhou 510632, PR China; China Greater Bay Area Research Center of Environmental Health, School of Medicine, Jinan University, Guangdong, Guangzhou 510632, PR China
| | - Guangtong Huang
- School of Medicine, Jinan University, Guangdong, Guangzhou 510632, PR China
| | - Xiaojie Li
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangdong, Guangzhou 510632, PR China; China Greater Bay Area Research Center of Environmental Health, School of Medicine, Jinan University, Guangdong, Guangzhou 510632, PR China
| | - Songyi Huang
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangdong, Guangzhou 510632, PR China; China Greater Bay Area Research Center of Environmental Health, School of Medicine, Jinan University, Guangdong, Guangzhou 510632, PR China
| | - Jinglei Zhang
- Reproductive Medicine Center, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510080, PR China
| | - Zicong Luo
- Reproductive Medicine Center, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510080, PR China
| | - Chaoqun Liu
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangdong, Guangzhou 510632, PR China; China Greater Bay Area Research Center of Environmental Health, School of Medicine, Jinan University, Guangdong, Guangzhou 510632, PR China
| | - Sui Zhu
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangdong, Guangzhou 510632, PR China; China Greater Bay Area Research Center of Environmental Health, School of Medicine, Jinan University, Guangdong, Guangzhou 510632, PR China
| | - Guanhao He
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangdong, Guangzhou 510632, PR China; China Greater Bay Area Research Center of Environmental Health, School of Medicine, Jinan University, Guangdong, Guangzhou 510632, PR China
| | - Xiaomei Dong
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangdong, Guangzhou 510632, PR China; China Greater Bay Area Research Center of Environmental Health, School of Medicine, Jinan University, Guangdong, Guangzhou 510632, PR China
| | - Tao Liu
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangdong, Guangzhou 510632, PR China; China Greater Bay Area Research Center of Environmental Health, School of Medicine, Jinan University, Guangdong, Guangzhou 510632, PR China
| | - Wenjun Ma
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangdong, Guangzhou 510632, PR China; China Greater Bay Area Research Center of Environmental Health, School of Medicine, Jinan University, Guangdong, Guangzhou 510632, PR China
| | - Yajie Gong
- School of Public Health, Guangdong Pharmaceutical University, Guangzhou, Guangdong 510006, PR China.
| | - Xiaoting Shen
- Reproductive Medicine Center, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510080, PR China.
| | - Pan Yang
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangdong, Guangzhou 510632, PR China; China Greater Bay Area Research Center of Environmental Health, School of Medicine, Jinan University, Guangdong, Guangzhou 510632, PR China; Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangdong, Guangzhou 510632, PR China.
| |
Collapse
|
4
|
Li W, Li Y, Xu W, Chen Z, Gao Y, Liu Z, Li Q, Jiang M, Liu H, Luo B, Zhan Y, Dai L. Maternal PM 2.5 exposure and hypospadias risk in Chinese offspring: Insights from a nationwide surveillance-based study. JOURNAL OF HAZARDOUS MATERIALS 2024; 472:134503. [PMID: 38718509 DOI: 10.1016/j.jhazmat.2024.134503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 04/23/2024] [Accepted: 04/30/2024] [Indexed: 05/30/2024]
Abstract
Research on the association between maternal PM2.5 exposure and hypospadias risk in male offspring, particularly in highly polluted areas, has been limited and inconsistent. This study leveraged data from China's National Population-based Birth Defects Surveillance System spanning the years 2013 to 2019, and employed sophisticated machine learning models to estimate daily PM2.5 levels and other pollutants for mothers at a 1-km resolution and a 6-km buffer surrounding maternal residences. Multivariate logistic regression analyses were performed to evaluate the relationship between PM2.5 exposure and hypospadias risk. For sensitivity analyses, stratification analysis was conducted, and models for one-pollutant and two-pollutants, as well as distributed lag nonlinear models, were constructed. Of the 1194,431 boys studied, 1153 cases of hypospadias were identified. A 10 μg/m3 increase in maternal PM2.5 exposure during preconception and the first trimester was associated with an elevated risk of isolated hypospadias, with Odds Ratios (ORs) of 1.102 (95% CI: 1.023-1.188) and 1.089 (95% CI: 1.007-1.177) at the 1-km grid, and 1.122 (95% CI: 1.034-1.218) and 1.143 (95% CI: 1.048-1.246) within the 6-km buffer. Higher quartiles of PM2.5 exposure were associated with increased odds ratios compared to the lowest quartile. These findings highlight a significant association between PM2.5 exposure during the critical conception period and an elevated risk of isolated hypospadias in children, emphasizing the need for targeted interventions to reduce PM2.5 exposure among expectant mothers.
Collapse
Affiliation(s)
- Wenyan Li
- National Center for Birth Defects Monitoring, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041, China; Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, Sichuan 610041, China
| | - Yanhua Li
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041, China; West China School of Nursing, Sichuan University, Chengdu, Sichuan 610041, China
| | - Wenli Xu
- National Center for Birth Defects Monitoring, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041, China; Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, Sichuan 610041, China
| | - Zhiyu Chen
- National Center for Birth Defects Monitoring, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041, China; Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, Sichuan 610041, China
| | - Yuyang Gao
- National Center for Birth Defects Monitoring, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041, China; Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, Sichuan 610041, China
| | - Zhen Liu
- National Center for Birth Defects Monitoring, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041, China; Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, Sichuan 610041, China
| | - Qi Li
- National Center for Birth Defects Monitoring, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041, China; Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, Sichuan 610041, China
| | - Ming Jiang
- Department of Epidemiology and Health Statistics, West China School of Public Health, Sichuan University, Chengdu, Sichuan 610041, China
| | - Hanmin Liu
- NHC Key Laboratory of Chronobiology, Sichuan University, Chengdu, Sichuan 610041, China
| | - Biru Luo
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, Sichuan 610041, China; Department of Nursing Management, West China Second University, Sichuan University, Chengdu, Sichuan 610041, China.
| | - Yu Zhan
- College of Carbon Neutrality Future Technology, Sichuan University, Chengdu, Sichuan 610041, China.
| | - Li Dai
- National Center for Birth Defects Monitoring, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041, China; Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, Sichuan 610041, China; Med-X Center for Informatics, Sichuan University, Chengdu, Sichuan 610041, China.
| |
Collapse
|
5
|
Chen Y, Kuang T, Zhang T, Cai S, Colombo J, Harper A, Han TL, Xia Y, Gulliver J, Hansell A, Zhang H, Baker P. Associations of air pollution exposures in preconception and pregnancy with birth outcomes and infant neurocognitive development: analysis of the Complex Lipids in Mothers and Babies (CLIMB) prospective cohort in Chongqing, China. BMJ Open 2024; 14:e082475. [PMID: 38960456 PMCID: PMC11227797 DOI: 10.1136/bmjopen-2023-082475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 06/06/2024] [Indexed: 07/05/2024] Open
Abstract
OBJECTIVES To investigate the associations of traffic-related air pollution exposures in early pregnancy with birth outcomes and infant neurocognitive development. DESIGN Cohort study. SETTING Eligible women attended six visits in the maternity clinics of two centres, the First Affiliated Hospital of Chongqing Medical University and Chongqing Health Centre for Women and Children. PARTICIPANTS Women who were between 20 and 40 years of age and were at 11-14 weeks gestation with a singleton pregnancy were eligible for participation. Women were excluded if they had a history of premature delivery before 32 weeks of gestation, maternal milk allergy or aversion or severe lactose intolerance. 1273 pregnant women enrolled in 2015-2016 and 1174 live births were included in this analysis. EXPOSURES Air pollution concentrations at their home addresses, including particulate matter with diameter ≤2.5 µm (PM2.5) and nitrogen dioxide (NO2), during pre-conception and each trimester period were estimated using land-use regression models. OUTCOME MEASURES Birth outcomes (ie, birth weight, birth length, preterm birth, low birth weight, large for gestational age and small for gestational age (SGA) status) and neurodevelopment outcomes measured by the Chinese version of Bayley Scales of Infant Development. RESULTS An association between SGA and per-IQR increases in NO2 was found in the first trimester (OR: 1.57, 95% CI: 1.06 to 2.32) and during the whole pregnancy (OR: 1.33, 99% CI: 1.01 to 1.75). Both PM2.5 and NO2 exposure in the 90 days prior to conception were associated with lower Psychomotor Development Index scores (β: -6.15, 95% CI: -8.84 to -3.46; β: -2.83, 95% CI: -4.27 to -1.39, respectively). Increased NO2 exposure was associated with an increased risk of psychomotor development delay during different trimesters of pregnancy. CONCLUSIONS Increased exposures to NO2 during pregnancy were associated with increased risks of SGA and psychomotor development delay, while increased exposures to both PM2.5 and NO2 pre-conception were associated with adverse psychomotor development outcomes at 12 months of age. TRIAL REGISTRATION NUMBER ChiCTR-IOR-16007700.
Collapse
Affiliation(s)
- Yingxin Chen
- Centre for Environmental Health and Sustainability, University of Leicester, Leicester, UK
| | - Tao Kuang
- Department of Public Health and Management, Zunyi Medical and Pharmaceutical College, Zunyi, China
| | - Ting Zhang
- Stomatological Hospital of Chongqing Medical University, Chongqing, China
| | - Samuel Cai
- Department of Health Sciences, University of Leicester, Leicester, Leicestershire, UK
| | | | | | - Ting-Li Han
- University of Auckland Liggins Institute, Auckland, New Zealand
- Canada - China -New Zealand Joint Laboratory of Maternal and Fetal Medicine, Chongqing, China
| | - Yinyin Xia
- School of Public Health, Chongqing Medical University, Chongqing, China
| | | | - Anna Hansell
- Centre for Environmental Health and Sustainability, University of Leicester, Leicester, UK
| | - Hua Zhang
- Department of Obstetrics and Gynaecology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Philip Baker
- College of Medicine, University of Leicester, Leicester, UK
| |
Collapse
|
6
|
Liao J, Zhang Y, Yang Z, Qiu C, Chen W, Zhang JJ, Berhane K, Bai Z, Han B, Xu J, Jiang YH, Gilliland F, Yan W, Huang G, Chen Z. Identifying critical windows of air pollution exposure during preconception and gestational period on birthweight: a prospective cohort study. Environ Health 2023; 22:71. [PMID: 37858139 PMCID: PMC10585741 DOI: 10.1186/s12940-023-01022-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Accepted: 09/26/2023] [Indexed: 10/21/2023]
Abstract
BACKGROUND Few studies have assessed air pollution exposure association with birthweight during both preconception and gestational periods. METHODS Leveraging a preconception cohort consisting of 14220 pregnant women and newborn children in Shanghai, China during 2016-2018, we aim to assess associations of NO2 and PM2.5 exposure, derived from high-resolution spatial-temporal models, during preconception and gestational periods with outcomes including term birthweight, birthweight Z-score, small-for-gestational age (SGA) and large-for-gestational age (LGA). Linear and logistic regressions were used to estimate 3-month preconception and trimester-averaged air pollution exposure associations; and distributed lag models (DLM) were used to identify critical exposure windows at the weekly resolution from preconception to delivery. Two-pollutant models and children's sex-specific associations were explored. RESULTS After controlling for covariates, one standard deviation (SD) (11.5 μg/m3, equivalent to 6.1 ppb) increase in NO2 exposure during the second and the third trimester was associated with 13% (95% confidence interval: 2 - 26%) and 14% (95% CI: 1 - 29%) increase in SGA, respectively; and one SD (9.6 μg/m3) increase in PM2.5 exposure during the third trimester was associated with 15% (95% CI: 1 - 31%) increase in SGA. No association have been found for outcomes of birthweight, birthweight Z-score and LGA. DLM found that gestational weeks 22-32 were a critical window, when NO2 exposure had strongest associations with SGA. The associations of air pollution exposure tended to be stronger in female newborns than in male newborns. However, no significant associations of air pollution exposure during preconception period on birthweight outcomes were found. CONCLUSION Consistent with previous studies, we found that air pollution exposure during mid-to-late pregnancy was associated with adverse birthweight outcomes.
Collapse
Affiliation(s)
- Jiawen Liao
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States of America
| | - Yi Zhang
- Department of Clinical Epidemiology & Clinical Trial Unit, Children's Hospital of Fudan University, National Children's Medical Center & Shanghai Key Laboratory of Birth Defects, Shanghai, China
| | - Zhenchun Yang
- Duke Global Health Institute, Durham, NC, United States of America
| | - Chenyu Qiu
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States of America
| | - Wu Chen
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States of America
| | - Junfeng Jim Zhang
- Duke Global Health Institute, Durham, NC, United States of America
- Division of Environmental Science and Policy, Nicholas School of the Environment, Duke University, Durham, NC, United States of America
| | - Kiros Berhane
- Department of Biostatistics, Mailman School of Public Health, Columbia University, New York, NY, United States of America
| | - Zhipeng Bai
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, China
| | - Bin Han
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, China
| | - Jia Xu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, China
| | - Yong-Hui Jiang
- Department of Genetics, Neuroscience, and Pediatrics, Yale University School of Medicine, New Haven, CT, United States of America
| | - Frank Gilliland
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States of America
| | - Weili Yan
- Department of Clinical Epidemiology & Clinical Trial Unit, Children's Hospital of Fudan University, National Children's Medical Center & Shanghai Key Laboratory of Birth Defects, Shanghai, China
| | - Guoying Huang
- Department of Clinical Epidemiology & Clinical Trial Unit, Children's Hospital of Fudan University, National Children's Medical Center & Shanghai Key Laboratory of Birth Defects, Shanghai, China.
| | - Zhanghua Chen
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States of America.
| |
Collapse
|
7
|
Michel S, Atmakuri A, von Ehrenstein OS. Prenatal exposure to ambient air pollutants and congenital heart defects: An umbrella review. ENVIRONMENT INTERNATIONAL 2023; 178:108076. [PMID: 37454629 DOI: 10.1016/j.envint.2023.108076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 06/26/2023] [Accepted: 06/29/2023] [Indexed: 07/18/2023]
Abstract
BACKGROUND Prenatal exposure to ambient air pollutants has been linked to congenital heart defects (CHD), but findings of existing systematic reviews have been mixed. OBJECTIVE To assess the epidemiological evidence on associations between prenatal exposure to ambient air pollutants and CHD subtypes, based on a systematic overview of reviews ("umbrella review"). METHODS We conducted a systematic search for reviews assessing associations between prenatal exposure to criteria air pollutants and CHD. The risk of bias was evaluated using the Risk of Bias in Systematic Reviews (ROBIS) tool. The certainty of the systematic review findings was graded using the Navigation Guide methodology. RESULTS We identified eleven systematic reviews, including eight with meta-analyses, assessing in total 35 primary studies of prenatal exposure to criteria air pollutants and various CHD subtypes. The certainty of the findings of four meta-analyses indicating an increased risk for coarctation of the aorta associated with nitrogen dioxide exposure was rated as moderate. The certainty of findings indicating positive, inverse, or null associations for other pollutant-subtype combinations was rated as very low to low, based on low precision and high statistical heterogeneity of summary odds ratios (SOR), substantial inconsistencies between review findings, and methodological limitations of the systematic reviews. DISCUSSION The inconsistent findings and high statistical heterogeneity of many SOR of the included systematic reviews may partly be traced to differences in methodological approaches, and the risk of bias across included reviews (e.g., inclusion criteria, systematic search strategies, synthesis methods) and primary studies (e.g., exposure assessment, diagnostic criteria). Adherence to appropriate systematic review guidelines for environmental health research, as well as rigorous evaluation of risk of bias in primary studies, are essential for future risk assessments and policy-making. Still, our findings suggest that prenatal exposure to ambient air pollutants may increase risks for at least some CHD subtypes.
Collapse
Affiliation(s)
- Sophie Michel
- Department of Epidemiology, Fielding School of Public Health, University of California, Los Angeles, Los Angeles, California, USA.
| | - Aishwarya Atmakuri
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, Los Angeles, California, USA
| | - Ondine S von Ehrenstein
- Department of Epidemiology, Fielding School of Public Health, University of California, Los Angeles, Los Angeles, California, USA; Department of Community Health Sciences, Fielding School of Public Health, University of California, Los Angeles, Los Angeles, California, USA
| |
Collapse
|
8
|
Blanc N, Liao J, Gilliland F, Zhang JJ, Berhane K, Huang G, Yan W, Chen Z. A systematic review of evidence for maternal preconception exposure to outdoor air pollution on Children's health. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 318:120850. [PMID: 36528197 PMCID: PMC9879265 DOI: 10.1016/j.envpol.2022.120850] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 12/06/2022] [Accepted: 12/07/2022] [Indexed: 05/22/2023]
Abstract
The preconception period is a critical window for gametogenesis, therefore preconception exposure to air pollutants may have long-term effects on children. We systematically reviewed epidemiological evidence concerning the effects of preconception ambient air pollution exposure on children's health outcomes and identified research gaps for future investigations. We searched PubMed and Web of Science from journal inception up to October 2022 based on an established protocol (PROSPERO: CRD42022277608). We then identified 162 articles based on searching strategy, 22 of which met the inclusion criteria. Studies covered a wide range of health outcomes including birth defects, preterm birth, birthweight, respiratory outcomes, and developmental outcomes. Findings suggested that exposure to outdoor air pollutants during maternal preconception period were associated with various health outcomes, of which birth defects has the most consistent findings. A meta-analysis revealed that during 3-month preconception period, a 10 μg/m3 increase in PM10 and PM2.5 was associated with relative risk (RR) of birth defects of 1.06 (95% confidence interval (CI): 1.00, 1.02) and 1.14 (95% CI: 0.82, 1.59), respectively. Preterm birth, low birthweight, and autism have also been associated with maternal preconception exposure to PM2.5, PM10, O3 and SO2. However, the significance of associations and effect sizes varied substantially across studies, partly due to the heterogeneity in exposure and outcome assessments. Future studies should use more accurate exposure assessment methods to obtain individual-level exposures with high temporal resolution. This will allow the exploration of which specific time window (weeks or months) during the preconception period has the strongest effect. In future epidemiologic studies, integrating pathophysiologic biomarkers relevant to clinical outcomes may help improve the causal inference of associations between preconception exposure and health outcomes suggested by the current limited literature. Additionally, potential effects of paternal preconception exposure need to be studied.
Collapse
Affiliation(s)
- Natalie Blanc
- University of Southern California, Los Angeles, CA, USA
| | - Jiawen Liao
- Department of Population and Public Health Sciences, Keck School of Medicine of University of Southern California, Los Angeles, CA, USA
| | - Frank Gilliland
- Department of Population and Public Health Sciences, Keck School of Medicine of University of Southern California, Los Angeles, CA, USA
| | - Junfeng Jim Zhang
- Division of Environmental Science and Policy, Nicholas School of the Environment, Duke University, Durham, NC, USA; Duke Global Health Institute, Durham, NC, USA
| | - Kiros Berhane
- Department of Biostatistics, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Guoying Huang
- Children's Hospital of Fudan University, Shanghai Key Laboratory of Birth Defect, Shanghai, China
| | - Weili Yan
- Children's Hospital of Fudan University, Shanghai Key Laboratory of Birth Defect, Shanghai, China
| | - Zhanghua Chen
- Department of Population and Public Health Sciences, Keck School of Medicine of University of Southern California, Los Angeles, CA, USA.
| |
Collapse
|
9
|
Liu F, Xu T, Ng NL, Lu H. Linking Cell Health and Reactive Oxygen Species from Secondary Organic Aerosols Exposure. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:1039-1048. [PMID: 36580374 DOI: 10.1021/acs.est.2c05171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Oxidative stress is a possible mechanism by which ambient fine particulate matter (PM) exerts adverse biological effects. While multiple biological effects and reactive oxygen species (ROS) production have been observed upon PM exposure, whether the biological effects are ROS-mediated remains unclear. Secondary organic aerosols (SOA) constitute a major fraction of fine PM and can contribute substantially to its toxicity. In this work, we measured three types of cell responses (mitochondrial membrane potential (MMP), caspase 3/7 activity, and ROS) and investigated their associations upon exposure to SOA formed from anthropogenic (naphthalene) and biogenic (α-pinene) precursors. MMP and caspase 3/7 activity (an early indicator of apoptosis) are key indicators of cell health, and changes of them could occur downstream of ROS-mediated pathways. We observed a significant increase in caspase 3/7 activity after SOA exposure, suggesting that apoptosis is an important pathway of cell death induced by SOA. We further found strong associations between a decrease in MMP and increase in caspase 3/7 activity with an increase in cellular ROS level. These results suggest that cell health is largely dependent on the cellular ROS level, highlighting oxidative stress as a key mechanism for biological effects from SOA exposure. Linear regression analyses reveal greater changes of the three cellular responses with increasing carbon oxidation state (OSc) of SOA, suggesting that SOA are more toxic when they are more oxidized. Overall, our work provides critical insights into the associations between cell health and ROS level upon SOA exposure and proposes that OSc could be a suitable proxy to assess the overall SOA toxicity.
Collapse
Affiliation(s)
- Fobang Liu
- Department of Environmental Science and Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi710049, China
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia30332, United States
- Guangdong-Hongkong-Macau Joint Laboratory of Collaborative Innovation for Environmental Quality, Guangzhou, Guangdong511443, China
| | - Tianchang Xu
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia30332, United States
| | - Nga Lee Ng
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia30332, United States
- School of Earth & Atmospheric Sciences, Georgia Institute of Technology, Atlanta, Georgia30332, United States
- School of Civil & Environmental Engineering, Georgia Institute of Technology, Atlanta, Georgia30332, United States
| | - Hang Lu
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia30332, United States
| |
Collapse
|
10
|
Wu S, Hao G, Zhang Y, Chen X, Ren H, Fan Y, Zhang Y, Bi X, Du C, Bai L, Wu X, Tan J. Poor ovarian response is associated with air pollutants: A multicentre study in China. EBioMedicine 2022; 81:104084. [PMID: 35660784 PMCID: PMC9163489 DOI: 10.1016/j.ebiom.2022.104084] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 05/12/2022] [Accepted: 05/12/2022] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Human evidence on the association between air pollution and ovarian response is scarce. Poor ovarian response (POR) with an incidence of 5-35% is a tricky problem in IVF treatment. METHODS In this large-scale multicentre study, we included 2186 women with POR (< 4 oocytes retrieved) and 7033 women with a normal ovarian response (10-15 oocytes retrieved), who underwent their first in vitro fertilization treatment in five cities in northern China during 2015-2020. Average concentrations of six air pollutants (PM2.5, PM10, O3, NO2, CO, and SO2) during different exposure windows (5 days, 1, 3, 6, and 12 months) before oocyte pick up (OPU) were calculated using data from the air monitoring station nearest to the residential site as approximate individual exposure. Logistic regression models were employed to assess the association between exposure to air pollutants and the risk of POR. Stratification analyses were conducted based on female age. Sensitivity analyses were performed in poor responders identified by Bologna criteria and women with unexpected POR. FINDINGS We detected that increased SO2 exposure during all exposure windows before OPU was associated with a higher risk of POR, especially for women ≤ 30 years old. In the stratified analysis, the effect sizes were larger for the unexpected poor ovarian response. INTERPRETATION The findings provide human evidence for adverse effects of exposure to ambient air pollutants on ovarian response and underscore the need to reduce ambient air pollution exposure in women of reproductive age to protect human fertility. FUNDING This study was granted from the National Key Research and Development Program (2018YFC1004203), the Major Special Construction Plan for Discipline Construction Project of China Medical University (3110118033), the Shengjing Freelance Researcher Plan of Shengjing Hospital of China Medical University, and the National Natural Science Foundation of China (82071601), the Central Government Special Fund for Local Science and Technology Development (2020JH6/10500006).
Collapse
Affiliation(s)
- Shanshan Wu
- Centre of Reproductive Medicine, Department of Obstetrics and Gynaecology, Shengjing Hospital of China Medical University, No. 39 Huaxiang Road, Tiexi District, Shenyang, Liaoning 110022, PR China; Key Laboratory of Reproductive Dysfunction Disease and Fertility Remodelling of Liaoning Province, Shenyang, Liaoning 110022, PR China
| | - Guimin Hao
- Department of Reproductive Medicine, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, PR China
| | - Yunshan Zhang
- Tianjin Central Hospital of Obstetrics and Gynaecology, Tianjin 300100, PR China
| | - Xiujuan Chen
- Reproductive Medicine Centre, Affiliated Hospital, Inner Mongolia Medical University, Hohhot, Inner Mongolia, 010050, PR China
| | - Haiqin Ren
- Jinghua Hospital, Shenyang, Liaoning 110022, PR China
| | - Yanli Fan
- Department of Reproductive Medicine, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, PR China
| | - Yinfeng Zhang
- Tianjin Central Hospital of Obstetrics and Gynaecology, Tianjin 300100, PR China
| | - Xingyu Bi
- Centre of Reproductive Medicine, Children's Hospital of Shanxi and Women Health Centre of Shanxi, Taiyuan, Shanxi 030013, PR China
| | - Chen Du
- Reproductive Medicine Centre, Affiliated Hospital, Inner Mongolia Medical University, Hohhot, Inner Mongolia, 010050, PR China
| | - Lina Bai
- Jinghua Hospital, Shenyang, Liaoning 110022, PR China
| | - Xueqing Wu
- Centre of Reproductive Medicine, Children's Hospital of Shanxi and Women Health Centre of Shanxi, Taiyuan, Shanxi 030013, PR China.
| | - Jichun Tan
- Centre of Reproductive Medicine, Department of Obstetrics and Gynaecology, Shengjing Hospital of China Medical University, No. 39 Huaxiang Road, Tiexi District, Shenyang, Liaoning 110022, PR China; Key Laboratory of Reproductive Dysfunction Disease and Fertility Remodelling of Liaoning Province, Shenyang, Liaoning 110022, PR China.
| |
Collapse
|
11
|
Wu S, Zhang Y, Wu X, Hao G, Ren H, Qiu J, Zhang Y, Bi X, Yang A, Bai L, Tan J. Association between exposure to ambient air pollutants and the outcomes of in vitro fertilization treatment: A multicenter retrospective study. ENVIRONMENT INTERNATIONAL 2021; 153:106544. [PMID: 33819722 DOI: 10.1016/j.envint.2021.106544] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 03/23/2021] [Accepted: 03/23/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND Exposure to ambient air pollution has been reported to be inversely correlated with human reproductive health. However, the results of previous studies exploring the association between air pollution and in vitro fertilization (IVF) outcomes are conflicting, and further research is needed to clarify this association. OBJECTIVES This study aimed to investigate the associations between exposure to air pollutants and IVF outcomes. METHODS We conducted a multicenter retrospective cohort study involving 20,835 patients from four cities in Northern China, contributing to 11,787 fresh embryo transfer cycles, 9050 freeze-all cycles, and 17,676 frozen-thawed embryo transfer (FET) cycles during 2014-2018. We calculated the daily average concentrations of six criteria air pollutants (PM2.5, PM10, O3, NO2, CO, and SO2) during different exposure windows in IVF treatment timeline using data from the air monitoring station nearest to the residential site as approximate individual exposure. Generalized estimation equation models were used to assess the association between air pollution exposure and IVF outcomes. RESULTS Exposure to O3, NO2, and CO during most exposure windows in fresh embryo transfer cycles were correlated with lower possibilities of biochemical pregnancy, clinical pregnancy, and live birth. An inverse association of exposure to O3 and SO2 with pregnancy outcomes was observed in FET cycles. In addition, we found a significant association of exposure to air pollutants with a higher risk of ectopic pregnancy and lower oocyte yield. CONCLUSIONS Our study provided large-scale human evidence of the association between air pollution and adverse human reproductive outcomes in the population opting for IVF. Thus, exposure to air pollutants in the population opting for IVF should be limited to improve treatment outcomes.
Collapse
Affiliation(s)
- Shanshan Wu
- Center of Reproductive Medicine, Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, No. 39 Huaxiang Road, Tiexi District, Shenyang, Liaoning 110022, PR China; Key Laboratory of Reproductive Dysfunction Disease and Fertility Remodeling of Liaoning Province, PR China
| | - Yunshan Zhang
- Tianjin Central Hospital of Obstetrics and Gynecology, Tianjin 300100, PR China
| | - Xueqing Wu
- Center of Reproductive Medicine, Children's Hospital of Shanxi and Women Health Center of Shanxi, Taiyuan, Shanxi 030013, PR China
| | - Guimin Hao
- Department of Reproductive Medicine, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, PR China
| | - Haiqin Ren
- Jinghua Hospital, Shenyang, Liaoning 110022, PR China
| | - Jiahui Qiu
- Center of Reproductive Medicine, Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, No. 39 Huaxiang Road, Tiexi District, Shenyang, Liaoning 110022, PR China; Key Laboratory of Reproductive Dysfunction Disease and Fertility Remodeling of Liaoning Province, PR China
| | - Yinfeng Zhang
- Tianjin Central Hospital of Obstetrics and Gynecology, Tianjin 300100, PR China
| | - Xingyu Bi
- Center of Reproductive Medicine, Children's Hospital of Shanxi and Women Health Center of Shanxi, Taiyuan, Shanxi 030013, PR China
| | - Aimin Yang
- Department of Reproductive Medicine, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, PR China
| | - Lina Bai
- Jinghua Hospital, Shenyang, Liaoning 110022, PR China
| | - Jichun Tan
- Center of Reproductive Medicine, Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, No. 39 Huaxiang Road, Tiexi District, Shenyang, Liaoning 110022, PR China; Key Laboratory of Reproductive Dysfunction Disease and Fertility Remodeling of Liaoning Province, PR China.
| |
Collapse
|
12
|
Keshavarz F. Molecular level insights into the direct health impacts of some organic aerosol components. NEW J CHEM 2021. [DOI: 10.1039/d1nj00231g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Quantum chemistry and biomodeling indicate that the studied organic aerosol components cannot directly cause oxidative stress or mutagenicity/carcinogenicity.
Collapse
Affiliation(s)
- Fatemeh Keshavarz
- Institute for Atmospheric and Earth System Research
- Faculty of Science
- University of Helsinki
- FI-00014 Helsinki
- Finland
| |
Collapse
|
13
|
Liao BQ, Liu CB, Xie SJ, Liu Y, Deng YB, He SW, Fu XP, Fu BB, Wang YL, Chen MH, Lin YH, Li FP, Xie X, Hong XR, Wang HL. Effects of fine particulate matter (PM 2.5) on ovarian function and embryo quality in mice. ENVIRONMENT INTERNATIONAL 2020; 135:105338. [PMID: 31841806 DOI: 10.1016/j.envint.2019.105338] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2019] [Revised: 10/13/2019] [Accepted: 11/15/2019] [Indexed: 05/09/2023]
Abstract
Fine particulate matter (PM2.5) has an adverse effect on reproductive function, in particular causing reduced male reproductive function, but relatively few studies have directly targeted its effects on female reproduction. To investigate the effects of PM2.5 exposure on female reproduction, we exposed female mice to PM2.5 by intratracheal instillation for 28 days, and evaluated apoptosis of ovarian granulosa cells and oocytes and the quality embryos after insemination. Our results showed increased numbers of apoptotic granulosa cells and oocytes after exposure to elevated concentrations of PM2.5, which had adverse effects on female fertility via compromising embryo development and quality. We conclude that PM2.5 induced apoptosis of ovarian granulosa cells and oocytes leading to disrupted embryo development and female fertility in mice.
Collapse
Affiliation(s)
- Bao-Qiong Liao
- Cancer Research Center, School of Medicine, Xiamen University, Xiamen, Fujian 361102, China; Department of Reproduction and Genetics, Ganzhou Maternal and Child Health Hospital, Ganzhou, Jiangxi 341000, China; Department of Obstetrics and Gynecology, 900 Hospital of the Joint Logistics Team, Fuzhou Clinic Medical College, Fujian Medical University, Dongfang Affiliated Hospital of Xiamen University, Fuzhou, Fujian 350025, China; Organ Transplantation Institute, School of Medicine, Xiamen University, Xiamen, Fujian 361102, China
| | - Chao-Bin Liu
- The Fourth Department of Gynecology, Fujian Provincial Maternity and Children's Hospital, Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian 350001, China
| | - Shu-Juan Xie
- Department of Obstetrics and Gynecology, 900 Hospital of the Joint Logistics Team, Fuzhou Clinic Medical College, Fujian Medical University, Dongfang Affiliated Hospital of Xiamen University, Fuzhou, Fujian 350025, China; Organ Transplantation Institute, School of Medicine, Xiamen University, Xiamen, Fujian 361102, China
| | - Yu Liu
- Organ Transplantation Institute, School of Medicine, Xiamen University, Xiamen, Fujian 361102, China; Medical College, Guangxi University, Nanning, Guangxi 530004, China
| | - Ya-Bin Deng
- Cancer Research Center, School of Medicine, Xiamen University, Xiamen, Fujian 361102, China
| | - Shu-Wen He
- Organ Transplantation Institute, School of Medicine, Xiamen University, Xiamen, Fujian 361102, China
| | - Xian-Pei Fu
- Organ Transplantation Institute, School of Medicine, Xiamen University, Xiamen, Fujian 361102, China
| | - Bin-Bin Fu
- Organ Transplantation Institute, School of Medicine, Xiamen University, Xiamen, Fujian 361102, China
| | - Ya-Long Wang
- Organ Transplantation Institute, School of Medicine, Xiamen University, Xiamen, Fujian 361102, China
| | - Ming-Huang Chen
- Organ Transplantation Institute, School of Medicine, Xiamen University, Xiamen, Fujian 361102, China
| | - Yan-Hong Lin
- Organ Transplantation Institute, School of Medicine, Xiamen University, Xiamen, Fujian 361102, China
| | - Fei-Ping Li
- Organ Transplantation Institute, School of Medicine, Xiamen University, Xiamen, Fujian 361102, China
| | - Xi Xie
- The Fourth Department of Gynecology, Fujian Provincial Maternity and Children's Hospital, Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian 350001, China
| | - Xin-Ru Hong
- Department of Obstetrics and Gynecology, 900 Hospital of the Joint Logistics Team, Fuzhou Clinic Medical College, Fujian Medical University, Dongfang Affiliated Hospital of Xiamen University, Fuzhou, Fujian 350025, China.
| | - Hai-Long Wang
- Cancer Research Center, School of Medicine, Xiamen University, Xiamen, Fujian 361102, China; Organ Transplantation Institute, School of Medicine, Xiamen University, Xiamen, Fujian 361102, China; Department of Basic Medicine, School of Medicine, Xiamen University, Xiamen, Fujian 361102, China.
| |
Collapse
|
14
|
Luderer U, Eskenazi B, Hauser R, Korach KS, McHale CM, Moran F, Rieswijk L, Solomon G, Udagawa O, Zhang L, Zlatnik M, Zeise L, Smith MT. Proposed Key Characteristics of Female Reproductive Toxicants as an Approach for Organizing and Evaluating Mechanistic Data in Hazard Assessment. ENVIRONMENTAL HEALTH PERSPECTIVES 2019; 127:75001. [PMID: 31322437 PMCID: PMC6791466 DOI: 10.1289/ehp4971] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Revised: 06/17/2019] [Accepted: 06/24/2019] [Indexed: 05/13/2023]
Abstract
BACKGROUND Identification of female reproductive toxicants is currently based largely on integrated epidemiological and in vivo toxicology data and, to a lesser degree, on mechanistic data. A uniform approach to systematically search, organize, integrate, and evaluate mechanistic evidence of female reproductive toxicity from various data types is lacking. OBJECTIVE We sought to apply a key characteristics approach similar to that pioneered for carcinogen hazard identification to female reproductive toxicant hazard identification. METHODS A working group of international experts was convened to discuss mechanisms associated with chemical-induced female reproductive toxicity and identified 10 key characteristics of chemicals that cause female reproductive toxicity: 1) alters hormone receptor signaling; alters reproductive hormone production, secretion, or metabolism; 2) chemical or metabolite is genotoxic; 3) induces epigenetic alterations; 4) causes mitochondrial dysfunction; 5) induces oxidative stress; 6) alters immune function; 7) alters cell signal transduction; 8) alters direct cell–cell interactions; 9) alters survival, proliferation, cell death, or metabolic pathways; and 10) alters microtubules and associated structures. As proof of principle, cyclophosphamide and diethylstilbestrol (DES), for which both human and animal studies have demonstrated female reproductive toxicity, display at least 5 and 3 key characteristics, respectively. 2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD), for which the epidemiological evidence is mixed, exhibits 5 key characteristics. DISCUSSION Future efforts should focus on evaluating the proposed key characteristics against additional known and suspected female reproductive toxicants. Chemicals that exhibit one or more of the key characteristics could be prioritized for additional evaluation and testing. A key characteristics approach has the potential to integrate with pathway-based toxicity testing to improve prediction of female reproductive toxicity in chemicals and potentially prevent some toxicants from entering common use. https://doi.org/10.1289/EHP4971.
Collapse
Affiliation(s)
- Ulrike Luderer
- Center for Occupational and Environmental Health, University of California, Irvine, Irvine, California, USA
| | - Brenda Eskenazi
- School of Public Health, University of California, Berkeley, Berkeley, California, USA
| | - Russ Hauser
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Kenneth S. Korach
- National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, North Carolina, USA
| | - Cliona M. McHale
- School of Public Health, University of California, Berkeley, Berkeley, California, USA
| | - Francisco Moran
- Office of Environmental Health Hazard Assessment, California Environmental Protection Agency, Sacramento, California, USA
| | - Linda Rieswijk
- School of Public Health, University of California, Berkeley, Berkeley, California, USA
- Institute of Data Science, Maastricht University, Maastricht, Netherlands
| | - Gina Solomon
- Department of Medicine, University of California, San Francisco, San Francisco, California, USA
| | - Osamu Udagawa
- Center for Health and Environmental Risk Research, National Institute of Environmental Studies, Tsukuba-City, Ibaraki, Japan
| | - Luoping Zhang
- School of Public Health, University of California, Berkeley, Berkeley, California, USA
| | - Marya Zlatnik
- Department of Obstetrics and Gynecology, University of California, San Francisco, San Francisco, California, USA
| | - Lauren Zeise
- Office of Environmental Health Hazard Assessment, California Environmental Protection Agency, Sacramento, California, USA
| | - Martyn T. Smith
- School of Public Health, University of California, Berkeley, Berkeley, California, USA
| |
Collapse
|