1
|
Li C, Luo H, Chen M, Lin F, Ren X, Huang Y, Zhou L. Bisphenol AF induces cell cycle arrest and apoptosis in TM3 Leydig cells via the p53 signaling pathway. Reprod Toxicol 2025; 134:108882. [PMID: 40089166 DOI: 10.1016/j.reprotox.2025.108882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Revised: 03/05/2025] [Accepted: 03/06/2025] [Indexed: 03/17/2025]
Abstract
Bisphenol AF (BPAF), one of the most common bisphenol analogues, has been reported to exhibit higher estrogenic activity compared to bisphenol A (BPA) due to the presence of additional hydrophobic groups. To comprehensively understand the male reproductive toxicity of BPAF, TM3 Leydig cells were used to investigate the effects of BPAF on cell proliferation, apoptosis, and cell cycle arrest. The underlying mechanisms of cellular responses induced by BPAF were examined through analysis of target mRNA and protein expression. Results showed that BPAF treatment reduced cell viability and induced both G2/M cell cycle arrest and apoptosis in a time- and dose-dependent manner in TM3 Leydig cells. RNA sequencing analysis and experimental verification further revealed that the p53 signaling pathway was involved in BPAF-induced cytotoxicity. Furthermore, Pifithrin-α (PFT-α), a p53 inhibitor, attenuated BPAF-induced G2/M cell cycle arrest and apoptosis. These results demonstrate that the p53 signaling pathway mediates BPAF-induced cell cycle arrest and apoptosis in Leydig cells, providing mechanistic insights into BPAF's toxicological effects on the male reproductive system.
Collapse
Affiliation(s)
- Chenlu Li
- Scholol of Public Health, Xuzhou Medical University, Xuzhou, China
| | - Haolong Luo
- Scholol of Public Health, Xuzhou Medical University, Xuzhou, China
| | - Mengyuan Chen
- Scholol of Public Health, Xuzhou Medical University, Xuzhou, China
| | - Fuxing Lin
- Scholol of Public Health, Xuzhou Medical University, Xuzhou, China
| | - Xiangmei Ren
- Scholol of Public Health, Xuzhou Medical University, Xuzhou, China; Jiangsu Engineering Research Center of Biological Data Mining and Healthcare Transformation, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Yefei Huang
- Scholol of Public Health, Xuzhou Medical University, Xuzhou, China
| | - Li Zhou
- Scholol of Public Health, Xuzhou Medical University, Xuzhou, China; Jiangsu Engineering Research Center of Biological Data Mining and Healthcare Transformation, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China.
| |
Collapse
|
2
|
Zhao T, Yang W, Pan F, Wang J, Shao W, Chen F, Liu K, Zhao S, Zhao L. Bisphenol A attenuates testosterone synthesis via increasing apolipoprotein A1-mediated reverse cholesterol transport in mice. Front Endocrinol (Lausanne) 2025; 16:1514105. [PMID: 39936102 PMCID: PMC11810737 DOI: 10.3389/fendo.2025.1514105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Accepted: 01/09/2025] [Indexed: 02/13/2025] Open
Abstract
Bisphenol A (BPA), a widely used chemical compound in plastic manufacturing, has become ubiquitous in the environment. Previous studies have highlighted its adverse effects on reproductive function, as BPA exposure reduces testosterone levels. Cholesterol is involved in testosterone synthesis in Leydig cells. However, research on the mechanisms by which BPA affects testosterone synthesis from the perspective of reverse cholesterol transport (RCT) remains limited. This study aimed to investigate the effects of BPA on cholesterol levels, lipid droplet accumulation, and testosterone synthesis in TM3 cells and mice via Apolipoprotein A1 (APOA1)-mediated RCT. Adult male mice were treated by intraperitoneal injection of corn oil containing BPA (20 mg/kg) for 7 days. Testes were collected for protein extraction, RNA extraction, Oil red O staining or for Biochemical analysis. Serums were collected for detection of testosterone levels. flow cytometry, CCK8 assay, immunofluorescence or Filipin III staining was used to detect the effect of BPA on the TM3 cells. It was observed that serum and testicular testosterone levels were drastically reduced in BPA-treated mice. Moreover, lipid droplets accumulation and testicular total (TC) and free cholesterol (FC) levels were reduced in the mouse testes. Conversely, testicular high-density lipoprotein (HDL) content was partially elevated. Furthermore, BPA markedly enhanced Apoa1 mRNA and protein expression in the mouse model. Notably, BPA significantly upregulated Apoa1 mRNA and protein level, reduced cholesterol levels and lipid droplets accumulation, and attenuated testosterone synthesis in TM3 cells. In addition, exogenous supplement with 22-hydoxycholesterol promoted testosterone synthesis and alleviated the inhibitory effect of BPA on testosterone synthesis. Taken together, these results suggest that BPA upregulates APOA1 expression, enhances RCT, and ultimately reduces TC and FC levels in the testis. This cholesterol reduction likely led to testosterone synthesis disorders in the model, indicating that BPA inhibits testosterone synthesis in mice by disrupting cholesterol transport.
Collapse
Affiliation(s)
- Tong Zhao
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang, China
- Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, Harbin, Heilongjiang, China
| | - Wenzhe Yang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang, China
- Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, Harbin, Heilongjiang, China
| | - Feilong Pan
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang, China
- Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, Harbin, Heilongjiang, China
| | - Jinhao Wang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang, China
- Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, Harbin, Heilongjiang, China
| | - Wenqi Shao
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang, China
- Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, Harbin, Heilongjiang, China
| | - Fangfang Chen
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang, China
- Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, Harbin, Heilongjiang, China
| | - Kexiang Liu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang, China
- Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, Harbin, Heilongjiang, China
| | - Shuchen Zhao
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang, China
- Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, Harbin, Heilongjiang, China
| | - Lijia Zhao
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang, China
- Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, Harbin, Heilongjiang, China
| |
Collapse
|
3
|
Calivarathan L, Mathur PP. Effect of Endocrine Disruptors on Testicular Function. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2025; 1469:115-125. [PMID: 40301255 DOI: 10.1007/978-3-031-82990-1_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/01/2025]
Abstract
Several classes of exogenous chemicals interfere with the endocrine system and disrupt the normal functioning of hormones, leading to a wide range of adverse health effects. The male reproductive system is particularly vulnerable to endocrine disruption, as it involves complex interactions between endocrine, paracrine, and autocrine signals that regulate spermatogenesis and steroidogenesis within the testes. Exposure to endocrine disruptors (EDs) has been associated with reduced semen quality, including decreased sperm concentration, motility, and morphology. Some endocrine disruptors have also been linked to alterations in testosterone levels, which impact overall male reproductive health. Bisphenol A, phthalates, dioxins, polychlorinated biphenyls, organophosphate pesticides, and phytoestrogens are well-known endocrine disruptors that interfere with male reproductive functions. Furthermore, these substances have been associated with an increased risk of reproductive disorders such as cryptorchidism, hypospadias, and testicular cancer. Due to the presence of endocrine-disrupting chemicals in numerous consumer goods and personal care products, people encounter these harmful substances through ingestion, absorption, inhalation, and skin contact. However, the duration of exposure to a particular endocrine disruptor or exposure during a particular stage of development is the determining factor for testicular function. This chapter provides a comprehensive overview of the effects of endocrine disruptors on testicular function, from molecular mechanisms to clinical outcomes.
Collapse
Affiliation(s)
- Latchoumycandane Calivarathan
- Molecular Pharmacology and Toxicology Laboratory, Department of Biotechnology, School of Integrative Biology, Central University of Tamil Nadu, Thiruvarur, India
| | | |
Collapse
|
4
|
Zhi X, Du L, Zhang P, Guo X, Li W, Wang Y, He Q, Wu P, Lei X, Qu B. BPA induces testicular damage in male rodents via apoptosis, autophagy, and ferroptosis. Food Chem Toxicol 2024; 193:114984. [PMID: 39245402 DOI: 10.1016/j.fct.2024.114984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 09/03/2024] [Accepted: 09/05/2024] [Indexed: 09/10/2024]
Abstract
Bisphenol A (BPA), chemically known as 2,2-bis(4-hydroxyphenyl) propane, is one of the most common endocrine-disrupting chemicals in our environment. Long-term or high-dose exposure to BPA may lead to testicular damage and adversely affect male reproductive function. In vivo studies on rodents have demonstrated that BPA triggers apoptosis in testicular cells through both intrinsic and extrinsic pathways. Further in vitro studies on spermatogonia, Sertoli cells, and Leydig cells have all confirmed the pro-apoptotic effects of BPA. Given these findings, apoptosis is considered a primary mode of cell death induced by BPA in testicular tissue. In addition, BPA promotes autophagy by altering the activity of the Akt/mTOR pathway and upregulating the expression of autophagy-related genes and proteins. Recent studies have also identified ferroptosis as a significant contributing factor to BPA-induced testicular damage, further complicating the landscape of BPA's effects. This review summarizes natural substances that mitigate BPA-induced testicular damage by inhibiting these cell death pathways. These findings not only highlight potential therapeutic strategies but also underscore the need for further research into the underlying mechanisms of BPA-induced toxicity, particularly as it pertains to human health risk assessment and the development of more effective BPA management strategies.
Collapse
Affiliation(s)
- Xiaoyu Zhi
- The First Medical Center of Chinese PLA General Hospital, Beijing, China; Medical School of Chinese People's Liberation Army (PLA), Beijing, China
| | - Lehui Du
- The First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Pei Zhang
- The First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Xingdong Guo
- The First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Weiwei Li
- The 81st Group Army Hospital of Chinese PLA, Zhangjiakou, China
| | - Yuan Wang
- The First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Qiduo He
- The First Medical Center of Chinese PLA General Hospital, Beijing, China; Medical School of Chinese People's Liberation Army (PLA), Beijing, China
| | - Peien Wu
- The First Medical Center of Chinese PLA General Hospital, Beijing, China; Medical School of Chinese People's Liberation Army (PLA), Beijing, China
| | - Xiao Lei
- The First Medical Center of Chinese PLA General Hospital, Beijing, China.
| | - Baolin Qu
- The First Medical Center of Chinese PLA General Hospital, Beijing, China.
| |
Collapse
|
5
|
Kim HY, Kwon HS, Lim JO, Jang HJ, Muthamil S, Shin UC, Lyu JH, Park YJ, Nam HH, Lee NY, Oh HJ, Yun SI, Jin JS, Park JH. Gonadal efficacy of Thymus quinquecostatus Celakovski: Regulation of testosterone levels in aging mouse models. Biomed Pharmacother 2024; 175:116700. [PMID: 38703505 DOI: 10.1016/j.biopha.2024.116700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 04/29/2024] [Accepted: 05/01/2024] [Indexed: 05/06/2024] Open
Abstract
Late-onset hypogonadism (LOH) is an age-related disease in men characterized by decreased testosterone levels with symptoms such as decreased libido, erectile dysfunction, and depression. Thymus quinquecostatus Celakovski (TQC) is a plant used as a volatile oil in traditional medicine, and its bioactive compounds have anti-inflammatory potential. Based on this knowledge, the present study aimed to investigate the effects of TQC extract (TE) on LOH in TM3 Leydig cells and in an in vivo aging mouse model. The aqueous extract of T. quinquecostatus Celakovski (12.5, 25, and 50 µg/mL concentrations) was used to measure parameters such as cell viability, testosterone level, body weight, and gene expression, via in vivo studies. Interestingly, TE increased testosterone levels in TM3 cells in a dose-dependent manner without affecting cell viability. Furthermore, TE significantly increased the expression of genes involved in the cytochrome P450 family (Cyp11a1, Cyp17a1, Cyp19a1, and Srd5a2), which regulate testosterone biosynthesis. In aging mouse models, TE increased testosterone levels without affecting body weight and testicular tissue weight tissue of an aging animal group. In addition, the high-dose TE-treated group (50 mg/kg) showed significantly increased expression of the cytochrome p450 enzymes, similar to the in vitro results. Furthermore, HPLC-MS analysis confirmed the presence of caffeic acid and rosmarinic acid as bioactive compounds in TE. Thus, the results obtained in the present study confirmed that TQC and its bioactive compounds can be used for LOH treatment to enhance testosterone production.
Collapse
Affiliation(s)
- Hyun-Yong Kim
- Herbal Medicine Resources Research Center, Korea Institute of Oriental Medicine, Naju, Jeollanam-do 58245, Republic of Korea
| | - Hyuck Se Kwon
- R&D Team, Food & Supplement Health Claims, Vitech, #602 Giyeon B/D 141 Anjeon-ro, Iseo-myeon, Wanju-gun, Jeollabuk-do 55365, Republic of Korea; Department of Food Science and Technology, College of Agriculture and Life Sciences, Jeonbuk National University, Jeonju 54896, Republic of Korea
| | - Je-Oh Lim
- Herbal Medicine Resources Research Center, Korea Institute of Oriental Medicine, Naju, Jeollanam-do 58245, Republic of Korea
| | - Hyun-Jun Jang
- Herbal Medicine Resources Research Center, Korea Institute of Oriental Medicine, Naju, Jeollanam-do 58245, Republic of Korea
| | - Subramanian Muthamil
- Herbal Medicine Resources Research Center, Korea Institute of Oriental Medicine, Naju, Jeollanam-do 58245, Republic of Korea
| | - Ung Cheol Shin
- Herbal Medicine Resources Research Center, Korea Institute of Oriental Medicine, Naju, Jeollanam-do 58245, Republic of Korea
| | - Ji-Hyo Lyu
- Herbal Medicine Resources Research Center, Korea Institute of Oriental Medicine, Naju, Jeollanam-do 58245, Republic of Korea
| | - Yeo Jin Park
- Korean Medicine (KM) Application Center, Korea Institute of Oriental Medicine, Daegu 41062, Republic of Korea
| | - Hyeon-Hwa Nam
- Herbal Medicine Resources Research Center, Korea Institute of Oriental Medicine, Naju, Jeollanam-do 58245, Republic of Korea
| | - Na-Young Lee
- R&D Team, Food & Supplement Health Claims, Vitech, #602 Giyeon B/D 141 Anjeon-ro, Iseo-myeon, Wanju-gun, Jeollabuk-do 55365, Republic of Korea
| | - Hyun-Jeong Oh
- R&D Team, Food & Supplement Health Claims, Vitech, #602 Giyeon B/D 141 Anjeon-ro, Iseo-myeon, Wanju-gun, Jeollabuk-do 55365, Republic of Korea
| | - Soon-Il Yun
- Department of Food Science and Technology, College of Agriculture and Life Sciences, Jeonbuk National University, Jeonju 54896, Republic of Korea; Department of Agricultural Convergence Technology, College of Agriculture and Life Sciences, Jeonbuk National University, Jeonju 54896, Republic of Korea
| | - Jong-Sik Jin
- Department of Oriental Medicine Resources, Jeonbuk National University, 79 Gobong-ro, Iksan, Jeollabuk-do 54596, Republic of Korea
| | - Jun Hong Park
- Herbal Medicine Resources Research Center, Korea Institute of Oriental Medicine, Naju, Jeollanam-do 58245, Republic of Korea; University of Science & Technology (UST), KIOM Campus, Korean Convergence Medicine Major, Daejeon 34054, Republic of Korea.
| |
Collapse
|
6
|
Erthal-Michelato RP, Quadreli DH, Zaninelli TH, Verri WA, Fernandes GSA. Lower malathion concentrations reduce testosterone biosynthesis by Leydig TM3 cells in vitro by altering cellular redox profile and inducing oxidative damage. Reprod Toxicol 2024; 126:108595. [PMID: 38641014 DOI: 10.1016/j.reprotox.2024.108595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 04/01/2024] [Accepted: 04/16/2024] [Indexed: 04/21/2024]
Abstract
Malathion is an organophosphate pesticide used in agriculture and control of the Aedes aegypti mosquito. As previous reports have indicated the potential of malathion to compromise testosterone production in in vivo models, the objective of this study was to elucidate the mechanisms underlying the impairment of Leydig cell function, considering its critical role in male reproductive function. To this end, murine Leydig TM3 cells were exposed to concentrations of 1, 10, 100 or 1000 μM malathion for 24 h for evaluation of the compound on cell viability. Subsequently, concentrations of 1, 10, and 100 μM malathion were employed for a 24-h period to assess testosterone biosynthesis, levels of cytokines IL-1β, IL-6, IL-10, and TNF-α, as well as the redox profile. Malathion exerted a concentration-dependent impact on cell viability. Notably, the lower concentrations of malathion (1 and 10 μM) were found to impair testosterone biosynthesis in TM3 cells. While there were changes in IL-1 and TNF-α levels at specific concentrations, no direct correlation with altered hormone production was established. Our investigation revealed that varied malathion concentrations induced oxidative stress by increase in superoxide anion and a compensatory rise in antioxidants. In conclusion, the observed changes in the oxidative profile of TM3 cells were linked to functional impairment, evidenced by reduced testosterone biosynthesis at lower malathion concentrations.
Collapse
Affiliation(s)
- Rafaela Pires Erthal-Michelato
- Department of General Biology, Biological Sciences Center, State University of Londrina - UEL, Rodovia Celso Garcia Cid, PR 445, Londrina, Paraná 86057-970, Brazil; Department of General Pathology, Biological Sciences Center, State University of Londrina - UEL, Rodovia Celso Garcia Cid, PR 445, Londrina, Paraná 86057-970, Brazil.
| | - Débora Hipólito Quadreli
- Department of General Biology, Biological Sciences Center, State University of Londrina - UEL, Rodovia Celso Garcia Cid, PR 445, Londrina, Paraná 86057-970, Brazil
| | - Tiago Henrique Zaninelli
- Department of General Pathology, Biological Sciences Center, State University of Londrina - UEL, Rodovia Celso Garcia Cid, PR 445, Londrina, Paraná 86057-970, Brazil
| | - Waldiceu Aparecido Verri
- Department of General Pathology, Biological Sciences Center, State University of Londrina - UEL, Rodovia Celso Garcia Cid, PR 445, Londrina, Paraná 86057-970, Brazil
| | - Glaura Scantamburlo Alves Fernandes
- Department of General Biology, Biological Sciences Center, State University of Londrina - UEL, Rodovia Celso Garcia Cid, PR 445, Londrina, Paraná 86057-970, Brazil
| |
Collapse
|
7
|
Wang L, Zhuang J, Xue Z, Lu H, Zeng W, Zhang T. VD 3/VDR attenuates bisphenol A-induced impairment in mouse Leydig cells via regulation of autophagy. J Food Sci 2024; 89:3858-3870. [PMID: 38725370 DOI: 10.1111/1750-3841.17103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 04/07/2024] [Accepted: 04/15/2024] [Indexed: 06/14/2024]
Abstract
Bisphenol A (BPA) is an endocrine disruptor with reproductive toxicity. Further, 1,25-dihydroxyvitamin D3 (VD3) plays an important role in male reproduction by binding vitamin D receptor (VDR) and mediating the pleiotropic biological actions that include spermatogenesis. However, whether VD3/VDR regulates the effect of BPA on Leydig cells (LCs) injury remains unknown. This study aimed to explore the effects of VD on BPA-induced cytotoxicity in mouse LCs. Hereby, LCs treated with BPA, VD3, or both were subjected to the assays of cell apoptosis, proliferation, autophagy, and levels of target proteins. This study unveiled that cell viability was dose-dependently reduced after exposure to BPA. BPA treatment significantly inhibited LC proliferation, induced apoptosis, and also downregulated VDR expression. By jointly analyzing transcriptome data and Comparative Toxicogenomics Database (CTD) data, autophagy signaling pathways related to testicular development and male reproduction were screened out. Therefore, the autophagy phenomenon of cells was further detected. The results showed that BPA treatment could activate cell autophagy, Vdr-/- inhibits cell autophagy, and active VD3 does not have a significant effect on the autophagy of normal LCs. After VD3 and BPA were used in combination, the autophagy of cells was further enhanced, and VD3 could alleviate BPA-induced damage of LCs. In conclusion, this study found that supplementing VD3 could eliminate the inhibition of BPA on VDR expression, further enhance LCs autophagy effect, and alleviate the inhibition of LCs proliferation and induction of apoptosis by BPA, playing a protective role in cells. The research results will provide valuable strategies to alleviate BPA-induced reproductive toxicity.
Collapse
Affiliation(s)
- Ling Wang
- School of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong, China
- Engineering Research Center of quality improvement and safety control of Qinba special meat products, Universities of Shaanxi Province, Hanzhong, China
- Qinba State Key Laboratory of Biological Resources and Ecological Environment, Hanzhong, China
| | - Jianan Zhuang
- School of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong, China
| | - Zhen Xue
- School of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong, China
| | - Hongzhao Lu
- School of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong, China
- Engineering Research Center of quality improvement and safety control of Qinba special meat products, Universities of Shaanxi Province, Hanzhong, China
- Shaanxi Union Research Center of University and Enterprise for Zhenba Bacon, Hanzhong, China
| | - Wenxian Zeng
- School of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong, China
- Shaanxi Union Research Center of University and Enterprise for Zhenba Bacon, Hanzhong, China
| | - Tao Zhang
- School of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong, China
- QinLing-Bashan Mountains Bioresources Comprehensive Development C. I. C., Shaanxi University of Technology, Hanzhong, China
- Shaanxi Union Research Center of University and Enterprise for Zhenba Bacon, Hanzhong, China
| |
Collapse
|
8
|
El-Kossi DMMH, Ibrahim SS, Hassanin KMA, Hamad N, Rashed NA, Abdel-Wahab A. Ameliorative Effects of Zinc Oxide, in Either Conventional or Nanoformulation, Against Bisphenol A Toxicity on Reproductive Performance, Oxidative Status, Gene Expression and Histopathology in Adult Male Rats. Biol Trace Elem Res 2024; 202:2143-2157. [PMID: 37682394 PMCID: PMC10954980 DOI: 10.1007/s12011-023-03830-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Accepted: 08/23/2023] [Indexed: 09/09/2023]
Abstract
Bisphenol A (BPA) is a widely used endocrine disruptor that represents a significant risk to male reproductive function. Zinc (Zn) is vital for appropriate development of testes and to guarantee optimal testicular function and spermatogenesis. Our goal was to investigate if zinc oxide (ZnO), either in conventional or nanoformulation, could safeguard adult male rats' reproductive performance against the damaging effects of BPA. Signaling expression of CYP11A1 and Nrf-2 in the testis, testicular oxidant-antioxidant status, Bax/Bcl-2 apoptotic ratio, and histological examination of various reproductive organs were all evaluated. Twenty-eight adult male albino rats were divided randomly into 4 groups (7 animals each) including the control, BPA, conventional zinc oxide (cZnO) + BPA, and zinc oxide nanoparticles (ZnO-NPs) + BPA groups. The study was extended for 2 successive months. Our findings revealed strong negative effects of BPA on sperm cell characteristics such as sperm motility, viability, concentration and abnormalities. Additionally, BPA reduced serum levels of testosterone, triiodothyronine (T3), and thyroxine (T4). Also, it evoked marked oxidative stress in the testes; elevating malondialdehyde (MDA) and reducing total antioxidant capacity (TAC). BPA significantly downregulated testicular mRNA relative expression levels of CYP11A1 and Nrf-2, compared to control. Testicular apoptosis was also prompted by increasing Bax/ Bcl-2 ratio in testicular tissue. Histopathological findings in the testes, epididymis, prostate gland, and seminal vesicle confirmed the detrimental effects of BPA. Interestingly, cZnO and ZnO-NPs significantly alleviated all negative effects of BPA, but ZnO-NPs performed better. In conclusion, our findings point to ZnO, specifically ZnO-NPs, as a viable treatment for BPA-induced testicular dysfunction.
Collapse
Affiliation(s)
- Dina M M H El-Kossi
- Physiology Department, Faculty of Veterinary Medicine, Minia University, El-Minia, 61519, Egypt
| | - Shawky S Ibrahim
- Physiology Department, Faculty of Veterinary Medicine, Beni-Suef University, Beni-Suef, 62511, Egypt
| | - Kamel M A Hassanin
- Biochemistry Department, Faculty of Veterinary Medicine, Minia University, El-Minia, 61519, Egypt
| | - Nashwa Hamad
- Department of Pathology and Clinical Pathology, Faculty of Veterinary Medicine, Assiut University, Assiut, 71515, Egypt
| | - Noha A Rashed
- Department of Human Anatomy and Embryology, Faculty of Medicine, Assiut University, Assiut, 71515, Egypt
| | - Ahmed Abdel-Wahab
- Physiology Department, Faculty of Veterinary Medicine, Minia University, El-Minia, 61519, Egypt.
| |
Collapse
|
9
|
Qi Q, Yang J, Li S, Liu J, Xu D, Wang G, Feng L, Pan X. Melatonin alleviates oxidative stress damage in mouse testes induced by bisphenol A. Front Cell Dev Biol 2024; 12:1338828. [PMID: 38440074 PMCID: PMC10910031 DOI: 10.3389/fcell.2024.1338828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 02/07/2024] [Indexed: 03/06/2024] Open
Abstract
We investigated the effect of melatonin on bisphenol A (BPA)-induced oxidative stress damage in testicular tissue and Leydig cells. Mice were gavaged with 50 mg/kg BPA for 30 days, and concurrently, were injected with melatonin (10 mg/kg and 20 mg/kg). Leydig cells were treated with 10 μmol/L of BPA and melatonin. The morphology and organ index of the testis and epididymis were observed and calculated. The sperm viability and density were determined. The expressions of melatonin receptor 1A and luteinizing hormone receptor, and the levels of malonaldehyde, antioxidant enzymes, glutathione, steroid hormone synthases, aromatase, luteinizing hormone, testosterone, and estradiol were measured. TUNEL assay was utilized to detect testicular cell apoptosis. The administration of melatonin at 20 mg/kg significantly improved the testicular index and epididymis index in mice treated with BPA. Additionally, melatonin promoted the development of seminiferous tubules in the testes. Furthermore, the treatment with 20 mg/kg melatonin significantly increased sperm viability and sperm density in mice, while also promoting the expressions of melatonin receptor 1A and luteinizing hormone receptor in Leydig cells of BPA-treated mice. Significantly, melatonin reduced the level of malonaldehyde in testicular tissue and increased the expression of antioxidant enzymes (superoxide dismutase 1, superoxide dismutase 2, and catalase) as well as the content of glutathione. Moreover, melatonin also reduced the number of apoptotic Leydig cells and spermatogonia, aromatase expression, and estradiol level, while increasing the expression of steroid hormone synthases (steroidogenic acute regulatory protein, cytochrome P450 family 17a1, cytochrome P450 17α-hydroxylase/20-lyase, and, 17β-hydroxysteroid dehydrogenase) and the level of testosterone. Melatonin exhibited significant potential in alleviating testicular oxidative stress damage caused by BPA. These beneficial effects may be attributed to melatonin's ability to enhance the antioxidant capacity of testicular tissue, promote testosterone synthesis, and reduce testicular cell apoptosis.
Collapse
Affiliation(s)
- Qi Qi
- Center for Reproductive Medicine, Jilin Medical University, Jilin, China
- School of Medical Technology, Beihua University, Jilin, China
| | - Jiaxin Yang
- Center for Reproductive Medicine, Jilin Medical University, Jilin, China
| | - Shuang Li
- Center for Reproductive Medicine, Jilin Medical University, Jilin, China
- School of Medical Technology, Beihua University, Jilin, China
| | - Jingjing Liu
- Center for Reproductive Medicine, Jilin Medical University, Jilin, China
- School of Medical Technology, Beihua University, Jilin, China
| | - Da Xu
- Center for Reproductive Medicine, Jilin Medical University, Jilin, China
| | - Guoqing Wang
- School of Medical Technology, Beihua University, Jilin, China
| | - Lei Feng
- Center for Reproductive Medicine, Jilin Medical University, Jilin, China
| | - Xiaoyan Pan
- Center for Reproductive Medicine, Jilin Medical University, Jilin, China
| |
Collapse
|
10
|
Štefunková N, Greifová H, Jambor T, Tokárová K, Zuščíková L, Bažány D, Massányi P, Capcarová M, Lukáč N. Comparison of the Effect of BPA and Related Bisphenols on Membrane Integrity, Mitochondrial Activity, and Steroidogenesis of H295R Cells In Vitro. Life (Basel) 2023; 14:3. [PMID: 38276253 PMCID: PMC10821247 DOI: 10.3390/life14010003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 12/06/2023] [Accepted: 12/12/2023] [Indexed: 01/27/2024] Open
Abstract
Bisphenol A (BPA) is an endocrine-disruptive chemical that is widely utilized in the production of polycarbonate plastic and epoxy resin, which are used to make a wide range of consumer products, food and drink containers, and medical equipment. When the potential risk of BPA emerged, it was substituted by allegedly less harmful substitutes such as bisphenols S, F, B, and AF. However, evidence suggests that all bisphenols can have endocrine-disruptive effects, while the extent of these effects is unknown. This study aimed to determine effect of BPA, BPAF, BPB, BPF, and BPS on viability and steroidogenesis in human adrenocortical carcinoma cell line in vitro. The cytotoxicity of bisphenols was shown to be considerable at higher doses. However, at low concentrations, it improved viability as well as steroid hormone secretion, indicating that bisphenols have a biphasic, hormetic effect in biological systems. The results are consistent with the hypothesis that bisphenols selectively inhibit some steroidogenic enzymes. These findings suggest that bisphenols have the potential to disrupt cellular steroidogenesis in humans, but substantially more detailed and systematic research is needed to gain a better understanding of the risks associated with bisphenols and their endocrine-disrupting effect on humans and wildlife.
Collapse
Affiliation(s)
- Nikola Štefunková
- Institute of Applied Biology, Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 949 76 Nitra, Slovakia (P.M.)
| | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Ryu DY, Pang WK, Adegoke EO, Rahman MS, Park YJ, Pang MG. Bisphenol-A disturbs hormonal levels and testis mitochondrial activity, reducing male fertility. Hum Reprod Open 2023; 2023:hoad044. [PMID: 38021376 PMCID: PMC10681812 DOI: 10.1093/hropen/hoad044] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 11/09/2023] [Indexed: 12/01/2023] Open
Abstract
STUDY QUESTION How does bisphenol-A (BPA) influence male fertility, and which mechanisms are activated following BPA exposure? SUMMARY ANSWER BPA exposure causes hormonal disruption and alters mitochondrial dynamics and activity, ultimately leading to decreased male fertility. WHAT IS KNOWN ALREADY As public health concerns following BPA exposure are rising globally, there is a need to understand the exact mechanisms of BPA on various diseases. BPA exposure causes hormonal imbalances and affects male fertility by binding the estrogen receptors (ERs), but the mechanism of how it mediates the hormonal dysregulation is yet to be studied. STUDY DESIGN SIZE DURATION This study consisted of a comparative study using mice that were separated into a control group and a group exposed to the lowest observed adverse effect level (LOAEL) (n = 20 mice/group) after a week of acclimatization to the environment. For this study, the LOAEL established by the US Environmental Protection Agency of 50 mg/kg body weight (BW)/day of BPA was used. The control mice were given corn oil orally. Based on the daily variations in BW, both groups were gavaged every day from 6 to 11 weeks (6-week exposure). Before sampling, mice were stabilized for a week. Then, the testes and spermatozoa of each mouse were collected to investigate the effects of BPA on male fertility. IVF was carried out using the cumulus-oocyte complexes from female hybrid B6D2F1/CrljOri mice (n = 3) between the ages of eight and twelve weeks. PARTICIPANTS/MATERIALS SETTING METHODS Signaling pathways, apoptosis, and mitochondrial activity/dynamics-related proteins were evaluated by western blotting. ELISA was performed to determine the levels of sex hormones (FSH, LH, and testosterone) in serum. Hematoxylin and eosin staining was used to determine the effects of BPA on histological morphology and stage VII/VIII testicular seminiferous epithelium. Blastocyst formation and cleavage development rate were evaluated using IVF. MAIN RESULTS AND THE ROLE OF CHANCE BPA acted by binding to ERs and G protein-coupled receptors and activating the protein kinase A and mitogen-activated protein kinase signaling pathways, leading to aberrant hormone levels and effects on the respiratory chain complex, ATP synthase and protein-related apoptotic pathways in testis mitochondria (P < 0.05). Subsequently, embryo cleavage and blastocyst formation were reduced after the use of affected sperm, and abnormal morphology of seminiferous tubules and stage VII and VIII seminiferous epithelial cells (P < 0.05) was observed. It is noteworthy that histopathological lesions were detected in the testes at the LOAEL dose, even though the mice remained generally healthy and did not exhibit significant changes in BW following BPA exposure. These observations suggest that testicular toxicity is more than a secondary outcome of compromised overall health in the mice due to systemic effects. LARGE SCALE DATA Not applicable. LIMITATIONS REASONS FOR CAUTION Since the protein expression levels in the testes were validated, in vitro studies in each testicular cell type (Leydig cells, Sertoli cells, and spermatogonial stem cells) would be required to shed further light on the exact mechanism resulting from BPA exposure. Furthermore, the BPA doses employed in this study significantly exceed the typical human exposure levels in real-life scenarios. Consequently, it is imperative to conduct experiments focusing on the effects of BPA concentrations more in line with daily human exposures to comprehensively assess their impact on testicular toxicity and mitochondrial activity. WIDER IMPLICATIONS OF THE FINDINGS These findings demonstrate that BPA exposure impacts male fertility by disrupting mitochondrial dynamics and activities in the testes and provides a solid foundation for subsequent investigations into the effects on male reproductive function and fertility following BPA exposure, and the underlying mechanisms responsible for these effects. In addition, these findings suggest that the LOAEL concentration of BPA demonstrates exceptional toxicity, especially when considering its specific impact on the testes and its adverse consequences for male fertility by impairing mitochondrial activity. Therefore, it is plausible to suggest that BPA elicits distinct toxicological responses and mechanistic endpoints based on the particular concentration levels for each target organ. STUDY FUNDING/COMPETING INTERESTS This work was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (NRF-2018R1A6A1A03025159). No competing interests are declared.
Collapse
Affiliation(s)
- Do-Yeal Ryu
- Department of Animal Science & Technology and BET Research Institute, Chung-Ang University, Anseong, Republic of Korea
| | - Won-Ki Pang
- Department of Animal Science & Technology and BET Research Institute, Chung-Ang University, Anseong, Republic of Korea
| | - Elikanah Olusayo Adegoke
- Department of Animal Science & Technology and BET Research Institute, Chung-Ang University, Anseong, Republic of Korea
| | - Md Saidur Rahman
- Department of Animal Science & Technology and BET Research Institute, Chung-Ang University, Anseong, Republic of Korea
| | - Yoo-Jin Park
- Department of Animal Science & Technology and BET Research Institute, Chung-Ang University, Anseong, Republic of Korea
| | - Myung-Geol Pang
- Department of Animal Science & Technology and BET Research Institute, Chung-Ang University, Anseong, Republic of Korea
| |
Collapse
|
12
|
Zhang KY, Li CN, Zhang NX, Gao XC, Shen JM, Cheng DD, Wang YL, Zhang H, Lv JW, Sun JM. UPLC-QE-Orbitrap-Based Cell Metabolomics and Network Pharmacology to Reveal the Mechanism of N-Benzylhexadecanamide Isolated from Maca ( Lepidium meyenii Walp.) against Testicular Dysfunction. Molecules 2023; 28:molecules28104064. [PMID: 37241805 DOI: 10.3390/molecules28104064] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 05/10/2023] [Accepted: 05/11/2023] [Indexed: 05/28/2023] Open
Abstract
Testicular dysfunction (TDF) is characterized by testosterone deficiency and is caused by oxidative stress injury in Leydig cells. A natural fatty amide named N-benzylhexadecanamide (NBH), derived from cruciferous maca, has been shown to promote testosterone production. Our study aims to reveal the anti-TDF effect of NBH and explore its potential mechanism in vitro. This study examined the effects of H2O2 on cell viability and testosterone levels in mouse Leydig cells (TM3) under oxidative stress. In addition, cell metabolomics analysis based on UPLC-Q-Exactive-MS/MS showed that NBH was mainly involved in arginine biosynthesis, aminoacyl-tRNA biosynthesis, phenylalanine, tyrosine and tryptophan biosynthesis, the TCA cycle and other metabolic pathways by affecting 23 differential metabolites, including arginine and phenylalanine. Furthermore, we also performed network pharmacological analysis to observe the key protein targets in NBH treatment. The results showed that its role was to up-regulate ALOX5, down-regulate CYP1A2, and play a role in promoting testicular activity by participating in the steroid hormone biosynthesis pathway. In summary, our study not only provides new insights into the biochemical mechanisms of natural compounds in the treatment of TDF, but also provides a research strategy that integrates cell metabolomics and network pharmacology in order to promote the screening of new drugs for the treatment of TDF.
Collapse
Affiliation(s)
- Kai-Yue Zhang
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun 130117, China
| | - Chun-Nan Li
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun 130117, China
| | - Nan-Xi Zhang
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun 130117, China
| | - Xiao-Chen Gao
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun 130117, China
| | - Jia-Ming Shen
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun 130117, China
| | - Duan-Duan Cheng
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun 130117, China
| | - Yue-Long Wang
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun 130117, China
| | - Hui Zhang
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun 130117, China
| | - Jing-Wei Lv
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun 130117, China
| | - Jia-Ming Sun
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun 130117, China
| |
Collapse
|
13
|
Liu R, Liu B, Tian L, Wu X, Li X, Cai D, Jiang X, Sun J, Jin Y, Bai W. Induction of reproductive injury by bisphenol A and the protective effects of cyanidin-3-O-glucoside and protocatechuic acid in rats. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 883:163615. [PMID: 37105472 DOI: 10.1016/j.scitotenv.2023.163615] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 04/05/2023] [Accepted: 04/17/2023] [Indexed: 05/05/2023]
Abstract
Bisphenol A (BPA) has attracted growing attention as a well-known environmental pollutant due to its high risk of male reproductive toxicity. In this study, transcriptomics profiling combined with metabolomic techniques was applied to explore the intervention effects of BPA-induced male reproductive toxicity. We demonstrated that cyanidin-3-O-glucoside (C3G) and its main metabolite protocatechuic acid (PCA) significantly increased testosterone and luteinizing hormone (LH) levels in the serum of rats, and improved sperm quality. Furthermore, we identified and screened differentially expressed genes (DEGs) and metabolites (DMs) that functionally enriched in the steroidogenesis-related pathways. Next, the validated results found that C3G and PCA significantly up-regulated the gene expressions of Star, Cyp11a1, Cyp17a1, Cyp19a1, Cyp7a1, Hsd3b1, Hsd3b2, Hsd17b3, Scrab1, and Ass1 in testicular. In Leydig cells, C3G and PCA dramatically alleviated apoptosis, ROS accumulation, and cell cycle arrest caused by BPA. In addition, molecular docking and simulation results implied that C3G and PCA competitively with BPA bind to the estrogen receptors α and β (ERα and ERβ) and shared common key amino acids. The main interaction modes between small molecules and estrogen receptors included π-π stacking, salt bridges, hydrogen bonds, and hydrophobic interactions. Therefore, our study sheds light on C3G and PCA supplementation can protect male reproduction from BPA-induced injury.
Collapse
Affiliation(s)
- Ruijing Liu
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Jinan University, Guangzhou 510632, PR China; College of Materials and Energy, Key Laboratory for Bio-Based Materials and Energy of Ministry of Education, South China Agricultural University, Guangzhou 510642, PR China
| | - Boping Liu
- College of Materials and Energy, Key Laboratory for Bio-Based Materials and Energy of Ministry of Education, South China Agricultural University, Guangzhou 510642, PR China
| | - Lingmin Tian
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Jinan University, Guangzhou 510632, PR China
| | - Xiaoyan Wu
- College of Materials and Energy, Key Laboratory for Bio-Based Materials and Energy of Ministry of Education, South China Agricultural University, Guangzhou 510642, PR China
| | - Xusheng Li
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Jinan University, Guangzhou 510632, PR China
| | - Dongbao Cai
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Jinan University, Guangzhou 510632, PR China
| | - Xinwei Jiang
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Jinan University, Guangzhou 510632, PR China
| | - Jianxia Sun
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, PR China
| | - Yulong Jin
- College of Materials and Energy, Key Laboratory for Bio-Based Materials and Energy of Ministry of Education, South China Agricultural University, Guangzhou 510642, PR China
| | - Weibin Bai
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Jinan University, Guangzhou 510632, PR China.
| |
Collapse
|
14
|
Palak E, Lebiedzinska W, Lupu O, Pulawska K, Anisimowicz S, Mieczkowska AN, Sztachelska M, Niklinska GN, Milewska G, Lukasiewicz M, Ponikwicka-Tyszko D, Huhtaniemi I, Wolczynski S. Molecular insights underlying the adverse effects of bisphenol A on gonadal somatic cells' steroidogenic activity. Reprod Biol 2023; 23:100766. [PMID: 37084542 DOI: 10.1016/j.repbio.2023.100766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 04/07/2023] [Accepted: 04/10/2023] [Indexed: 04/23/2023]
Abstract
Bisphenol A (BPA) exposure may impair gonadal steroidogenesis, although the underlying mechanism is not well known. Hereby, we assessed BPA action on human primary granulosa (hGC) and mouse Leydig cells (BLTK-1) proliferation, cytotoxicity, hormone secretion, and steroidogenic enzyme/receptor gene profile. hGC and BLTK-1 cells were stimulated with increasing concentrations of BPA (10-12 M to 10-4 M for cell proliferation assay, 10-8 M to 10-4 M for LDH-cytotoxicity assay, and 10-9 M to 10-5 M for hormone secretion and genes expression analysis). BPA at low concentrations (pM - nM) did not affect cell proliferation in either cell type, although was toxic at higher (µM) concentrations. BPA stimulation at low nM concentrations decreased the production of estradiol (E2) and testosterone (T) in BLTK-1, E2, and progesterone in hGCs. BPA down-regulated Star, Cyp11a1, and Hsd17b3, but up-regulated Cyp19a1, Esr1, Esr2, and Gpr30 expression in BLTK-1 cells. In hGC, BPA down-regulated STAR, CYP19A1, PGRMC1, and PAQR7 but up-regulated ESR2 expression. Estrogen receptor degrader fulvestrant (FULV) attenuated BPA inhibition of hormone production in both cell lines. FULV also blocked the BPA-induced Gpr30 up-regulation in BLTK-1 cells, whereas in hGC, failed to reverse the down-regulation of PGRMC1, STAR, and CYP19A1. Our findings provide novel mechanistic insights into environmentally-relevant doses of BPA action through both nuclear estrogen receptor-dependent and independent mechanisms affecting cultured granulosa and Leydig cell steroidogenesis.
Collapse
Affiliation(s)
- Ewelina Palak
- Department of Biology and Pathology of Human Reproduction, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Olsztyn, Poland
| | - Weronika Lebiedzinska
- Department of Reproduction and Gynecological Endocrinology, Medical University of Bialystok, Poland
| | - Oana Lupu
- Department of Reproduction and Gynecological Endocrinology, Medical University of Bialystok, Poland
| | | | | | - Aleksandra N Mieczkowska
- Department of Biology and Pathology of Human Reproduction, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Olsztyn, Poland
| | - Maria Sztachelska
- Department of Biology and Pathology of Human Reproduction, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Olsztyn, Poland
| | | | - Gabriela Milewska
- Department of Reproduction and Gynecological Endocrinology, Medical University of Bialystok, Poland
| | - Monika Lukasiewicz
- Department of Reproduction and Gynecological Endocrinology, Medical University of Bialystok, Poland
| | - Donata Ponikwicka-Tyszko
- Department of Biology and Pathology of Human Reproduction, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Olsztyn, Poland; Institute of Biomedicine, University of Turku, Finland
| | - Ilpo Huhtaniemi
- Institute of Biomedicine, University of Turku, Finland; Department of Digestion, Metabolism and Reproduction, Institute of Reproductive and Developmental Biology, Imperial College London, London, United Kingdom
| | - Slawomir Wolczynski
- Department of Biology and Pathology of Human Reproduction, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Olsztyn, Poland; Department of Reproduction and Gynecological Endocrinology, Medical University of Bialystok, Poland.
| |
Collapse
|
15
|
EFSA Panel on Food Contact Materials, Enzymes and Processing Aids (CEP), Lambré C, Barat Baviera JM, Bolognesi C, Chesson A, Cocconcelli PS, Crebelli R, Gott DM, Grob K, Lampi E, Mengelers M, Mortensen A, Rivière G, Silano (until 21 December 2020†) V, Steffensen I, Tlustos C, Vernis L, Zorn H, Batke M, Bignami M, Corsini E, FitzGerald R, Gundert‐Remy U, Halldorsson T, Hart A, Ntzani E, Scanziani E, Schroeder H, Ulbrich B, Waalkens‐Berendsen D, Woelfle D, Al Harraq Z, Baert K, Carfì M, Castoldi AF, Croera C, Van Loveren H. Re-evaluation of the risks to public health related to the presence of bisphenol A (BPA) in foodstuffs. EFSA J 2023; 21:e06857. [PMID: 37089179 PMCID: PMC10113887 DOI: 10.2903/j.efsa.2023.6857] [Citation(s) in RCA: 64] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2023] Open
Abstract
In 2015, EFSA established a temporary tolerable daily intake (t-TDI) for BPA of 4 μg/kg body weight (bw) per day. In 2016, the European Commission mandated EFSA to re-evaluate the risks to public health from the presence of BPA in foodstuffs and to establish a tolerable daily intake (TDI). For this re-evaluation, a pre-established protocol was used that had undergone public consultation. The CEP Panel concluded that it is Unlikely to Very Unlikely that BPA presents a genotoxic hazard through a direct mechanism. Taking into consideration the evidence from animal data and support from human observational studies, the immune system was identified as most sensitive to BPA exposure. An effect on Th17 cells in mice was identified as the critical effect; these cells are pivotal in cellular immune mechanisms and involved in the development of inflammatory conditions, including autoimmunity and lung inflammation. A reference point (RP) of 8.2 ng/kg bw per day, expressed as human equivalent dose, was identified for the critical effect. Uncertainty analysis assessed a probability of 57-73% that the lowest estimated Benchmark Dose (BMD) for other health effects was below the RP based on Th17 cells. In view of this, the CEP Panel judged that an additional uncertainty factor (UF) of 2 was needed for establishing the TDI. Applying an overall UF of 50 to the RP, a TDI of 0.2 ng BPA/kg bw per day was established. Comparison of this TDI with the dietary exposure estimates from the 2015 EFSA opinion showed that both the mean and the 95th percentile dietary exposures in all age groups exceeded the TDI by two to three orders of magnitude. Even considering the uncertainty in the exposure assessment, the exceedance being so large, the CEP Panel concluded that there is a health concern from dietary BPA exposure.
Collapse
|
16
|
Jambor T, Knizatova N, Greifova H, Kovacik A, Lukac N. Toxicity of bisphenol A and its replacements in the mice Leydig cells in vitro. Physiol Res 2023; 72:71-86. [PMID: 36545881 PMCID: PMC10069807 DOI: 10.33549/physiolres.934989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/24/2023] Open
Abstract
The aim of the study was to examine the potential impacts of bisphenol A (BPA) and its analogues BPB, BPF, and BPS on mice TM3 Leydig cells, with respect to basal cell viability parameters such as metabolic activity, cell membrane integrity, and lysosomal activity after 48-h exposure. In addition, monitoring of potential bisphenol´s actions included evaluation of ROS production and gap junctional intercellular communication (GJIC) complemented by determination of testosterone secretion. Obtained results revealed significant inhibition in mitochondrial activity started at 10 microg/ml of bisphenols after 48-h exposure. Cell membrane integrity was significantly decreased at 5 microg/ml of BPA and BPF and 10, 25, and 50 microg/ml of BPA and BPS. The lysosomal activity was significantly affected at 10, 25, and 50 microg/ml of applied bisphenols. A significant overproduction of ROS was recorded mainly at 5 and 10 microg/ml of tested compounds. In addition, significant inhibition of GJIC was observed at 5 microg/ml of BPB followed by a progressive decline at higher applied doses. In the case of testosterone production, a significant decline was confirmed at 10, 25 and 50 microg/ml.
Collapse
Affiliation(s)
- T Jambor
- Faculty of Biotechnology and Food Sciences, Institute of Applied Biology, Slovak University of Agriculture in Nitra, Nitra, Slovak Republic.
| | | | | | | | | |
Collapse
|
17
|
Zhou SM, Yuan WB, Li JZ, Chen HQ, Zeng Y, Wang N, Fan J, Zhang Z, Xu Y, Cao J, Liu WB. TET1 involved in bisphenol A induced TM3 Leydig cell toxicity by regulating Cav3.3 hydroxymethylation. CHEMOSPHERE 2023; 312:137171. [PMID: 36370755 DOI: 10.1016/j.chemosphere.2022.137171] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 11/03/2022] [Accepted: 11/05/2022] [Indexed: 06/16/2023]
Abstract
Bisphenol A (BPA), an important environmental pollutant, is known to damage reproductive development. However, the underlying epigenetic mechanism in Leydig cells during BPA exposure has not been explored in detail. In this study, TM3 Leydig cells were treated with BPA (0, 20, 40 and 80 μM) for 72 h. The differentially expressed TET1 cell model was constructed to explore the mechanism of BPA-induced cytotoxicity. Results showed that BPA exposure significantly inhibited cell viability and increased apoptosis of TM3 Leydig cells. Meanwhile, the mRNA of TET1, Cav3.2 and Cav3.3 decreased significantly with the increase of BPA exposure. Importantly, TET1 significantly promoted proliferation of TM3 Leydig cells and inhibited apoptosis. Differentially expressed TET1 significantly affected BPA-induced toxicity in TM3 Leydig cells. Notably, TET1 elevated the mRNA levels of Cav3.2 and Cav3.3. MeDIP and hMeDIP confirmed that TET1 regulated the expression of Cav3.3 through DNA hydroxymethylation. Our study firstly presented that TET1 participated in BPA-induced toxicity in TM3 Leydig cells through regulating Cav3.3 hydroxymethylation modification. These findings suggest that TET1 acts as a potential epigenetic marker for reproductive toxicity induced by BPA exposure and may provide a new direction for the research on male reproductive damage.
Collapse
Affiliation(s)
- Shi-Meng Zhou
- School of Public Health, China Medical University, Shenyang, Liaoning, 110122, China; Institute of Toxicology, College of Preventive Medicine, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Wen-Bo Yuan
- Institute of Toxicology, College of Preventive Medicine, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Jing-Zhi Li
- Institute of Toxicology, College of Preventive Medicine, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Hong-Qiang Chen
- Institute of Toxicology, College of Preventive Medicine, Third Military Medical University (Army Medical University), Chongqing, 400038, China; Department of Environmental Health, College of Preventive Medicine, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Yong Zeng
- Institute of Toxicology, College of Preventive Medicine, Third Military Medical University (Army Medical University), Chongqing, 400038, China; Department of Environmental Health, College of Preventive Medicine, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Na Wang
- Department of Environmental Health, College of Preventive Medicine, Third Military Medical University (Army Medical University), Chongqing, 400038, China; School of Public Health, Guizhou Medical University, Guiyang, Guizhou, 550025, China
| | - Jun Fan
- Department of Breast and Thyroid Surgery, Daping Hospital, Third Military Medical University (Army Medical University), Chongqing, 400042, China
| | - Zhe Zhang
- Department of Breast and Thyroid Surgery, Daping Hospital, Third Military Medical University (Army Medical University), Chongqing, 400042, China
| | - Yuanyuan Xu
- School of Public Health, China Medical University, Shenyang, Liaoning, 110122, China.
| | - Jia Cao
- Institute of Toxicology, College of Preventive Medicine, Third Military Medical University (Army Medical University), Chongqing, 400038, China.
| | - Wen-Bin Liu
- Institute of Toxicology, College of Preventive Medicine, Third Military Medical University (Army Medical University), Chongqing, 400038, China; Department of Environmental Health, College of Preventive Medicine, Third Military Medical University (Army Medical University), Chongqing, 400038, China.
| |
Collapse
|
18
|
Zhao X, Wang S, Xu J, Wang C, Feng Y, Xue H, Wu M, Chen L, Xu L. Effects of short daylight and mild low temperature on mitochondrial degeneration in the testis of
Cricetulus barabensis. Mol Reprod Dev 2022; 89:413-422. [DOI: 10.1002/mrd.23632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 06/11/2022] [Accepted: 06/29/2022] [Indexed: 11/12/2022]
Affiliation(s)
- Xiang‐Yu Zhao
- College of Life Sciences Qufu Normal University Qufu Shandong China
| | - Shuo Wang
- College of Life Sciences Qufu Normal University Qufu Shandong China
| | - Jin‐Hui Xu
- College of Life Sciences Qufu Normal University Qufu Shandong China
| | - Chuan‐Li Wang
- College of Life Sciences Qufu Normal University Qufu Shandong China
| | - Yong‐Zhen Feng
- College of Life Sciences Qufu Normal University Qufu Shandong China
| | - Hui‐Liang Xue
- College of Life Sciences Qufu Normal University Qufu Shandong China
| | - Ming Wu
- College of Life Sciences Qufu Normal University Qufu Shandong China
| | - Lei Chen
- College of Life Sciences Qufu Normal University Qufu Shandong China
| | - Lai‐Xiang Xu
- College of Life Sciences Qufu Normal University Qufu Shandong China
| |
Collapse
|
19
|
Malek MA, Dasiman R, Khan NAMN, Mohamed-Akhlak S, Mahmud MH. The protective effects of Procyanidin C-1 on bisphenol a-induced testicular dysfunction in aged mice. FOOD SCIENCE AND HUMAN WELLNESS 2022. [DOI: 10.1016/j.fshw.2022.03.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
20
|
Tyner MD, Maloney MO, Kelley BJ, Combelles CM. Comparing the Effects of Bisphenol A, C, and F on Bovine Theca Cells In Vitro. Reprod Toxicol 2022; 111:27-33. [DOI: 10.1016/j.reprotox.2022.05.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 05/04/2022] [Accepted: 05/11/2022] [Indexed: 10/18/2022]
|
21
|
Xia BT, He Y, Guo Y, Huang JL, Tang XJ, Wang JR, Tan Y, Duan P. Multi- and transgenerational biochemical effects of low-dose exposure to bisphenol A and 4-nonylphenol on testicular interstitial (Leydig) cells. ENVIRONMENTAL TOXICOLOGY 2022; 37:1032-1046. [PMID: 35005817 DOI: 10.1002/tox.23462] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 12/12/2021] [Accepted: 12/29/2021] [Indexed: 06/14/2023]
Abstract
Bisphenol A (BPA) and 4-nonylphenol (NP) are well-known endocrine-disrupting chemicals (EDCs) that have been proven to affect Leydig cell (LC) functions and testosterone production, but whether BPA and NP have multi- and transgenerational biochemical effects on Leydig cells (LCs) is unknown. Fourier transform infrared (FTIR) spectroscopy is a powerful analytical technique that enables label-free and non-destructive analysis of the tissue specimen. Herein we employed FTIR coupled with chemometrics analysis to identify biomolecular changes in testicular interstitial (Leydig) cells of rats after chronic exposure to low doses of BPA and NP. Cluster segregations between exposed and control groups were observed based on the fingerprint region of 1800-900 cm-1 in all generations. The main biochemical alterations for segregation were amide I, amide II and nucleic acids. BPA and NP single and co-exposure induced significant differences in the ratio of amide I to amide II compared to the corresponding control group in all generations. BPA exposure resulted in remarkable changes of cellular gene transcription and DNA oxidative damage across all generations. Direct exposure to BPA, NP, and BPA&NP of F0 and F1 generations could significantly decrease lipid accumulation in LCs in the F2 and F3 generations. The overall findings revealed that single or co-exposure to BPA and NP at environmental concentrations affects the biochemical structures and properties of LCs.
Collapse
Affiliation(s)
- Bin-Tong Xia
- Postgraduate Training Basement of Jinzhou Medicinal University, Shiyan Renmin Hospital, Hubei University of Medicine, Shiyan, China
- Department of Urology, Xiangyang No.1 People's Hospital, Hubei University of Medicine, Xiangyang, China
| | - Yan He
- Department of Obstetrics and Gynecology, Xiangyang No.1 People's Hospital, Jinzhou Medical University Union Training Base, Xiangyang, China
- Department of Obstetrics and Gynecology, Xiangyang No.1 People's Hospital, Hubei University of Medicine, Xiangyang, China
| | - Yang Guo
- Department of Obstetrics and Gynecology, Xiangyang No.1 People's Hospital, Hubei University of Medicine, Xiangyang, China
| | - Jiao-Long Huang
- Department of Obstetrics and Gynecology, Xiangyang No.1 People's Hospital, Hubei University of Medicine, Xiangyang, China
| | - Xiao-Juan Tang
- College of Basic Medicine, Hubei University of Medicine, Shiyan, China
| | - Jian-Ru Wang
- Public Health and Management College, Hubei University of Medicine, Shiyan, China
| | - Yan Tan
- Department of Andrology, Renmin Hospital, Hubei University of Medicine, Shiyan, China
- Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei University of Medicine, Shiyan, China
- Biomedical Engineering College, Hubei University of Medicine, Shiyan, China
| | - Peng Duan
- Department of Obstetrics and Gynecology, Xiangyang No.1 People's Hospital, Hubei University of Medicine, Xiangyang, China
- Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei University of Medicine, Shiyan, China
| |
Collapse
|
22
|
Osman HEH, ELSahra DG, Alamin AA, El-Kenawy AEM, Salem RR. Costus root extract improves testicular toxicity of Bisphenol A in adult male albino rats: histopathological, ultrastructural and biochemical studies. BENI-SUEF UNIVERSITY JOURNAL OF BASIC AND APPLIED SCIENCES 2022. [DOI: 10.1186/s43088-022-00225-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Bisphenol A (BPA) causes environmental pollution and is used as a natural antioxidant to protect against chemical side-effects. Costus is a well-known medicinal plant containing several biologically active compounds. We investigated the protective effects of costus extract against the toxic effects of BPA in the rat testes.
Results
Biochemical and immunohistochemical investigations revealed that bisphenol reduced the activity of antioxidant enzymes and plasma testosterone levels and significantly increased P53. Co-administration of costus root extract with BPA improved the depletion of antioxidant enzymes, returned testosterone to normal levels, and improved P53 alternations. Histological and ultrastructural examinations showed that BPA reduced body and testicular weights, and the degeneration of seminiferous tubule germ cells, and the use of costus root extract with BPA attenuated these toxic effects.
Conclusions
Costus protects rat testes against the toxic effects of BPA.
Collapse
|
23
|
Chen PP, Liu C, Zhang M, Miao Y, Cui FP, Deng YL, Luo Q, Zeng JY, Shi T, Lu TT, Yin WJ, Lu WQ, Yi GL, Qiu G, Zeng Q. Associations between urinary bisphenol A and its analogues and semen quality: A cross-sectional study among Chinese men from an infertility clinic. ENVIRONMENT INTERNATIONAL 2022; 161:107132. [PMID: 35149449 DOI: 10.1016/j.envint.2022.107132] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 01/15/2022] [Accepted: 02/02/2022] [Indexed: 06/14/2023]
Abstract
Human studies on association between bisphenol A (BPA) exposure and semen quality, mostly based on single urinary measurement, are inconsistent. There is limited human evidence on BPA analogues such as bisphenol F (BPF) and bisphenol S (BPS), and little is known on potential effects of bisphenol mixtures. We aimed to explore whether individual or mixtures of BPA, BPS and BPF assessed in repeated urinary measurements were associated with semen quality among 984 Chinese men from an infertility clinic. We found that higher BPA exposure was associated with increased odds ratios (ORs) of having below-reference sperm concentration, total sperm count, progressive motility and total motility (all P for trends < 0.05). Higher BPS exposure was associated with increased ORs of having below-reference progressive motility and total motility (both P for trends = 0.02); the ORs comparing extreme quartiles were 1.62 (95% CI: 1.07, 2.43) and 1.57 (95% CI: 1.06, 2.33), respectively. Elevated risks for each outcome were also observed when bisphenol mixtures were at ≥ 55th percentiles. For semen quality parameters modeled as continuous outcomes, inverse associations with individual BPA and BPS and bisphenol mixtures were still estimated. Our results suggested that higher exposure to individual BPA and BPS and bisphenol mixtures were associated with impaired semen quality.
Collapse
Affiliation(s)
- Pan-Pan Chen
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Chong Liu
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Min Zhang
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Yu Miao
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Fei-Peng Cui
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Yan-Ling Deng
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Qiong Luo
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Jia-Yue Zeng
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Tian Shi
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Ting-Ting Lu
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Wen-Jun Yin
- Wuhan Prevention and Treatment Center for Occupational Diseases, Wuhan, Hubei, PR China
| | - Wen-Qing Lu
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Gui-Lin Yi
- Wuhan Prevention and Treatment Center for Occupational Diseases, Wuhan, Hubei, PR China
| | - GaoKun Qiu
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Qiang Zeng
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China.
| |
Collapse
|
24
|
Assessment of the Effective Impact of Bisphenols on Mitochondrial Activity, Viability and Steroidogenesis in a Dose-Dependency in Human Adrenocortical Carcinoma Cells. Processes (Basel) 2021. [DOI: 10.3390/pr9081471] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
In recent years, bisphenol analogues such as bisphenol B (BPB), bisphenol F (BPF), and bisphenol S (BPS) have come to replace bisphenol A (BPA) in food packaging and food containers, since BPA has been shown to leach into food and water, causing numerous negative health effects. Although much information on the endocrine activity of BPA is available, a proper human hazard assessment of analogues that are believed to have a less harmful toxicity profile is lacking. The aim of our in vitro study was to assess the potential effect of bisphenol B, F, and S on the biosynthesis of steroid hormones in human H295R adrenocortical carcinoma cells, using the enzyme-linked immunosorbent assay. In addition, we evaluated mitochondrial activity using the MTT test and viability using triple assay. Adrenocortical carcinoma cells were cultivated for 24 h in the presence of bisphenol B, F, or S (0.1, 0.5, 1, 10, 25, 50, 75, 100 μM). We demonstrated that BPB, BPF, and BPS could affect progesterone and testosterone secretion, as well as affect cell mitochondrial, lysosomal, and metabolic activity, as well as plasma membrane integrity, but considerably more detailed and systematic research is required for a better understanding of risks associated with the effects of bisphenols on steroidogenesis.
Collapse
|
25
|
Park HJ, Lee WY, Do JT, Park C, Song H. Evaluation of testicular toxicity upon fetal exposure to bisphenol A using an organ culture method. CHEMOSPHERE 2021; 270:129445. [PMID: 33421752 DOI: 10.1016/j.chemosphere.2020.129445] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Revised: 12/20/2020] [Accepted: 12/24/2020] [Indexed: 06/12/2023]
Abstract
Humans are exposed to a multitude of endocrine disruptor chemicals (EDCs) that can interfere with the action of endogenous hormones and the normal development of reproductive organs. Bisphenol A (BPA) is one of the most common EDCs found in the environment. Here, we evaluated BPA toxicity on fetal testes using an in vitro organ culture system. Mouse fetal testes sampled at 15.5 days post coitus were cultured in a medium containing BPA for 5 days. The number of germ cells was reduced by BPA treatment, whereas the number of Sertoli cells was slightly increased by BPA at the highest dose (100 μM). Consistently, BPA treatment reduced the protein and gene expression levels of germ cell markers, but it increased the expression levels of Sertoli cell markers. The expression levels of fetal Leydig cell markers such as Cyp11a1, Thbs2, Cyp17a1, and Pdgf-α were significantly increased, whereas those of adult Leydig cell markers such as Hsd17b3, Ptgds, Sult1e1, Vcam1, and Hsd11b1 were decreased in the testes exposed to BPA. Generally, Notch signaling restricts Leydig cell differentiation from progenitor cells during fetal testis development. The expression levels of Notch1, Notch2, Notch3, Hes1, Ptch1, Jag1, Jag2, c-Myc, Hey1, and Hey2, which are involved in Notch signaling, were markedly higher in BPA-treated fetal testes than in the controls, indicating that BPA interrupts fetal Leydig cell development. BPA also disrupted steroidogenesis in the fetal testis organ culture system. In conclusion, our study showed that BPA inhibits fetal germ cell growth, Leydig cell development, and steroidogenesis.
Collapse
Affiliation(s)
- Hyun-Jung Park
- Department of Stem Cell and Regenerative Biotechnology, Konkuk University, 1 Hwayang-dong, Gwangjin-gu, Seoul, 05029, Republic of Korea
| | - Won-Young Lee
- Department of Beef Science, Korea National College of Agricultures and Fisheries, Jeonju-si, Jeonbuk, 54874, Republic of Korea
| | - Jeong Tae Do
- Department of Stem Cell and Regenerative Biotechnology, Konkuk University, 1 Hwayang-dong, Gwangjin-gu, Seoul, 05029, Republic of Korea
| | - Chankyu Park
- Department of Stem Cell and Regenerative Biotechnology, Konkuk University, 1 Hwayang-dong, Gwangjin-gu, Seoul, 05029, Republic of Korea
| | - Hyuk Song
- Department of Stem Cell and Regenerative Biotechnology, Konkuk University, 1 Hwayang-dong, Gwangjin-gu, Seoul, 05029, Republic of Korea.
| |
Collapse
|
26
|
Rajkumar A, Luu T, Beal MA, Barton-Maclaren TS, Robaire B, Hales BF. Elucidation of the Effects of Bisphenol A and Structural Analogs on Germ and Steroidogenic Cells Using Single Cell High-Content Imaging. Toxicol Sci 2021; 180:224-238. [PMID: 33501994 DOI: 10.1093/toxsci/kfab012] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Concerns about the potential adverse effects of bisphenol A (BPA) have led to an increase in the use of replacements, yet the toxicity data for several of these chemicals are limited. Using high-content imaging, we compared the effects of BPA, BPAF, BPF, BPS, BPM, and BPTMC in germ (C18-4 spermatogonial) and steroidogenic (MA-10 Leydig and KGN granulosa) cell lines. Effects on cell viability and phenotypic markers were analyzed to determine benchmark concentrations (BMCs) and estimate administered equivalent doses (AEDs). In all 3 cell lines, BPA was one of the least cytotoxic bisphenol compounds tested, whereas BPM and BPTMC were the most cytotoxic. Interestingly, BPF and BPS were cytotoxic only in MA-10 cells. Effects on phenotypic parameters, including mitochondria, lysosomes, lipid droplets, and oxidative stress, were both bisphenol- and cell-line specific. BPA exposure affected mitochondria (BMC: 1.2 μM; AED: 0.09 mg/kg/day) in C18-4 cells. Lysosome numbers were increased in MA-10 cells exposed to BPA or BPAF but decreased in KGN cells exposed to BPAF or BPM. Lipid droplets were decreased in C18-4 cells exposed to BPF and in MA-10 cells exposed to BPTMC but increased in BPF, BPM, and BPTMC-exposed KGN cells. BPA and BPM exposure induced oxidative stress in MA-10 and KGN cells, respectively. In summary, structurally similar bisphenols displayed clear cell-line-specific differences in BMC and AED values for effects on cell viability and phenotypic endpoints. This approach, together with additional data on human exposure, may aid in the selection and prioritization of responsible replacements for BPA. .
Collapse
Affiliation(s)
- Abishankari Rajkumar
- Department of Pharmacology & Therapeutics, McGill University, Montreal, QC, H3G 1Y6, Canada
| | - Trang Luu
- Department of Pharmacology & Therapeutics, McGill University, Montreal, QC, H3G 1Y6, Canada
| | - Marc A Beal
- Existing Substances Risk Assessment Bureau, Healthy Environments and Consumer Safety Branch, Health Canada, Ottawa, ON, K1A 0K9, Canada
| | - Tara S Barton-Maclaren
- Existing Substances Risk Assessment Bureau, Healthy Environments and Consumer Safety Branch, Health Canada, Ottawa, ON, K1A 0K9, Canada
| | - Bernard Robaire
- Department of Pharmacology & Therapeutics, McGill University, Montreal, QC, H3G 1Y6, Canada.,Department of Obstetrics & Gynecology, McGill University, Montreal, QC, H3G 1Y6, Canada
| | - Barbara F Hales
- Department of Pharmacology & Therapeutics, McGill University, Montreal, QC, H3G 1Y6, Canada
| |
Collapse
|
27
|
Lv L, Chang Y, Li Y, Chen H, Yao J, Xie Y, Liang X, Yang X, Zhang M, Liu G. Triptolide Induces Leydig Cell Apoptosis by Disrupting Mitochondrial Dynamics in Rats. Front Pharmacol 2021; 12:616803. [PMID: 33767625 PMCID: PMC7985071 DOI: 10.3389/fphar.2021.616803] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 01/19/2021] [Indexed: 11/15/2022] Open
Abstract
Triptolide is widely used in the clinical treatment of various diseases. Side effects, including reproductive toxicity to male patients, limit its application. However, no detailed mechanisms or potential intervention targets have been reported. In this study, we show that triptolide activated the mitochondrial apoptosis pathway in rat testicular Leydig cells and induced apoptosis both in vivo and in vitro, which may cause hypoleydigism and impair spermatogenesis. Mechanistically, triptolide-induced dynamin-related protein 1 (Drp1) overexpression, which interfered with mitochondrial dynamic stability to activate the mitochondrial apoptosis pathway. Mdivi-1, a selective Drp1 inhibitor, partially reversed the mitochondrial dynamic disturbance and rat testicular Leydig cell apoptosis induced by triptolide. Inhibiting Drp1 over-activation may be a new strategy for mitigating the reproductive toxicity of triptolide.
Collapse
Affiliation(s)
- Linyan Lv
- Reproductive Medicine Research Center, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Yajie Chang
- Reproductive Medicine Research Center, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Yanqing Li
- Reproductive Medicine Research Center, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Haicheng Chen
- Department of Andrology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Jiahui Yao
- Department of Andrology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Yun Xie
- Department of Andrology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Xiaoyan Liang
- Reproductive Medicine Research Center, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Xing Yang
- Reproductive Medicine Research Center, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Min Zhang
- Department of Andrology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Guihua Liu
- Reproductive Medicine Research Center, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
28
|
Baralić K, Jorgovanović D, Živančević K, Buha Djordjević A, Antonijević Miljaković E, Miljković M, Kotur-Stevuljević J, Antonijević B, Đukić-Ćosić D. Combining in vivo pathohistological and redox status analysis with in silico toxicogenomic study to explore the phthalates and bisphenol A mixture-induced testicular toxicity. CHEMOSPHERE 2021; 267:129296. [PMID: 33348264 DOI: 10.1016/j.chemosphere.2020.129296] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Revised: 12/07/2020] [Accepted: 12/10/2020] [Indexed: 06/12/2023]
Abstract
The aim of this study was to: (i) determine and compare the capacity of bis (2 -ethylhexyl) phthalate (DEHP), dibutyl phthalate (DBP), bisphenol A (BPA), and their mixture to produce testicular toxicity after the subacute exposure; (ii) explore the mechanisms behind the observed changes using in silico toxicogenomic approach. Male rats were randomly split into groups (n = 6): (1) Control (corn oil); (2) DEHP (50 mg/kg b.w./day); (3) DBP (50 mg/kg b.w./day); (4) BPA (25 mg/kg b.w./day); and (5) MIX (50 mg/kg b.w./day DEHP + 50 mg/kg b.w/day DBP + 25 mg/kg b.w./day BPA). Animals were sacrificed after 28 days of oral exposure, testes were extracted and prepared for histological assessments under the light microscope (haematoxylin and eosin staining) and redox status analysis. The Comparative Toxicogenomics Database (CTD; http://CTD.mdibl.org), Cytoscape software (https://cytoscape.org) and ToppGene Suite (https://toppgene.cchmc.org) were used for data-mining. Present pathohistological study has demonstrated more pronounced testicular toxicity of the MIX group (desquamated germinal epithelium cells, enlarged cells with hyperchromatic nuclei, multinucleated cell forms and intracytoplasmic vacuoles) in comparison with the single substances, while effects on redox status parameters were either more prominent, or present only in the MIX group. In silico investigation revealed 20 genes linked to male reproductive disorders, affected by all three investigated substances. Effects on metabolism, AhR pathway, apoptosis and oxidative stress could be singled out as the most probable mechanisms involved in the subacute DEHP, DBP and BPA mixture testicular toxicity, while the effect on oxidative stress parameters was confirmed by in vivo experiment.
Collapse
Affiliation(s)
- Katarina Baralić
- Department of Toxicology "Akademik Danilo Soldatović", University of Belgrade - Faculty of Pharmacy, Vojvode Stepe 450, 11221, Belgrade, Serbia.
| | - Dragica Jorgovanović
- Department of Toxicology "Akademik Danilo Soldatović", University of Belgrade - Faculty of Pharmacy, Vojvode Stepe 450, 11221, Belgrade, Serbia
| | - Katarina Živančević
- Department of Toxicology "Akademik Danilo Soldatović", University of Belgrade - Faculty of Pharmacy, Vojvode Stepe 450, 11221, Belgrade, Serbia
| | - Aleksandra Buha Djordjević
- Department of Toxicology "Akademik Danilo Soldatović", University of Belgrade - Faculty of Pharmacy, Vojvode Stepe 450, 11221, Belgrade, Serbia
| | - Evica Antonijević Miljaković
- Department of Toxicology "Akademik Danilo Soldatović", University of Belgrade - Faculty of Pharmacy, Vojvode Stepe 450, 11221, Belgrade, Serbia
| | - Milica Miljković
- Department of Biochemistry, University of Belgrade - Faculty of Pharmacy, Vojvode Stepe 450, 11221, Belgrade, Serbia
| | - Jelena Kotur-Stevuljević
- Department of Biochemistry, University of Belgrade - Faculty of Pharmacy, Vojvode Stepe 450, 11221, Belgrade, Serbia
| | - Biljana Antonijević
- Department of Toxicology "Akademik Danilo Soldatović", University of Belgrade - Faculty of Pharmacy, Vojvode Stepe 450, 11221, Belgrade, Serbia
| | - Danijela Đukić-Ćosić
- Department of Toxicology "Akademik Danilo Soldatović", University of Belgrade - Faculty of Pharmacy, Vojvode Stepe 450, 11221, Belgrade, Serbia
| |
Collapse
|
29
|
Li C, Zhang L, Ma T, Gao L, Yang L, Wu M, Pang Z, Wang X, Yao Q, Xiao Y, Zhao L, Liu W, Zhao H, Wang C, Wang A, Jin Y, Chen H. Bisphenol A attenuates testosterone production in Leydig cells via the inhibition of NR1D1 signaling. CHEMOSPHERE 2021; 263:128020. [PMID: 33297044 DOI: 10.1016/j.chemosphere.2020.128020] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 08/09/2020] [Accepted: 08/13/2020] [Indexed: 06/12/2023]
Abstract
Bisphenol A (BPA) is an endocrine-disrupting compound that impairs testosterone synthesis in male mammals. A circadian clock gene deficiency leads to diminished fertility and even infertility in male mice. However, whether circadian clock signaling pathways mediate the suppressive effect of BPA on testosterone synthesis in Leydig cells (LCs) remains unknown. The present study aims to detect the effect of BPA on cellular circadian clock and testosterone synthesis in mouse LCs, and examine the mechanisms underlying NR1D1 signaling. BPA treatment significantly attenuated the transcription levels of Nr1d1 and steroidogenic genes (Hsd3b2 and Hsd17b3) in TM3 cells, but increased other circadian clock gene levels (Per2 and Dbp). BPA treatment also significantly downregulated NR1D1 and StAR protein expression, but upregulated BMAL1 protein expression in TM3 cells. Furthermore, there was a marked decline in testosterone production in BPA-treated TM3 cells. Intraperitoneal injection of BPA profoundly reduced NR1D1 and StAR protein levels and steroidogenic gene transcription levels (Cyp11a1, Hsd3b2, and Hsd17b3), while enhancing BMAL1 protein and other circadian clock gene (Per2 and Dbp) levels in mouse testes. Notably, serum testosterone levels were also drastically reduced in BPA-treated mice. Moreover, SR9009, an NR1D1 agonist, augmented testosterone production in TM3 cells via elevated expression of steroidogenic genes (StAR, Cyp11a1 and Hsd17b3). Conversely, Nr1d1 knockdown inhibited testosterone accumulation and attenuated steroidogenic gene expression. Moreover, treatment with SR9009 partially reversed the BPA effect on the circadian clock and testosterone production. Taken together, our study demonstrates that BPA perturbs testosterone production, at least partially, via inhibiting NR1D1 signaling in LCs.
Collapse
Affiliation(s)
- Cuimei Li
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, China; Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Linlin Zhang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, China; Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Tiantian Ma
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, China; Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Lei Gao
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, China; Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Luda Yang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, China; Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Meina Wu
- Department of Physiology, Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan, China
| | - Zhaoxia Pang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, China; Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Xiaoyu Wang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, China; Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Qiyang Yao
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, China; Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Yaoyao Xiao
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, China; Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Lijia Zhao
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, China; Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Wei Liu
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, China; Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Hongcong Zhao
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, China; Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Caixia Wang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, China; Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Aihua Wang
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University, Yangling, 712100, Shaanxi, China; Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Yaping Jin
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, China; Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| | - Huatao Chen
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, China; Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| |
Collapse
|
30
|
Xu A, Li X, Li K, Zhang J, Li Y, Gong D, Zhao G, Zheng Q, Yuan M, Lin P, Huang L. Linoleic acid promotes testosterone production by activating Leydig cell GPR120/ ERK pathway and restores BPA-impaired testicular toxicity. Steroids 2020; 163:108677. [PMID: 32585208 DOI: 10.1016/j.steroids.2020.108677] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2020] [Revised: 06/05/2020] [Accepted: 06/12/2020] [Indexed: 12/31/2022]
Abstract
Bisphenol A (BPA) [2,2-bis(4-hydroxyphenyl) propane] has attracted increasing attention over the past few decades as an endocrine-disrupting chemicals that causes low testosterone levels. Linoleic acid (LA) is an essential fatty acid and GPR120 agonist. Herein, we are the first to report that LA induces the expression of GPR120 in mouse Leydig cells to directly promote testosterone production. In addition, we demonstrated that the activated GPR120 / ERK signaling pathway was involved in upregulating the expression of 3β-HSD and StAR for testosterone production by stimulation of LA. Interestingly, although BPA failed to affect GPR120 expression, LA restored the testosterone levels decreased by BPA in Leydig cells in vitro. Furthermore, the in vivo restoration of testosterone levels and testicular structure was also observed in BPA-impaired mice fed LA. As a result, the sperm functions of BPA-impaired mice returned to normal levels. At the same time, the damaged blood-testis barrier and infertility were also resolved by LA. Our study indicates a novel and safe strategy that utilizes LA to repair reproductive damage caused by low testosterone levels through activating the GPR120/ERK pathway in Leydig cells.
Collapse
Affiliation(s)
- Ao Xu
- Department of Pediatric Surgery, West China Hospital, Sichuan University, No. 37, Guoxue Xiang, Chengdu 610041, China
| | - Xue Li
- Department of Pediatric Surgery, West China Hospital, Sichuan University, No. 37, Guoxue Xiang, Chengdu 610041, China
| | - Kai Li
- Division of Experimental Oncology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, 1 Keyuan 4 Road, Gaopeng Avenue, Chengdu 610041, China
| | - Jie Zhang
- Division of Experimental Oncology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, 1 Keyuan 4 Road, Gaopeng Avenue, Chengdu 610041, China
| | - Yanyan Li
- Division of Experimental Oncology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, 1 Keyuan 4 Road, Gaopeng Avenue, Chengdu 610041, China
| | - Di Gong
- Division of Experimental Oncology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, 1 Keyuan 4 Road, Gaopeng Avenue, Chengdu 610041, China
| | - Gang Zhao
- Division of Experimental Oncology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, 1 Keyuan 4 Road, Gaopeng Avenue, Chengdu 610041, China
| | - Qianwen Zheng
- Division of Experimental Oncology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, 1 Keyuan 4 Road, Gaopeng Avenue, Chengdu 610041, China
| | - Miao Yuan
- Department of Pediatric Surgery, West China Hospital, Sichuan University, No. 37, Guoxue Xiang, Chengdu 610041, China
| | - Ping Lin
- Division of Experimental Oncology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, 1 Keyuan 4 Road, Gaopeng Avenue, Chengdu 610041, China.
| | - Lugang Huang
- Department of Pediatric Surgery, West China Hospital, Sichuan University, No. 37, Guoxue Xiang, Chengdu 610041, China.
| |
Collapse
|
31
|
Adegoke EO, Rahman MS, Pang MG. Bisphenols Threaten Male Reproductive Health via Testicular Cells. Front Endocrinol (Lausanne) 2020; 11:624. [PMID: 33042007 PMCID: PMC7518410 DOI: 10.3389/fendo.2020.00624] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 07/30/2020] [Indexed: 12/14/2022] Open
Abstract
Male reproductive function and health are largely dependent on the testes, which are strictly regulated by their major cell components, i. e., Sertoli, Leydig, and germ cells. Sertoli cells perform a crucial phagocytic function in addition to supporting the development of germ cells. Leydig cells produce hormones essential for male reproductive function, and germ cell quality is a key parameter for male fertility assessment. However, these cells have been identified as primary targets of endocrine disruptors, including bisphenols. Bisphenols are a category of man-made organic chemicals used to manufacture plastics, epoxy resins, and personal care products such as lipsticks, face makeup, and nail lacquers. Despite long-term uncertainty regarding their safety, bisphenols are still being used worldwide, especially bisphenol A. While considerable attention has been paid to the effects of bisphenols on health, current bisphenol-related reproductive health cases indicate that greater attention should be given to these chemicals. Bisphenols, especially bisphenol A, F, and S, have been reported to elicit various effects on testicular cells, including apoptosis, DNA damage, disruption of intercommunication among cells, mitochondrial damage, disruption of tight junctions, and arrest of proliferation, which threaten male reproductive health. In addition, bisphenols are xenoestrogens, which alter organs and cells functions via agonistic or antagonistic interplay with hormone receptors. In this review, we provide in utero, in vivo, and in vitro evidence that currently available brands of bisphenols impair male reproductive health through their action on testicular cells.
Collapse
Affiliation(s)
| | | | - Myung-Geol Pang
- Department of Animal Science and Technology and BET Research Institute, Chung-Ang University, Anseong, South Korea
| |
Collapse
|
32
|
Vieira HR, Gonçalves GD, Vieira NA, Erthal RP, Sampaio CF, Pinto IC, Silva TNX, de Lion Siervo GEM, Cecchini R, Guarnier FA, Fernandes GSA. Pulmonary Emphysema Impairs Male Reproductive Physiology Due To Testosterone and Oxidative Stress Imbalance in Mesocricetus auratus. Reprod Sci 2020; 27:2052-2062. [PMID: 32557123 DOI: 10.1007/s43032-020-00224-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 05/25/2020] [Indexed: 02/06/2023]
Abstract
This study evaluated whether pulmonary emphysema affects sperm quality, male reproductive organs, and testosterone levels in adult male hamsters. Mesocricetus auratus males (130-150 g) were subdivided into a control group (C group) and an emphysema group (E group). The C group received an intratracheal instillation of saline solution (0.3 mL/100 g of body weight), and the E group received papain (40 mg/100 g of body weight). After 60 days, the biometric, pulmonary, and reproductive parameters of each group were evaluated. The E group developed pulmonary emphysema, which decreased body weight and sperm quality compared to the C group. In oxidative stress-related assays, lipid peroxidation was increased in the testis and epididymis (caput and cauda) in the E group compared with the C group. However, only the caput epididymis showed a reduction in glutathione levels. Pulmonary emphysema also affected the testicle by inducing an increase in abnormal seminiferous tubules, accompanied by a decrease in seminiferous epithelium height. Spermatogenesis kinetics were also modified by pulmonary emphysema. The number of Leydig and Sertoli cells decreased in the E group, accompanied by an increase in the nuclear volume of Leydig cells. Testosterone concentration was increased in the E group. Similarly, pulmonary emphysema altered epididymal components in all regions. In conclusion, pulmonary emphysema affected the reproductive system in this experimental model, as shown by testicular and epididymal morphophysiology changes, hormonal alteration, and oxidative stress imbalance, inducing the loss of correct function in the male reproductive system.
Collapse
Affiliation(s)
| | - Gessica Dutra Gonçalves
- Department of General Biology, State University of Londrina, Londrina, PR, Brazil.,Department of General Pathology, State University of Londrina, Londrina, PR, Brazil
| | | | - Rafaela Pires Erthal
- Department of General Biology, State University of Londrina, Londrina, PR, Brazil.,Department of General Pathology, State University of Londrina, Londrina, PR, Brazil
| | | | | | | | - Gláucia Eloisa Munhoz de Lion Siervo
- Department of General Biology, State University of Londrina, Londrina, PR, Brazil.,Department of General Pathology, State University of Londrina, Londrina, PR, Brazil
| | - Rubens Cecchini
- Department of General Pathology, State University of Londrina, Londrina, PR, Brazil
| | | | | |
Collapse
|
33
|
Ham J, Lim W, Whang KY, Song G. Butylated hydroxytoluene induces dysregulation of calcium homeostasis and endoplasmic reticulum stress resulting in mouse Leydig cell death. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 256:113421. [PMID: 31677866 DOI: 10.1016/j.envpol.2019.113421] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 10/15/2019] [Accepted: 10/15/2019] [Indexed: 06/10/2023]
Abstract
Butylated hydroxytoluene (BHT) is a synthetic phenolic antioxidant that has been used as an additive for fat- or oil-containing foods. The exposure index value increases with extended usage of the chemical. Further, estimated total amount of BHT could exceed standard regulation, considering dietary intake or another exposure. Although BHT may induce side effects in reproductive systems, adequate research had not yet been performed to confirm them. In this study, we investigated the effects of BHT on mouse Leydig cells (TM3), which are components of testis. Our results indicated that BHT suppressed cellular proliferation and induced cell cycle arrest in TM3 cells. Moreover, BHT hampered cytosolic and mitochondrial calcium homeostasis in TM3 cells. Furthermore, BHT treatment led to endoplasmic reticulum (ER) stress and DNA fragmentation, simultaneously stimulating intrinsic apoptosis signal transduction. To elucidate the mode of action of BHT on Leydig cells, we performed western blot analysis and confirmed the activation of the PI3K/AKT and MAPK pathways. Collectively, our results demonstrated that BHT has toxic effects on mouse Leydig cells via induction of calcium dysregulation and ER-mitochondria dysfunction.
Collapse
Affiliation(s)
- Jiyeon Ham
- Institute of Animal Molecular Biotechnology and Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, 02841, Republic of Korea
| | - Whasun Lim
- Department of Food and Nutrition, Kookmin University, Seoul, 02707, Republic of Korea
| | - Kwang-Youn Whang
- Institute of Animal Molecular Biotechnology and Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, 02841, Republic of Korea.
| | - Gwonhwa Song
- Institute of Animal Molecular Biotechnology and Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, 02841, Republic of Korea.
| |
Collapse
|
34
|
De Toni L, De Rocco Ponce M, Petre GC, Rtibi K, Di Nisio A, Foresta C. Bisphenols and Male Reproductive Health: From Toxicological Models to Therapeutic Hypotheses. Front Endocrinol (Lausanne) 2020; 11:301. [PMID: 32582021 PMCID: PMC7287019 DOI: 10.3389/fendo.2020.00301] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 04/20/2020] [Indexed: 12/18/2022] Open
Abstract
Bisphenols, and in particular bisphenol A (BPA), have been widely used for the production of plastic manufacts in the last 50 years. Currently, BPA is present in a variety of daily use polycarbonate plastics and epoxy resins, and dietary ingestion is considered the main route of human exposure. Accordingly, BPA is the chemical pollutant with the widest exposure in humans, involving nearly 90% of general population, according to recent studies. Concerns about BPA effects on human health date back to 1930s, when severe impact on male sexual development was suggested. Now, the acknowledged biological effects of BPA are various. In regard to human fertility, BPA has been shown to disrupt hormone signaling even at low concentrations. Results from human epidemiological studies have reported BPA interference with follicle stimulating hormone, inhibin B, estradiol, testosterone levels, and sexual function in male subjects. Moreover, recent studies have reported an association between BPA levels and reduced sperm concentration, motility, normal morphology, sperm DNA damage, and altered epigenetic pattern, resulting in trans-generational legacy of BPA effects. In this review, the recognized effects of BPA on male reproductive health are described, from the most recent issues on experimental models to epidemiological data. In addition, the very recent interest about the use of nutraceutical remedies to counteract BPA effects are discussed.
Collapse
Affiliation(s)
- Luca De Toni
- Department of Medicine and Unit of Andrology and Reproductive Medicine, University of Padova, Padova, Italy
| | | | - Gabriel Cosmin Petre
- Department of Medicine and Unit of Andrology and Reproductive Medicine, University of Padova, Padova, Italy
| | - Kais Rtibi
- Laboratory of Functional Physiology and Valorization of Bioresources, Higher Institute of Biotechnology of Beja, University of Jendouba, Beja, Tunisia
| | - Andrea Di Nisio
- Department of Medicine and Unit of Andrology and Reproductive Medicine, University of Padova, Padova, Italy
| | - Carlo Foresta
- Department of Medicine and Unit of Andrology and Reproductive Medicine, University of Padova, Padova, Italy
- *Correspondence: Carlo Foresta
| |
Collapse
|
35
|
Kaur S, Sadwal S. Studies on the phytomodulatory potential of fenugreek (
Trigonella foenum‐graecum
) on bisphenol‐A induced testicular damage in mice. Andrologia 2019; 52:e13492. [DOI: 10.1111/and.13492] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 09/29/2019] [Accepted: 10/16/2019] [Indexed: 12/16/2022] Open
Affiliation(s)
| | - Shilpa Sadwal
- Department of Biophysics Panjab University Chandigarh India
| |
Collapse
|
36
|
Jambor T, Kovacikova E, Greifova H, Kovacik A, Libova L, Lukac N. Assessment of the effective impact of bisphenols on mitochondrial activity and steroidogenesis in a dose-dependency in mice TM3 Leydig cells. Physiol Res 2019; 68:689-693. [DOI: 10.33549/physiolres.934200] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
The increasing worldwide production of bisphenols has been associated to several human diseases, such as chronic respiratory and kidney diseases, diabetes, breast cancer, prostate cancer, behavioral troubles and reproductive disorders in both sexes. The aim of the present in vitro study was to evaluate the potential impact bisphenols A, B, S and F on the cell viability and testosterone release in TM3 Leydig cell line. Mice Leydig cells were cultured in the presence of different concentrations of bisphenols (0.04-50 µg.ml-1) during 24 h exposure. Quantification of the cell viability was assessed using the metabolic activity assay, while the level of testosterone in cell culture media was determined by enzyme-linked immunosorbent assay. Within the panel of substances under investigations, the higher experimental concentrations (10; 25 and 50 µg.ml-1) significantly (P<0.001) decreased Leydig cells viability, while the same doses of BPA and BPB also reduced testosterone production significantly (P<0.001). Taken together, the results of our study reported herein is a consistent whit the conclusion that higher experimental doses of bisphenols have a cytotoxic effect and could have a dose-dependent impact on testosterone production.
Collapse
Affiliation(s)
- T. Jambor
- Department of Animal Physiology, Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture in Nitra, Nitra, Slovak Republic.
| | | | | | | | | | | |
Collapse
|
37
|
MitoQ ameliorates testis injury from oxidative attack by repairing mitochondria and promoting the Keap1-Nrf2 pathway. Toxicol Appl Pharmacol 2019; 370:78-92. [DOI: 10.1016/j.taap.2019.03.001] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 02/21/2019] [Accepted: 03/01/2019] [Indexed: 11/21/2022]
|
38
|
Aker AM, Ferguson KK, Rosario ZY, Mukherjee B, Alshawabkeh AN, Calafat AM, Cordero JF, Meeker JD. A repeated measures study of phenol, paraben and Triclocarban urinary biomarkers and circulating maternal hormones during gestation in the Puerto Rico PROTECT cohort. Environ Health 2019; 18:28. [PMID: 30940137 PMCID: PMC6444601 DOI: 10.1186/s12940-019-0459-5] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Accepted: 02/28/2019] [Indexed: 05/09/2023]
Abstract
INTRODUCTION Prenatal exposure to some phenols and parabens has been associated with adverse birth outcomes. Hormones may play an intermediate role between phenols and adverse outcomes. We examined the associations of phenol and paraben exposures with maternal reproductive and thyroid hormones in 602 pregnant women in Puerto Rico. Urinary triclocarban, phenol and paraben biomarkers, and serum hormones (estriol, progesterone, testosterone, sex-hormone-binding globulin (SHBG), corticotropin-releasing hormone (CRH), total triiodothyronine (T3), total thyroxine (T4), free thyroxine (FT4) and thyroid-stimulating hormone (TSH)) were measured at two visits during pregnancy. METHODS Linear mixed models with a random intercept were constructed to examine the associations between hormones and urinary biomarkers. Results were additionally stratified by study visit. Results were transformed to hormone percent changes for an inter-quartile-range difference in exposure biomarker concentrations (%Δ). RESULTS Bisphenol-S was associated with a decrease in CRH [(%Δ -11.35; 95% CI: -18.71, - 3.33), and bisphenol-F was associated with an increase in FT4 (%Δ: 2.76; 95% CI: 0.29, 5.22). Butyl-, methyl- and propylparaben were associated with decreases in SHBG [(%Δ: -5.27; 95% CI: -9.4, - 1.14); (%Δ: -3.53; 95% CI: -7.37, 0.31); (%Δ: -3.74; 95% CI: -7.76, 0.27)]. Triclocarban was positively associated with T3 (%Δ: 4.08; 95% CI: 1.18, 6.98) and T3/T4 ratio (%Δ: 4.67; 95% CI: -1.37, 6.65), and suggestively negatively associated with TSH (%Δ: -10.12; 95% CI: -19.47, 0.32). There was evidence of susceptible windows of vulnerability for some associations. At 24-28 weeks gestation, there was a positive association between 2,4-dichlorophenol and CRH (%Δ: 9.66; 95% CI: 0.67, 19.45) and between triclosan and estriol (%Δ: 13.17; 95% CI: 2.34, 25.2); and a negative association between triclocarban and SHBG (%Δ: -9.71; 95% CI:-19.1, - 0.27) and between bisphenol A and testosterone (%Δ: -17.37; 95% CI: -26.7, - 6.87). CONCLUSION Phenols and parabens are associated with hormone levels during pregnancy. Further studies are required to substantiate these findings.
Collapse
Affiliation(s)
- Amira M. Aker
- Department of Environmental Health Sciences, University of Michigan School of Public Health, Room 1835 SPH I, 1415 Washington Heights, Ann Arbor, MI 48109-2029 USA
| | - Kelly K. Ferguson
- Department of Environmental Health Sciences, University of Michigan School of Public Health, Room 1835 SPH I, 1415 Washington Heights, Ann Arbor, MI 48109-2029 USA
- Epidemiology Branch, Intramural Research Program, National Institute of Environmental Health Sciences, Durham, USA
| | - Zaira Y. Rosario
- Graduate School of Public Health, Medical Sciences Campus, University of Puerto Rico, San Juan, PR USA
| | - Bhramar Mukherjee
- Department of Biostatistics, University of Michigan School of Public Health, Ann Arbor, MI USA
| | | | | | - José F. Cordero
- College of Public Health, University of Georgia, Athens, GA USA
| | - John D. Meeker
- Department of Environmental Health Sciences, University of Michigan School of Public Health, Room 1835 SPH I, 1415 Washington Heights, Ann Arbor, MI 48109-2029 USA
| |
Collapse
|
39
|
Endocrine disruptors of inhibiting testicular 3β-hydroxysteroid dehydrogenase. Chem Biol Interact 2019; 303:90-97. [PMID: 30826252 DOI: 10.1016/j.cbi.2019.02.027] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Revised: 02/09/2019] [Accepted: 02/26/2019] [Indexed: 01/01/2023]
Abstract
Testicular 3β-hydroxysteroid dehydrogenase (HSD3B) is a steroidogenic enzyme, catalyzing the conversion of 3β-hydroxysteroids into 3-keto-steroids. Two distinct isoforms in the human are cloned, HSD3B1 and HSD3B2, and HSD3B2 is located in the testis. HSD3B2 is a two-substrate enzyme, which binds to cofactor NAD+ and a 3β-steroid. Many endocrine disruptors, including industrial compounds (phthalates, bisphenols, and perfluoroalkyl substances), insecticides and biocides (organochlorine insecticides and organotins), food additives (butylated hydroxyanisole, resveratrol, gossypol, flavones, and isoflavones), and drugs (etomidate, troglitazone, medroxyprogesterone acetate, and ketoconazole) inhibit testicular HSD3B, possibly interfering with androgen synthesis. In this review, we discuss the distinct testicular isoform of HSD3B, its gene, chemistry, subcellular location, and the endocrine disruptors that directly inhibit testicular HSD3B and their inhibitory modes.
Collapse
|
40
|
Qu W, Zhao Z, Chen S, Zhang L, Wu D, Chen Z. Bisphenol A suppresses proliferation and induces apoptosis in colonic epithelial cells through mitochondrial and MAPK/AKT pathways. Life Sci 2018; 208:167-174. [DOI: 10.1016/j.lfs.2018.07.040] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2018] [Accepted: 07/19/2018] [Indexed: 01/26/2023]
|