1
|
Lash LH. Trichloroethylene: An Update on an Environmental Contaminant with Multiple Health Effects. Annu Rev Pharmacol Toxicol 2025; 65:507-527. [PMID: 39094062 PMCID: PMC11893042 DOI: 10.1146/annurev-pharmtox-022724-120525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
The halogenated solvent trichloroethylene (TCE) has had many uses in medicine, construction, consumer products, and the military. Many of these uses have been discontinued or restricted due to its toxicity, which affects multiple target organs and includes both acute, high-dose toxicity and chronic, low-dose toxicity that also encompass several cancers. US and international agencies have conducted risk and hazard assessments for TCE, with comprehensive publications coming out in the last 10-15 years. Accordingly, the focus of this article is to review recently published data since that time (i.e., 2014) that clarify unsettled questions or provide additional insights into the metabolism and mechanisms of toxicity of TCE in several target organs. Besides metabolism, the review focuses on the kidneys, liver, immune system, nervous system, cardiovascular and pulmonary systems, the search for biomarkers, and recent analyses of human cancer risk and incidence from TCE exposure.
Collapse
Affiliation(s)
- Lawrence H Lash
- Department of Pharmacology, Wayne State University School of Medicine, Detroit, Michigan, USA;
| |
Collapse
|
2
|
Chen A, Tian M, Luo Z, Cao X, Gu Y. Analysis of the evolution of placental oxidative stress research from a bibliometric perspective. Front Pharmacol 2024; 15:1475244. [PMID: 39484166 PMCID: PMC11524950 DOI: 10.3389/fphar.2024.1475244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Accepted: 10/07/2024] [Indexed: 11/03/2024] Open
Abstract
Background Research on placental oxidative stress is pivotal for comprehending pregnancy-related physiological changes and disease mechanisms. Despite recent advancements, a comprehensive review of current status, hotspots, and trends remains challenging. This bibliometric study systematically analyzes the evolution of placental oxidative stress research, offering a reference for future studies. Objective To conduct a comprehensive bibliometric analysis of the literature on placental oxidative stress to identify research hotspots, trends, and key contributors, thereby providing guidance for future research. Methods Relevant data were retrieved from the Web of Science Core Collection database and analyzed using VOSviewer, CiteSpace, and the bibliometrix package. An in-depth analysis of 4,796 publications was conducted, focusing on publication year, country/region, institution, author, journal, references, and keywords. Data collection concluded on 29 April 2024. Results A total of 4,796 papers were retrieved from 1,173 journals, authored by 18,835 researchers from 4,257 institutions across 103 countries/regions. From 1991 to 2023, annual publications on placental oxidative stress increased from 7 to 359. The United States (1,222 publications, 64,158 citations), the University of Cambridge (125 publications, 13,562 citations), and Graham J. Burton (73 publications, 11,182 citations) were the most productive country, institution, and author, respectively. The journal Placenta had the highest number of publications (329) and citations (17,152), followed by the International Journal of Molecular Sciences (122 publications). The most frequent keywords were "oxidative stress," "expression," "pregnancy," "preeclampsia," and "lipid peroxidation." Emerging high-frequency keywords included "gestational diabetes mellitus," "health," "autophagy," "pathophysiology," "infection," "preterm birth," "stem cell," and "inflammation." Conclusion Over the past 3 decades, research has concentrated on oxidative stress processes, antioxidant mechanisms, pregnancy-related diseases, and gene expression regulation. Current research frontiers involve exploring pathophysiology and mechanisms, assessing emerging risk factors and environmental impacts, advancing cell biology and stem cell research, and understanding the complex interactions of inflammation and immune regulation. These studies elucidate the mechanisms of placental oxidative stress, offering essential scientific evidence for future intervention strategies, therapeutic approaches, and public health policies.
Collapse
Affiliation(s)
| | | | | | - Xiaohui Cao
- Department of Obstetrics and Gynecology, Women’s Hospital of Jiangnan University, Wuxi Maternity and Child Health Care Hospital, Wuxi, China
| | - Yanfang Gu
- Department of Obstetrics and Gynecology, Women’s Hospital of Jiangnan University, Wuxi Maternity and Child Health Care Hospital, Wuxi, China
| |
Collapse
|
3
|
Su AL, Lash LH, Loch-Caruso R. N-Acetyl-L-cysteine and aminooxyacetic acid differentially modulate toxicity of the trichloroethylene metabolite S-(1,2-dichlorovinyl)-L-cysteine in human placental villous trophoblast BeWo cells. Toxicology 2023; 495:153611. [PMID: 37544576 PMCID: PMC10874504 DOI: 10.1016/j.tox.2023.153611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 07/23/2023] [Accepted: 08/03/2023] [Indexed: 08/08/2023]
Abstract
Trichloroethylene (TCE) is a known human carcinogen with toxicity attributed to its metabolism. S-(1,2-Dichlorovinyl)-L-cysteine (DCVC) is a metabolite of TCE formed downstream in TCE glutathione (GSH) conjugation and is upstream of several toxic metabolites. Despite knowledge that DCVC stimulates reactive oxygen species (ROS) generation and apoptosis in placental cells, the extent to which these outcomes are attributable to DCVC metabolism is unknown. The current study used N-acetyl-L-cysteine (NAC) at 5 mM and aminooxyacetic acid (AOAA) at 1 mM as pharmacological modifiers of DCVC metabolism to investigate DCVC toxicity at concentrations of 5-50 µM in the human placental trophoblast BeWo cell model capable of forskolin-stimulated syncytialization. Exposures of unsyncytialized BeWo cells, BeWo cells undergoing syncytialization, and syncytialized BeWo cells were studied. NAC pre/co-treatment with DCVC either failed to inhibit or exacerbated DCVC-induced H2O2 abundance, PRDX2 mRNA expression, and BCL2 mRNA expression. Although NAC increased mRNA expression of CYP3A4, which would be consistent with increased generation of the toxic metabolite N-acetyl-DCVC sulfoxide (NAcDCVCS), a CYP3A4 inhibitor ketoconazole did not significantly alter BeWo cell responses. Moreover, AOAA failed to inhibit cysteine conjugate β-lyase (CCBL), which bioactivates DCVC, and did not affect the percentage of nuclei condensed or fragmented, a measure of apoptosis, in all BeWo cell models. However, syncytialized cells had higher CCBL activity compared to unsyncytialized cells, suggesting that the former may be more sensitive to DCVC toxicity. Together, although neither NAC nor AOAA mitigated DCVC toxicity, differences in CCBL activity and potentially CYP3A4 expression dictated the differential toxicity derived from DCVC.
Collapse
Affiliation(s)
- Anthony L Su
- Department of Environmental Health Sciences, University of Michigan, 1415 Washington Heights, Ann Arbor, MI 48109-2029, USA.
| | - Lawrence H Lash
- Department of Pharmacology, Wayne State University School of Medicine, 540 East Canfield Avenue, Detroit, MI 48201, USA
| | - Rita Loch-Caruso
- Department of Environmental Health Sciences, University of Michigan, 1415 Washington Heights, Ann Arbor, MI 48109-2029, USA
| |
Collapse
|
4
|
Su AL, Harris SM, Elkin ER, Karnovsky A, Colacino J, Loch-Caruso RK. Trichloroethylene Metabolite S-(1,2-Dichlorovinyl)-l-cysteine Stimulates Changes in Energy Metabolites and Amino Acids in the BeWo Human Placental Trophoblast Model during Syncytialization. Chem Res Toxicol 2023; 36:882-899. [PMID: 37162359 PMCID: PMC10499396 DOI: 10.1021/acs.chemrestox.3c00007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Syncytialization, the fusion of cytotrophoblasts into an epithelial barrier that constitutes the maternal-fetal interface, is a crucial event of placentation. This process is characterized by distinct changes to amino acid and energy metabolism. A metabolite of the industrial solvent trichloroethylene (TCE), S-(1,2-dichlorovinyl)-l-cysteine (DCVC), modifies energy metabolism and amino acid abundance in HTR-8/SVneo extravillous trophoblasts. In the current study, we investigated DCVC-induced changes to energy metabolism and amino acids during forskolin-stimulated syncytialization in BeWo cells, a human villous trophoblastic cell line that models syncytialization in vitro. BeWo cells were exposed to forskolin at 100 μM for 48 h to stimulate syncytialization. During syncytialization, BeWo cells were also treated with DCVC at 0 (control), 10, or 20 μM. Following treatment, the targeted metabolomics platform, "Tricarboxylic Acid Plus", was used to identify changes in energy metabolism and amino acids. DCVC treatment during syncytialization decreased oleic acid, aspartate, proline, uridine diphosphate (UDP), UDP-d-glucose, uridine monophosphate, and cytidine monophosphate relative to forskolin-only treatment controls, but did not increase any measured metabolite. Notable changes stimulated by syncytialization in the absence of DCVC included increased adenosine monophosphate and guanosine monophosphate, as well as decreased aspartate and glutamate. Pathway analysis revealed multiple pathways in amino acid and sugar metabolisms that were altered with forskolin-stimulated syncytialization alone and DCVC treatment during syncytialization. Analysis of ratios of metabolites within the pathways revealed that DCVC exposure during syncytialization changed metabolite ratios in the same or different direction compared to syncytialization alone. Building off our oleic acid findings, we found that extracellular matrix metalloproteinase-2, which is downstream in oleic acid signaling, underwent the same changes as oleic acid. Together, the metabolic changes stimulated by DCVC treatment during syncytialization suggest changes in energy metabolism and amino acid abundance as potential mechanisms by which DCVC could impact syncytialization and pregnancy.
Collapse
Affiliation(s)
- Anthony L. Su
- Department of Environmental Health Sciences, University of Michigan, Ann Arbor, Michigan 48109
| | - Sean M. Harris
- Department of Environmental Health Sciences, University of Michigan, Ann Arbor, Michigan 48109
| | - Elana R. Elkin
- Department of Environmental Health Sciences, University of Michigan, Ann Arbor, Michigan 48109
| | - Alla Karnovsky
- Department of Computational Medicine and Bioinformatics, University of Michigan Medical School, Ann Arbor, Michigan 48109, United States
| | - Justin Colacino
- Department of Environmental Health Sciences, University of Michigan, Ann Arbor, Michigan 48109
- Department of Nutritional Sciences, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Rita Karen Loch-Caruso
- Department of Environmental Health Sciences, University of Michigan, Ann Arbor, Michigan 48109
| |
Collapse
|
5
|
Enderle I, De Lauzun V, Metten MA, Monperrus M, Delva F, Blanc-Petitjean P, Dananche B, Paris C, Zaros C, Le Lous M, Béranger R, Garlantézec R. Maternal occupational exposure to organic solvents and intrauterine growth in the ELFE cohort. ENVIRONMENTAL RESEARCH 2023; 224:115187. [PMID: 36587719 DOI: 10.1016/j.envres.2022.115187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 12/26/2022] [Accepted: 12/28/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND In developed countries, about 15% of women are occupationally exposed to solvents. Associations between this maternal occupational exposure and intrauterine fetal growth are inconsistent, but almost no existing study has investigated this relation by solvent family (oxygenated, petroleum, and chlorinated), although they may affect fetal growth differently. OBJECTIVES To investigate the relations between maternal occupational solvent exposure, by solvent family, and the risk of neonates born small for gestational age (SGA), or with low birthweight, or with small head circumference (HC). METHODS Among the 18,040 women enrolled in the Elfe rather than included in the Elfe birth cohort, we included 13,026 women who worked during pregnancy (72% of the cohort). Information about maternal occupations and industrial activities during pregnancy was collected by questionnaire at the maternity ward, and completed at 2-month when necessary. Using Matgéné job-exposure matrices, we assessed maternal occupational exposure to solvents. Logistic and multiple linear regressions were used to assess the association between maternal occupational solvent exposure and SGA status, birth weight, and HC. Analyses were conducted for exposure during pregnancy and also stratified by the trimester that pregnancy leave began. RESULTS We observed a higher risk of SGA newborns among mothers occupationally exposed during pregnancy to petroleum solvents (ORadjusted = 1.26; 95%CI: 1.01 to 1.57). Among women working until the third trimester of pregnancy, we observed a higher risk of SGA newborns to those occupationally exposed to oxygenated solvents (ORadjusted = 1.75; 95%CI: 1.11 to 2.75), a significantly lower birthweight for infants of mothers exposed to petroleum solvents (βadjusted = -47.37 g; -89.33 to -5.42), and a lower HC among newborns of those occupationally exposed to oxygenated solvents (βadjusted = -0.28; -0.49 to -0.07) and to chlorinated solvents (βadjusted = -0.29; -0.53 to -0.05). DISCUSSION Our results suggest that maternal occupational solvent exposure may influence fetal growth, especially exposure into the third trimester of pregnancy.
Collapse
Affiliation(s)
- Isabelle Enderle
- CHU Rennes, Univ Rennes, Inserm, EHESP, Irset (Institut de Recherche en Santé, Environnement et Travail) - UMR_S 1085, F-35000, Rennes, France; Department of Obstetrics and Gynecology and Reproductive Medicine, Anne de Bretagne University Hospital, Rennes, France.
| | - Virginie De Lauzun
- CHU Rennes, Univ Rennes, Inserm, EHESP, Irset (Institut de Recherche en Santé, Environnement et Travail) - UMR_S 1085, F-35000, Rennes, France
| | - Marie Astrid Metten
- CHU Rennes, Univ Rennes, Inserm, EHESP, Irset (Institut de Recherche en Santé, Environnement et Travail) - UMR_S 1085, F-35000, Rennes, France
| | - Marion Monperrus
- Department of Obstetrics and Gynecology and Reproductive Medicine, Anne de Bretagne University Hospital, Rennes, France
| | - Fleur Delva
- University of Bordeaux, Inserm, Bordeaux Population Health Research Center, Team EPICENE, UMR 1219, Bordeaux, F-33000, France
| | - Pauline Blanc-Petitjean
- CHU Rennes, Univ Rennes, Inserm, EHESP, Irset (Institut de Recherche en Santé, Environnement et Travail) - UMR_S 1085, F-35000, Rennes, France
| | - Brigitte Dananche
- CHU Rennes, Univ Rennes, Inserm, EHESP, Irset (Institut de Recherche en Santé, Environnement et Travail) - UMR_S 1085, F-35000, Rennes, France
| | - Christophe Paris
- CHU Rennes, Univ Rennes, Inserm, EHESP, Irset (Institut de Recherche en Santé, Environnement et Travail) - UMR_S 1085, F-35000, Rennes, France
| | - Cécile Zaros
- French Institute for Demographic Studies (Ined), French Institute for Medical Research and Health (Inserm), French Blood Agency, ELFE Joint Unit, F-75020, Paris, France
| | - Maela Le Lous
- Department of Obstetrics and Gynecology and Reproductive Medicine, Anne de Bretagne University Hospital, Rennes, France
| | - Rémi Béranger
- CHU Rennes, Univ Rennes, Inserm, EHESP, Irset (Institut de Recherche en Santé, Environnement et Travail) - UMR_S 1085, F-35000, Rennes, France; Department of Obstetrics and Gynecology and Reproductive Medicine, Anne de Bretagne University Hospital, Rennes, France
| | - Ronan Garlantézec
- CHU Rennes, Univ Rennes, Inserm, EHESP, Irset (Institut de Recherche en Santé, Environnement et Travail) - UMR_S 1085, F-35000, Rennes, France
| |
Collapse
|
6
|
Vasconcelos S, Caniçais C, Chuva de Sousa Lopes SM, Marques CJ, Dória S. The role of DNA hydroxymethylation and TET enzymes in placental development and pregnancy outcome. Clin Epigenetics 2023; 15:66. [PMID: 37095555 PMCID: PMC10127343 DOI: 10.1186/s13148-023-01483-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 04/12/2023] [Indexed: 04/26/2023] Open
Abstract
The placenta is a temporary organ that is essential for supporting mammalian embryo and fetal development. Understanding the molecular mechanisms underlying trophoblast differentiation and placental function may contribute to improving the diagnosis and treatment of obstetric complications. Epigenetics plays a significant role in the regulation of gene expression, particularly at imprinted genes, which are fundamental in the control of placental development. The Ten-Eleven-Translocation enzymes are part of the epigenetic machinery, converting 5-methylcytosine (5mC) into 5-hydroxymethylcytosine (5hmC). DNA hydroxymethylation is thought to act as an intermediate in the DNA demethylation mechanism and potentially be a stable and functionally relevant epigenetic mark on its own. The role of DNA hydroxymethylation during differentiation and development of the placenta is not fully understood but increasing knowledge in this field will help to evaluate its potential role in pregnancy complications. This review focuses on DNA hydroxymethylation and its epigenetic regulators in human and mouse placental development and function. Additionally, we address 5hmC in the context of genomic imprinting mechanism and in pregnancy complications, such as intrauterine growth restriction, preeclampsia and pregnancy loss. The cumulative findings show that DNA hydroxymethylation might be important for the control of gene expression in the placenta and suggest a dynamic role in the differentiation of trophoblast cell types during gestation.
Collapse
Affiliation(s)
- Sara Vasconcelos
- Genetics Unit, Department of Pathology, Faculty of Medicine, University of Porto (FMUP), Porto, Portugal
- i3S - Instituto de Investigação e Inovação em Saúde, Porto, Portugal
| | - Carla Caniçais
- Genetics Unit, Department of Pathology, Faculty of Medicine, University of Porto (FMUP), Porto, Portugal
- i3S - Instituto de Investigação e Inovação em Saúde, Porto, Portugal
- ICBAS-School of Medicine and Biomedical Sciences, University of Porto, Porto, Portugal
| | | | - C Joana Marques
- Genetics Unit, Department of Pathology, Faculty of Medicine, University of Porto (FMUP), Porto, Portugal.
- i3S - Instituto de Investigação e Inovação em Saúde, Porto, Portugal.
| | - Sofia Dória
- Genetics Unit, Department of Pathology, Faculty of Medicine, University of Porto (FMUP), Porto, Portugal.
- i3S - Instituto de Investigação e Inovação em Saúde, Porto, Portugal.
| |
Collapse
|
7
|
Elkin ER, Su AL, Dou JF, Colacino JA, Bridges D, Padmanabhan V, Harris SM, Boldenow E, Loch-Caruso R, Bakulski KM. Sexually concordant and dimorphic transcriptional responses to maternal trichloroethylene and/or N-acetyl cysteine exposure in Wistar rat placental tissue. Toxicology 2023; 483:153371. [PMID: 36396003 PMCID: PMC10078828 DOI: 10.1016/j.tox.2022.153371] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 10/20/2022] [Accepted: 11/02/2022] [Indexed: 11/16/2022]
Abstract
Numerous Superfund sites are contaminated with the volatile organic chemical trichloroethylene (TCE). In women, exposure to TCE in pregnancy is associated with reduced birth weight. Our previous study reported that TCE exposure in pregnant rats decreased fetal weight and elevated oxidative stress biomarkers in placentae, suggesting placental injury as a potential mechanism of TCE-induced adverse birth outcomes. In this study, we investigated if co-exposure with the antioxidant N-acetylcysteine (NAC) attenuates TCE exposure effects on RNA expression. Timed-pregnant Wistar rats were exposed orally to 480 mg TCE/kg/day on gestation days 6-16. Exposure of 200 mg NAC/kg/day alone or as a pre/co-exposure with TCE occurred on gestation days 5-16 to stimulate antioxidant genes prior to TCE exposure. Tissue was collected on gestation day 16. In male and female placentae, we evaluated TCE- and/or NAC-induced changes to gene expression and pathway enrichment analyses using false discovery rate (FDR) and fold-change criteria. In female placentae, exposure to TCE caused significant differential expression 129 genes while the TCE+NAC altered 125 genes, compared with controls (FDR< 0.05 + fold-change >1). In contrast, in male placentae TCE exposure differentially expressed 9 genes and TCE+NAC differentially expressed 35 genes, compared with controls (FDR< 0.05 + fold-change >1). NAC alone did not significantly alter gene expression in either sex. Differentially expressed genes observed with TCE exposure were enriched in mitochondrial biogenesis and oxidative phosphorylation pathways in females whereas immune system pathways and endoplasmic reticulum stress pathways were differentially expressed in both sexes (FDR<0.05). TCE treatment was differentially enriched for genes regulated by the transcription factors ATF6 (both sexes) and ATF4 (males only), indicating a cellular condition triggered by misfolded proteins during endoplasmic reticulum stress. This study demonstrates novel genes and pathways involved in TCE-induced placental injury and showed antioxidant co-treatment largely did not attenuate TCE exposure effects.
Collapse
Affiliation(s)
- Elana R Elkin
- Department of Environmental Health Sciences, University of Michigan, Ann Arbor, MI, USA.
| | - Anthony L Su
- Department of Environmental Health Sciences, University of Michigan, Ann Arbor, MI, USA
| | - John F Dou
- Department of Epidemiology, University of Michigan, Ann Arbor, MI, USA
| | - Justin A Colacino
- Department of Environmental Health Sciences, University of Michigan, Ann Arbor, MI, USA; Department of Nutritional Sciences, University of Michigan, Ann Arbor, MI, USA
| | - Dave Bridges
- Department of Nutritional Sciences, University of Michigan, Ann Arbor, MI, USA
| | - Vasantha Padmanabhan
- Department of Environmental Health Sciences, University of Michigan, Ann Arbor, MI, USA; Department of Nutritional Sciences, University of Michigan, Ann Arbor, MI, USA; Department of Pediatrics, Michigan Medicine, Ann Arbor, MI, USA; Department of Obstetrics and Gynecology, Michigan Medicine, Ann Arbor, MI, USA
| | - Sean M Harris
- Department of Environmental Health Sciences, University of Michigan, Ann Arbor, MI, USA
| | - Erica Boldenow
- Department of Biology, Calvin University, Grand Rapids, MI, USA
| | - Rita Loch-Caruso
- Department of Environmental Health Sciences, University of Michigan, Ann Arbor, MI, USA
| | - Kelly M Bakulski
- Department of Epidemiology, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
8
|
Su AL, Harris SM, Elkin ER, Karnovsky A, Colacino JA, Loch-Caruso R. Trichloroethylene modifies energy metabolites in the amniotic fluid of Wistar rats. Reprod Toxicol 2022; 109:80-92. [PMID: 35301063 PMCID: PMC9000924 DOI: 10.1016/j.reprotox.2022.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Revised: 03/05/2022] [Accepted: 03/11/2022] [Indexed: 10/18/2022]
Abstract
Exposure to trichloroethylene (TCE), an industrial solvent, is associated with several adverse pregnancy outcomes in humans and decreased fetal weight in rats. However, effects of TCE on energy metabolites in amniotic fluid, which have associations with pregnancy outcomes, has not been published previously. In the current exploratory study, timed-pregnant Wistar rats were exposed to 480 mg TCE/kg/day via vanilla wafer or to vehicle (wafer) alone from gestational day (GD) 6-16. Amniotic fluid collected on GD 16 was analyzed for metabolites important in energy metabolism using short chain fatty acid and tricarboxylic acid plus platforms (N = 4 samples/sex/treatment). TCE decreased concentrations of the following metabolites in amniotic fluid for both fetal sexes: 6-phosphogluconate, guanosine diphosphate, adenosine diphosphate, adenosine triphosphate, and flavin adenine dinucleotide. TCE decreased fructose 1,6-bisphosphate and guanosine triphosphate concentrations in amniotic fluid of male but not female fetuses. Moreover, TCE decreased uridine diphosphate-D-glucuronate concentrations, and increased arginine and phosphocreatine concentrations, in amniotic fluid of female fetuses only. No metabolites were increased in amniotic fluid of male fetuses. Pathway analysis suggested that TCE altered folate biosynthesis and pentose phosphate pathway in both sexes. Using metabolite ratios to investigate changes within specific pathways, some ratio alterations, including those in arginine metabolism and phenylalanine metabolism, were detected in females only. Ratio analysis also suggested enzymes, including gluconokinase, as potential TCE targets. Together, results from this exploratory study suggest that TCE differentially modified energy metabolites in amniotic fluid based on sex. These findings may inform future studies of TCE reproductive toxicity.
Collapse
Affiliation(s)
- Anthony L Su
- Department of Environmental Health Sciences, University of Michigan, 1415 Washington Heights, Ann Arbor, MI 48109, USA.
| | - Sean M Harris
- Department of Environmental Health Sciences, University of Michigan, 1415 Washington Heights, Ann Arbor, MI 48109, USA.
| | - Elana R Elkin
- Department of Environmental Health Sciences, University of Michigan, 1415 Washington Heights, Ann Arbor, MI 48109, USA.
| | - Alla Karnovsky
- Department of Computational Medicine and Bioinformatics, University of Michigan Medical School, Palmer Commons, 100 Washtenaw Ave #2017, Ann Arbor, MI 48109, USA.
| | - Justin A Colacino
- Department of Environmental Health Sciences, University of Michigan, 1415 Washington Heights, Ann Arbor, MI 48109, USA; Department of Nutritional Sciences, University of Michigan, 1415 Washington Heights, Ann Arbor, MI 48109, USA.
| | - Rita Loch-Caruso
- Department of Environmental Health Sciences, University of Michigan, 1415 Washington Heights, Ann Arbor, MI 48109, USA.
| |
Collapse
|
9
|
Pugsley K, Scherer SW, Bellgrove MA, Hawi Z. Environmental exposures associated with elevated risk for autism spectrum disorder may augment the burden of deleterious de novo mutations among probands. Mol Psychiatry 2022; 27:710-730. [PMID: 34002022 PMCID: PMC8960415 DOI: 10.1038/s41380-021-01142-w] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 04/16/2021] [Accepted: 04/21/2021] [Indexed: 12/11/2022]
Abstract
Although the full aetiology of autism spectrum disorder (ASD) is unknown, familial and twin studies demonstrate high heritability of 60-90%, indicating a predominant role of genetics in the development of the disorder. The genetic architecture of ASD consists of a complex array of rare and common variants of all classes of genetic variation usually acting additively to augment individual risk. The relative contribution of heredity in ASD persists despite selective pressures against the classic autistic phenotype; a phenomenon thought to be explained, in part, by the incidence of spontaneous (or de novo) mutations. Notably, environmental exposures attributed as salient risk factors for ASD may play a causal role in the emergence of deleterious de novo variations, with several ASD-associated agents having significant mutagenic potential. To explore this hypothesis, this review article assesses published epidemiological data with evidence derived from assays of mutagenicity, both in vivo and in vitro, to determine the likely role such agents may play in augmenting the genetic liability in ASD. Broadly, these exposures were observed to elicit genomic alterations through one or a combination of: (1) direct interaction with genetic material; (2) impaired DNA repair; or (3) oxidative DNA damage. However, the direct contribution of these factors to the ASD phenotype cannot be determined without further analysis. The development of comprehensive prospective birth cohorts in combination with genome sequencing is essential to forming a causal, mechanistic account of de novo mutations in ASD that links exposure, genotypic alterations, and phenotypic consequences.
Collapse
Affiliation(s)
- Kealan Pugsley
- grid.1002.30000 0004 1936 7857Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash University, Melbourne, VIC Australia
| | - Stephen W. Scherer
- grid.42327.300000 0004 0473 9646The Centre for Applied Genomics and Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON Canada ,grid.17063.330000 0001 2157 2938McLaughlin Centre and Department of Molecular Genetics, University of Toronto, Toronto, ON Canada
| | - Mark A. Bellgrove
- grid.1002.30000 0004 1936 7857Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash University, Melbourne, VIC Australia
| | - Ziarih Hawi
- Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash University, Melbourne, VIC, Australia.
| |
Collapse
|
10
|
Elkin ER, Bakulski KM, Colacino JA, Bridges D, Kilburn BA, Armant DR, Loch-Caruso R. Transcriptional profiling of the response to the trichloroethylene metabolite S-(1,2-dichlorovinyl)-L-cysteine revealed activation of the eIF2α/ATF4 integrated stress response in two in vitro placental models. Arch Toxicol 2021; 95:1595-1619. [PMID: 33725128 PMCID: PMC7961173 DOI: 10.1007/s00204-021-03011-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 02/25/2021] [Indexed: 12/13/2022]
Abstract
Trichloroethylene (TCE) is an industrial solvent and widespread environmental contaminant. Although TCE exposure is prevalent, epidemiological studies of TCE exposure associations with adverse birth outcomes are inconclusive. Prior studies show that the TCE metabolite S-(1,2-dichlorovinyl)-L-cysteine (DCVC) exhibits toxicity in a placental cell line. In the current study, genome-wide gene expression and gene set enrichment analyses were used to identify novel genes and pathway alterations in the HTR-8/SVneo human trophoblast cell line and human placental villous explants treated with DCVC at concentrations relevant to human exposures. In the cells, concentration- and time-dependent effects were observed, as evidenced by the magnitude of altered gene expression after treatment with 20 µM DCVC versus 10 µM, and 12-h versus 6-h of treatment. Comparing the two models for the transcriptional response to 12-h 20 µM DCVC treatment, no differentially expressed genes reached significance in villous explants, whereas 301 differentially expressed genes were detected in HTR-8/SVneo cells compared with non-treated controls (FDR < 0.05 + LogFC > 0.35 [FC > 1.3]). GSEA revealed five upregulated enriched pathways in common between explants and cells (FDR < 0.05). Moreover, all 12-h DCVC treatment groups from both models contained upregulated pathways enriched for genes regulated by the ATF4 transcription factor. The overrepresentation of ATF4 regulation of differentially expressed genes indicated activation of the integrated stress response (ISR), a condition triggered by multiple stress stimuli, including the unfolded protein response. DCVC-induced ISR activation was confirmed by elevated eIF2α phosphorylation, ATF4 protein concentrations, and decreased global protein synthesis in HTR-8/SVneo cells. This study identifies a mechanism of DCVC-induced cytotoxicity by revealing the involvement of a specific stress signaling pathway.
Collapse
Affiliation(s)
- Elana R Elkin
- Department of Environmental Health Sciences, University of Michigan, 1415 Washington Heights, Ann Arbor, MI, 48109-2029, USA.
| | - Kelly M Bakulski
- Department of Epidemiology, University of Michigan, Ann Arbor, MI, USA
| | - Justin A Colacino
- Department of Environmental Health Sciences, University of Michigan, 1415 Washington Heights, Ann Arbor, MI, 48109-2029, USA
- Department of Nutritional Sciences, University of Michigan, Ann Arbor, MI, USA
| | - Dave Bridges
- Department of Nutritional Sciences, University of Michigan, Ann Arbor, MI, USA
| | - Brian A Kilburn
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| | - D Randall Armant
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
- Department of Anatomy and Cell Biology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Rita Loch-Caruso
- Department of Environmental Health Sciences, University of Michigan, 1415 Washington Heights, Ann Arbor, MI, 48109-2029, USA
| |
Collapse
|
11
|
N-Acetyl-L-cysteine and aminooxyacetic acid differentially modulate trichloroethylene reproductive toxicity via metabolism in Wistar rats. Arch Toxicol 2021; 95:1303-1321. [PMID: 33599830 DOI: 10.1007/s00204-021-02991-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 01/21/2021] [Indexed: 10/22/2022]
Abstract
Exposure to the industrial solvent trichloroethylene (TCE) has been associated with adverse pregnancy outcomes in humans and decreased fetal weight in rats. TCE kidney toxicity can occur through formation of reactive metabolites via its glutathione (GSH) conjugation metabolic pathway, largely unstudied in the context of pregnancy. To investigate the contribution of the GSH conjugation pathway and oxidative stress to TCE toxicity during pregnancy, we exposed rats orally to 480 mg TCE/kg/day from gestational day (GD) 6 to GD 16 with and without N-acetyl-L-cysteine (NAC) at 200 mg/kg/day or aminooxyacetic acid (AOAA) at 20 mg/kg/day as pre/co-treatments from GD 5-16. NAC is a reactive oxygen species scavenger that modifies the GSH conjugation pathway, and AOAA is an inhibitor of cysteine conjugate β-lyase (CCBL) in the GSH conjugation pathway. TCE decreased fetal weight, and this was prevented by AOAA but not NAC pre/co-treatment to TCE. Although AOAA inhibited CCBL activity in maternal kidney, it did not inhibit CCBL activity in maternal liver and placenta, suggesting that AOAA prevention of TCE-induced decreased fetal weight was due to CCBL activity inhibition in the kidneys but not liver or placenta. Unexpectedly, NAC pre/co-treatment with TCE, relative to TCE treatment alone, altered placental morphology consistent with delayed developmental phenotype. Immunohistochemical staining revealed that the decidua basale, relative to basal and labyrinth zones, expressed the highest abundance of CCBL1, flavin-containing monooxygenase 3, and cleaved caspase-3. Together, the findings show the differential effects of NAC and AOAA on TCE-induced pregnancy outcomes are likely attributable to TCE metabolism modulation.
Collapse
|
12
|
Lin CW, Liu SH, Wu CF, Chang SH. Critical factors for enhancing the bioremediation of a toxic pollutant at high concentrations in groundwater: Toxicity evaluation, degrader tolerance, and microbial community. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 277:111487. [PMID: 33049609 DOI: 10.1016/j.jenvman.2020.111487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 09/24/2020] [Accepted: 10/04/2020] [Indexed: 06/11/2023]
Abstract
Groundwater near refinery and natural gas plants often contain elevated concentrations of toxic sulfolane. Studies on any concentration of sulfolane are limited. Column experiment was conducted to investigate the effects of adding a low dose of H2O2 and nutrient on bioremediation. Vibrio fischeri light inhibition test was used evaluate the toxicity of effluents. The continuous column experiment conditions were sulfolane at 100 mg L-1, dissolved oxygen at 7 mg L-1, absence of phosphorus, and very short hydraulic retention time (7.9 h). A low dose of H2O2 (5.88 mM) enhanced the sulfolane (27.1%) and COD removal (11.8%) in comparison with the control set. Adding nutrient increased bicinchoninic acid protein assay levels, sulfolane removal (99.6%) and COD removal (80.3%). Addition of both H2O2 and nutrient further improved COD removal (90.3%) and COD/sulfolane ratio (0.90) and toxicity removal (Vibrio fischeri light inhibition ratio < 1%). Batch experiment indicated the degraders tolerated sulfolane up to 400 mg L-1. The DGGE method and dendrogram analysis were utilized to investigate the changes of degrader community structure.
Collapse
Affiliation(s)
- Chi-Wen Lin
- Department of Safety, Health and Environmental Engineering, National Yunlin University of Science and Technology, Douliu, Yunlin, 64002, Taiwan; National Yunlin University of Science and Technology, Feng Tay Distinguished Professor, Taiwan
| | - Shu-Hui Liu
- Department of Safety, Health and Environmental Engineering, National Yunlin University of Science and Technology, Douliu, Yunlin, 64002, Taiwan
| | - Cheng-Fang Wu
- Department of Safety, Health and Environmental Engineering, National Yunlin University of Science and Technology, Douliu, Yunlin, 64002, Taiwan
| | - Shih-Hsien Chang
- Department of Public Health, Chung-Shan Medical University, Taichung, 402, Taiwan; Department of Family and Community Medicine, Chung Shan Medical University Hospital, Taichung, 402, Taiwan.
| |
Collapse
|
13
|
Miller CJ, Runge-Morris M, Cassidy-Bushrow AE, Straughen JK, Dittrich TM, Baker TR, Petriello MC, Mor G, Ruden DM, O’Leary BF, Teimoori S, Tummala CM, Heldman S, Agarwal M, Roth K, Yang Z, Baker BB. A Review of Volatile Organic Compound Contamination in Post-Industrial Urban Centers: Reproductive Health Implications Using a Detroit Lens. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:E8755. [PMID: 33255777 PMCID: PMC7728359 DOI: 10.3390/ijerph17238755] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 11/22/2020] [Accepted: 11/24/2020] [Indexed: 01/18/2023]
Abstract
Volatile organic compounds (VOCs) are a group of aromatic or chlorinated organic chemicals commonly found in manufactured products that have high vapor pressure, and thus vaporize readily at room temperature. While airshed VOCs are well studied and have provided insights into public health issues, we suggest that belowground VOCs and the related vapor intrusion process could be equally or even more relevant to public health. The persistence, movement, remediation, and human health implications of subsurface VOCs in urban landscapes remain relatively understudied despite evidence of widespread contamination. This review explores the state of the science of subsurface movement and remediation of VOCs through groundwater and soils, the linkages between these poorly understood contaminant exposure pathways and health outcomes based on research in various animal models, and describes the role of these contaminants in human health, focusing on birth outcomes, notably low birth weight and preterm birth. Finally, this review provides recommendations for future research to address knowledge gaps that are essential for not only tackling health disparities and environmental injustice in post-industrial cities, but also protecting and preserving critical freshwater resources.
Collapse
Affiliation(s)
- Carol J. Miller
- Center for Leadership in Environmental Awareness and Research (CLEAR)—Integrative Biosciences Center, Wayne State University, 6135 Woodward Ave, Detroit, MI 48202, USA; (C.J.M.); (M.R.-M.); (A.E.C.-B.); (J.K.S.); (T.M.D.); (T.R.B.); (M.C.P.); (G.M.); (D.M.R.); (B.F.O.)
- Department of Civil and Environmental Engineering—College of Engineering, Wayne State University, 5050 Anthony Wayne Drive, Detroit, MI 48202, USA; (S.T.); (C.M.T.)
| | - Melissa Runge-Morris
- Center for Leadership in Environmental Awareness and Research (CLEAR)—Integrative Biosciences Center, Wayne State University, 6135 Woodward Ave, Detroit, MI 48202, USA; (C.J.M.); (M.R.-M.); (A.E.C.-B.); (J.K.S.); (T.M.D.); (T.R.B.); (M.C.P.); (G.M.); (D.M.R.); (B.F.O.)
- Institute of Environmental Health Sciences—Integrative Biosciences Center, Wayne State University, 6135 Woodward Ave, Detroit, MI 48202, USA; (M.A.); (K.R.); (Z.Y.)
| | - Andrea E. Cassidy-Bushrow
- Center for Leadership in Environmental Awareness and Research (CLEAR)—Integrative Biosciences Center, Wayne State University, 6135 Woodward Ave, Detroit, MI 48202, USA; (C.J.M.); (M.R.-M.); (A.E.C.-B.); (J.K.S.); (T.M.D.); (T.R.B.); (M.C.P.); (G.M.); (D.M.R.); (B.F.O.)
- Department of Public Health Sciences, Henry Ford Hospital, 1 Ford Place, Detroit, MI 48202, USA
| | - Jennifer K. Straughen
- Center for Leadership in Environmental Awareness and Research (CLEAR)—Integrative Biosciences Center, Wayne State University, 6135 Woodward Ave, Detroit, MI 48202, USA; (C.J.M.); (M.R.-M.); (A.E.C.-B.); (J.K.S.); (T.M.D.); (T.R.B.); (M.C.P.); (G.M.); (D.M.R.); (B.F.O.)
- Department of Public Health Sciences, Henry Ford Hospital, 1 Ford Place, Detroit, MI 48202, USA
| | - Timothy M. Dittrich
- Center for Leadership in Environmental Awareness and Research (CLEAR)—Integrative Biosciences Center, Wayne State University, 6135 Woodward Ave, Detroit, MI 48202, USA; (C.J.M.); (M.R.-M.); (A.E.C.-B.); (J.K.S.); (T.M.D.); (T.R.B.); (M.C.P.); (G.M.); (D.M.R.); (B.F.O.)
- Department of Civil and Environmental Engineering—College of Engineering, Wayne State University, 5050 Anthony Wayne Drive, Detroit, MI 48202, USA; (S.T.); (C.M.T.)
| | - Tracie R. Baker
- Center for Leadership in Environmental Awareness and Research (CLEAR)—Integrative Biosciences Center, Wayne State University, 6135 Woodward Ave, Detroit, MI 48202, USA; (C.J.M.); (M.R.-M.); (A.E.C.-B.); (J.K.S.); (T.M.D.); (T.R.B.); (M.C.P.); (G.M.); (D.M.R.); (B.F.O.)
- Institute of Environmental Health Sciences—Integrative Biosciences Center, Wayne State University, 6135 Woodward Ave, Detroit, MI 48202, USA; (M.A.); (K.R.); (Z.Y.)
- Department of Pharmacology—School of Medicine, Wayne State University, 540 E. Canfield, Detroit, MI 48202, USA;
| | - Michael C. Petriello
- Center for Leadership in Environmental Awareness and Research (CLEAR)—Integrative Biosciences Center, Wayne State University, 6135 Woodward Ave, Detroit, MI 48202, USA; (C.J.M.); (M.R.-M.); (A.E.C.-B.); (J.K.S.); (T.M.D.); (T.R.B.); (M.C.P.); (G.M.); (D.M.R.); (B.F.O.)
- Institute of Environmental Health Sciences—Integrative Biosciences Center, Wayne State University, 6135 Woodward Ave, Detroit, MI 48202, USA; (M.A.); (K.R.); (Z.Y.)
- Department of Pharmacology—School of Medicine, Wayne State University, 540 E. Canfield, Detroit, MI 48202, USA;
| | - Gil Mor
- Center for Leadership in Environmental Awareness and Research (CLEAR)—Integrative Biosciences Center, Wayne State University, 6135 Woodward Ave, Detroit, MI 48202, USA; (C.J.M.); (M.R.-M.); (A.E.C.-B.); (J.K.S.); (T.M.D.); (T.R.B.); (M.C.P.); (G.M.); (D.M.R.); (B.F.O.)
- C.S. Mott Center for Human Growth and Development, Wayne State University, 275 E. Hancock, Detroit, MI 48201, USA
| | - Douglas M. Ruden
- Center for Leadership in Environmental Awareness and Research (CLEAR)—Integrative Biosciences Center, Wayne State University, 6135 Woodward Ave, Detroit, MI 48202, USA; (C.J.M.); (M.R.-M.); (A.E.C.-B.); (J.K.S.); (T.M.D.); (T.R.B.); (M.C.P.); (G.M.); (D.M.R.); (B.F.O.)
- Institute of Environmental Health Sciences—Integrative Biosciences Center, Wayne State University, 6135 Woodward Ave, Detroit, MI 48202, USA; (M.A.); (K.R.); (Z.Y.)
- Department of Pharmacology—School of Medicine, Wayne State University, 540 E. Canfield, Detroit, MI 48202, USA;
- Department of Obstetrics and Gynecology, Wayne State University, 275 E. Hancock, Detroit, MI 48201, USA
| | - Brendan F. O’Leary
- Center for Leadership in Environmental Awareness and Research (CLEAR)—Integrative Biosciences Center, Wayne State University, 6135 Woodward Ave, Detroit, MI 48202, USA; (C.J.M.); (M.R.-M.); (A.E.C.-B.); (J.K.S.); (T.M.D.); (T.R.B.); (M.C.P.); (G.M.); (D.M.R.); (B.F.O.)
- Department of Civil and Environmental Engineering—College of Engineering, Wayne State University, 5050 Anthony Wayne Drive, Detroit, MI 48202, USA; (S.T.); (C.M.T.)
| | - Sadaf Teimoori
- Department of Civil and Environmental Engineering—College of Engineering, Wayne State University, 5050 Anthony Wayne Drive, Detroit, MI 48202, USA; (S.T.); (C.M.T.)
| | - Chandra M. Tummala
- Department of Civil and Environmental Engineering—College of Engineering, Wayne State University, 5050 Anthony Wayne Drive, Detroit, MI 48202, USA; (S.T.); (C.M.T.)
| | - Samantha Heldman
- Department of Pharmacology—School of Medicine, Wayne State University, 540 E. Canfield, Detroit, MI 48202, USA;
| | - Manisha Agarwal
- Institute of Environmental Health Sciences—Integrative Biosciences Center, Wayne State University, 6135 Woodward Ave, Detroit, MI 48202, USA; (M.A.); (K.R.); (Z.Y.)
| | - Katherine Roth
- Institute of Environmental Health Sciences—Integrative Biosciences Center, Wayne State University, 6135 Woodward Ave, Detroit, MI 48202, USA; (M.A.); (K.R.); (Z.Y.)
| | - Zhao Yang
- Institute of Environmental Health Sciences—Integrative Biosciences Center, Wayne State University, 6135 Woodward Ave, Detroit, MI 48202, USA; (M.A.); (K.R.); (Z.Y.)
| | - Bridget B. Baker
- Center for Leadership in Environmental Awareness and Research (CLEAR)—Integrative Biosciences Center, Wayne State University, 6135 Woodward Ave, Detroit, MI 48202, USA; (C.J.M.); (M.R.-M.); (A.E.C.-B.); (J.K.S.); (T.M.D.); (T.R.B.); (M.C.P.); (G.M.); (D.M.R.); (B.F.O.)
- Institute of Environmental Health Sciences—Integrative Biosciences Center, Wayne State University, 6135 Woodward Ave, Detroit, MI 48202, USA; (M.A.); (K.R.); (Z.Y.)
| |
Collapse
|
14
|
Su AL, Loch-Caruso R. Comparison of rat fetal sex determination using placental gDNA and mRNA via qRT-PCR. JOURNAL OF MOLECULAR BIOLOGY AND METHODS 2020; 3:107. [PMID: 33196062 PMCID: PMC7665159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
A growing need exists to consider fetal sex as a biological variable and accurately assess sex-specific effects. Among the multiple methods used to determine fetal sex, quantitative real-time polymerase chain reaction (qRT-PCR) of Sry (sex-determining region Y) with genomic DNA (gDNA) is commonly used in addition to use of methodologies such as transcriptomics and detection of Barr body. However, Sry messenger RNA (mRNA), a product of Sry gDNA, has not been previously assessed for sex determination. Using placental samples from timed-pregnant Wistar rats at gestational day (GD) 16, this study assessed the compatibility of Sry detection using gDNA versus mRNA to determine fetal sex. Samples used in this current study come from a larger study that investigated trichloroethylene (TCE) reproductive toxicity and potential modulation by N-acetyl-L-cysteine (NAC) and aminooxyacetic acid (AOAA). In 90 out of 91 samples, the sex classification determined by gDNA matched the sex classification determined by mRNA analyzing Sry (Sry/B2m) values. For both gDNA and mRNA, statistically significant differences in Sry/B2m values between males and females were observed with samples considered in totality and when samples were separated by treatment groups (all comparisons were p<0.01 or below, and all but two comparisons were p<0.001 or below). Finally, the validity of using Sry Cq values to determine fetal sex and the B2m reference gene were also discussed. Together, this study suggests that determination of fetal sex in Wistar rats can be accomplished using Sry measurements in gDNA or mRNA with highly compatible results.
Collapse
Affiliation(s)
- Anthony L. Su
- Department of Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, MI 48109-2029 USA
- Current address: Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104 USA
| | - Rita Loch-Caruso
- Department of Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, MI 48109-2029 USA
| |
Collapse
|
15
|
De Miranda BR, Greenamyre JT. Trichloroethylene, a ubiquitous environmental contaminant in the risk for Parkinson's disease. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2020; 22:543-554. [PMID: 31996877 PMCID: PMC7941732 DOI: 10.1039/c9em00578a] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Organic solvents are common chemicals used in industry throughout the world, however, there is evidence for adverse health effects from exposure to these compounds. Trichloroethylene (TCE) is a halogenated solvent that has been used as a degreasing agent since the early 20th century. Due to its widespread use, TCE remains one of the most significant environmental contaminants in the US, and extensive research suggests TCE is a causative factor in a number of diseases, including cancer, fetal cardiac development, and neurotoxicity. TCE has also been implicated as a possible risk factor in the development of the most common neurodegenerative movement disorder, Parkinson's disease (PD). However, there is variable concordance across multiple occupational epidemiological studies assessing TCE (or solvent) exposure and risk for PD. In addition, there remains a degree of uncertainty about how TCE elicits toxicity to the dopaminergic system. To this end, we review the specific neurotoxic mechanisms of TCE in the context of selective vulnerability of dopaminergic neurons. In addition, we consider the complexity of combined risk factors that ultimately contribute to neurodegeneration and discuss the limitations of single-factor exposure assessments.
Collapse
Affiliation(s)
- Briana R De Miranda
- Pittsburgh Institute for Neurodegenerative Diseases, University of Pittsburgh, 3501 Fifth Avenue, BST-7045, Pittsburgh, 15260, Pennsylvania, USA.
| | | |
Collapse
|
16
|
Elkin ER, Harris SM, Su AL, Lash LH, Loch-Caruso R. Placenta as a target of trichloroethylene toxicity. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2020; 22:472-486. [PMID: 32022077 PMCID: PMC7103546 DOI: 10.1039/c9em00537d] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Trichloroethylene (TCE) is an industrial solvent and a common environmental contaminant detected in thousands of hazardous waste sites. Risk of exposure is a concern for workers in occupations that use TCE as well as for residents who live near industries that use TCE or who live near TCE-contaminated sites. Although renal, hepatic and carcinogenic effects of TCE have been documented, less is known about TCE impacts on reproductive functions despite epidemiology reports associating maternal TCE exposure with adverse pregnancy outcomes. Toxicological evidence suggests that the placenta mediates at least some of the adverse pregnancy outcomes associated with TCE exposure. Toxicology studies show that the TCE metabolite, S-(1,2-dichlorovinyl)-l-cysteine (DCVC) generates toxic effects such as mitochondrial dysfunction, apoptosis, oxidative stress, and release of prostaglandins and pro-inflammatory cytokines in placental cell lines. Each of these mechanisms of toxicity have significant implications for placental functions and, thus, ultimately the health of mother and developing child. Despite these findings there remain significant gaps in our knowledge about effects of TCE on the placenta, including effects on specific placental cell types and functions as well as sex differences in response to TCE exposure. Due to the critical role that the placenta plays in pregnancy, future research addressing some of these knowledge gaps could lead to significant gains in public health.
Collapse
Affiliation(s)
- Elana R Elkin
- Department of Environmental Health Sciences, University of Michigan, Ann Arbor, MI 48109-2029, USA.
| | | | | | | | | |
Collapse
|
17
|
Elkin ER, Bridges D, Loch-Caruso R. The trichloroethylene metabolite S-(1,2-dichlorovinyl)-L-cysteine induces progressive mitochondrial dysfunction in HTR-8/SVneo trophoblasts. Toxicology 2019; 427:152283. [PMID: 31476333 DOI: 10.1016/j.tox.2019.152283] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2019] [Revised: 08/24/2019] [Accepted: 08/28/2019] [Indexed: 02/08/2023]
Abstract
Trichloroethylene is an industrial solvent and common environmental pollutant. Despite efforts to ban trichloroethylene, its availability and usage persist globally, constituting a hazard to human health. Recent studies reported associations between maternal trichloroethylene exposure and increased risk for low birth weight. Despite these associations, the toxicological mechanism underlying trichloroethylene adverse effects on pregnancy remains largely unknown. The trichloroethylene metabolite S-(1,2-dichlorovinyl)-L-cysteine (DCVC) induces mitochondrial-mediated apoptosis in a trophoblast cell line. To gain further understanding of mitochondrial-mediated DCVC placental toxicity, this study investigated the effects of DCVC exposure on mitochondrial function using non-cytolethal concentrations in placental cells. Human trophoblasts, HTR-8/SVneo, were exposed in vitro to a maximum of 20 μM DCVC for up to 12 h. Cell-based oxygen consumption and extracellular acidification assays were used to evaluate key aspects of mitochondrial function. Following 6 h of exposure to 20 μM DCVC, elevated oxygen consumption, mitochondrial proton leak and sustained energy coupling deficiency were observed. Similarly, 12 h of exposure to 20 μM DCVC decreased mitochondrial-dependent basal, ATP-linked and maximum oxygen consumption rates. Using the fluorochrome TMRE, dissipation of mitochondrial membrane potential was detected after a 12-h exposure to 20 μM DCVC, and (±)-α-tocopherol, a known suppressor of lipid peroxidation, attenuated DCVC-stimulated mitochondrial membrane depolarization but failed to rescue oxygen consumption perturbations. Together, these results suggest that DCVC caused progressive mitochondrial dysfunction, resulting in lipid peroxidation-associated mitochondrial membrane depolarization. Our findings contribute to the biological plausibility of DCVC-induced placental impairment and provide new insights into the role of the mitochondria in DCVC-induced toxicity.
Collapse
Affiliation(s)
- Elana R Elkin
- Department of Environmental Health Sciences, University of Michigan, 1415 Washington Heights, Ann Arbor, MI, 48109-2029, USA.
| | - Dave Bridges
- Department of Nutritional Sciences, University of Michigan, 1415 Washington Heights, Ann Arbor, MI, 48109-2029, USA.
| | - Rita Loch-Caruso
- Department of Environmental Health Sciences, University of Michigan, 1415 Washington Heights, Ann Arbor, MI, 48109-2029, USA.
| |
Collapse
|
18
|
Huang Y, Lin S, Jin L, Wang L, Ren A. Decreased global DNA hydroxymethylation in neural tube defects: Association with polycyclic aromatic hydrocarbons. Epigenetics 2019; 14:1019-1029. [PMID: 31179819 DOI: 10.1080/15592294.2019.1629233] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
5-Hydroxymethylcytosine (5hmC), a distinct epigenetic marker that plays a role in DNA active demethylation, has been reported to be important for embryonic development and may respond to environmental exposure. No studies have evaluated the association between DNA hydroxymethylation and the risk for fetal neural tube defects (NTDs), with consideration of prenatal exposure to polycyclic aromatic hydrocarbons (PAHs), a risk factor for NTDs. We measured the global levels of 5hmC% in neural tissue from 92 terminated NTD cases and 33 terminated non-malformed fetuses. A lower level of 5hmC% was found in the NTD cases (median [interquartile range]: 0.25 [0.12-0.39]) compared to the controls (0.45 [0.19-1.00]). After adjusting for periconceptional folate supplementation, risk for NTDs increased with decreasing tertiles of 5hmC% (odds ratio: 7.89, 95% confidence interval: 2.32, 26.86, for the lowest tertile relative to the top tertile; pfor trend = 0.002). Linear regression revealed that concentrations of high-molecular-weight PAHs (H_PAHs) in fetal liver tissue were negatively associated with log2-transformed 5hmC%. Superoxide dismutase activity and 5hmC% were positively correlated in fetal neural tissue (rs = 0.64; p < 0.05). A mouse whole-embryo culture model was used for further validation. Decreased levels of 5hmC% and increased levels of reactive oxygen species were found in mouse embryos treated with BaP, a well-studied PAH. Taken together, levels of 5hmC% in fetal neural tissue were inversely associated with the risk for NTDs, and this association may be related to oxidative stress induced by exposure to PAHs.
Collapse
Affiliation(s)
- Yun Huang
- a Institute of Reproductive and Child Health, National Health Commission Key Laboratory of Reproductive Health, and Department of Epidemiology and Biostatistics, School of Public Health, Peking University Health Science Center , Beijing , China
| | - Shanshan Lin
- a Institute of Reproductive and Child Health, National Health Commission Key Laboratory of Reproductive Health, and Department of Epidemiology and Biostatistics, School of Public Health, Peking University Health Science Center , Beijing , China.,b Division of Birth Cohort Study, Guangzhou Women and Children's Medical Center , Guangzhou Medical University, Guangzhou , China
| | - Lei Jin
- a Institute of Reproductive and Child Health, National Health Commission Key Laboratory of Reproductive Health, and Department of Epidemiology and Biostatistics, School of Public Health, Peking University Health Science Center , Beijing , China
| | - Linlin Wang
- a Institute of Reproductive and Child Health, National Health Commission Key Laboratory of Reproductive Health, and Department of Epidemiology and Biostatistics, School of Public Health, Peking University Health Science Center , Beijing , China
| | - Aiguo Ren
- a Institute of Reproductive and Child Health, National Health Commission Key Laboratory of Reproductive Health, and Department of Epidemiology and Biostatistics, School of Public Health, Peking University Health Science Center , Beijing , China
| |
Collapse
|
19
|
Wang BH, Yan B. A dye@MOF crystalline probe serving as a platform for ratiometric sensing of trichloroacetic acid (TCA), a carcinogen metabolite in human urine. CrystEngComm 2019. [DOI: 10.1039/c9ce00924h] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Novel microporous dual-emitting dye@MOF FS@1 hybrid has been designed and prepared to effectively detect TCA, the biomarker for carcinogenic TCE in human urine.
Collapse
Affiliation(s)
- Bing-Hui Wang
- School of Chemical Science and Engineering
- Tongji University
- Shanghai
- China
| | - Bing Yan
- School of Chemical Science and Engineering
- Tongji University
- Shanghai
- China
- School of Materials Science and Engineering
| |
Collapse
|