1
|
Tang W, Wang K, Feng Y, Tsui KH, Singh KK, Stout MB, Wang S, Wu M. Exploration of the mechanism and therapy of ovarian aging by targeting cellular senescence. LIFE MEDICINE 2025; 4:lnaf004. [PMID: 40110109 PMCID: PMC11916902 DOI: 10.1093/lifemedi/lnaf004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Accepted: 01/22/2025] [Indexed: 03/22/2025]
Abstract
The ovary is a crucial gonadal organ that supports female reproductive and endocrine functions. Ovarian aging can result in decreased fertility and dysfunction across multiple organs. Research has demonstrated that cellular senescence in various cell types within the ovary can trigger a decline in ovarian function through distinct stress responses, resulting in ovarian aging. This review explores how cellular senescence may contribute to ovarian aging and reproductive failure. Additionally, we discuss the factors that cause ovarian cellular senescence, including the accumulation of advanced glycation end products, oxidative stress, mitochondrial dysfunction, DNA damage, telomere shortening, and exposure to chemotherapy. Furthermore, we discuss senescence in six distinct cell types, including oocytes, granulosa cells, ovarian theca cells, immune cells, ovarian surface epithelium, and ovarian endothelial cells, inside the ovary and explore their contribution to the accelerated ovarian aging. Lastly, we describe potential senotherapeutics for the treatment of ovarian aging and offer novel strategies for ovarian longevity.
Collapse
Affiliation(s)
- Weicheng Tang
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- National Clinical Research Center for Obstetrical and Gynecological Diseases, Wuhan 430030, China
- Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Wuhan 430030, China
| | - Kaichen Wang
- Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yourong Feng
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- National Clinical Research Center for Obstetrical and Gynecological Diseases, Wuhan 430030, China
- Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Wuhan 430030, China
| | - Kuan-Hao Tsui
- Department of Obstetrics and Gynecology, Kaohsiung Veterans General Hospital, Kaohsiung 813779, Taiwan, China
- Department of Obstetrics and Gynecology, Yang-Ming University, Taipei 112304, Taiwan, China
- Department of Pharmacy and Graduate Institute of Pharmaceutical Technology, Tajen University, Pingtung 900391, Taiwan, China
| | - Keshav K Singh
- Department of Genetics, School of Medicine, The University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Michael B Stout
- Aging & Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA
- Oklahoma City Veterans Affairs Medical Center, Oklahoma City, OK 73104, USA
| | - Shixuan Wang
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- National Clinical Research Center for Obstetrical and Gynecological Diseases, Wuhan 430030, China
- Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Wuhan 430030, China
| | - Meng Wu
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- National Clinical Research Center for Obstetrical and Gynecological Diseases, Wuhan 430030, China
- Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Wuhan 430030, China
| |
Collapse
|
2
|
Zanon P, Terraciano PB, Quandt L, Palma Kuhl C, Pandolfi Passos E, Berger M. Angiotensin II - AT1 receptor signalling regulates the plasminogen-plasmin system in human stromal endometrial cells increasing extracellular matrix degradation, cell migration and inducing a proinflammatory profile. Biochem Pharmacol 2024; 225:116280. [PMID: 38735446 DOI: 10.1016/j.bcp.2024.116280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 05/09/2024] [Accepted: 05/10/2024] [Indexed: 05/14/2024]
Abstract
The pivotal role of human endometrial stromal cells (hESCs) in the development of endometriosis lies in their ability to adopt a pro-invasive and proinflammatory profile upon migration to areas outside the uterus. However, the molecular mechanisms involved in these events remain unclear. In this study, we investigated how angiotensin II (Ang II) affects the plasminogen-plasmin system in hESCs, and the mechanisms underlying cell proliferation, migration, matrix degradation, and inflammation. Precursors, receptors, and peptidases involved in angiotensin metabolism increased significantly in Ang II-treated hESCs. The expression and activity of tissue (tPA)- and urokinase (uPA)- type plasminogen activators and the receptor for uPA (uPAR) were induced in the presence of Ang II. The up-regulation of tPA-uPA/uPAR pathway significantly contributes to heightened plasmin production both on the surface of hESCs and in their conditioned media. As a result, the plasmin generation induced by Ang II enhances the degradation of fibrin and matrix proteins, while also boosting hESC viability, proliferation, and migration through the up-regulation of growth factor expression. Notably, Ang II-induced hESC migration was dependent on the generation of active plasmin on cell surface. Ang II regulates oxidative and inflammatory signalling in hESCs primarily via NADPH oxidase and through the up-regulation of proinflammatory cytokines and adhesion molecules. Interestingly, Ang II receptor (AT1R) blockage, decreased plasmin generation, tPA-uPA/uPAR expression and hESC migration. Our results suggest that Ang II/AT1R axis regulates hESC proliferation and migration through tPA-uPA/uPAR pathway activation and plasmin generation. We propose the Ang II/AT1R axis as a potential target for endometriosis treatment.
Collapse
Affiliation(s)
- Pamela Zanon
- Grupo de Reprodução e Farmacologia Celular, Laboratório de Bioquímica Farmacológica, Centro de Pesquisa Experimental (CPE), Hospital de Clínicas de Porto Alegre (HCPA-UFRGS), Porto Alegre, RS, Brazil; Programa de Pós-Graduação em Ciências de Saúde: Ginecologia e Obstetrícia (PPGGO), Faculdade de Medicina, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Paula Barros Terraciano
- Programa de Pós-Graduação em Ciências de Saúde: Ginecologia e Obstetrícia (PPGGO), Faculdade de Medicina, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil; Grupo de Reprodução e Farmacologia Celular, Laboratório de Embriologia e Diferenciação Celular, Centro de Pesquisa Experimental (CPE), Hospital de Clínicas de Porto Alegre (HCPA-UFRGS), Porto Alegre, RS, Brazil
| | - Letícia Quandt
- Grupo de Reprodução e Farmacologia Celular, Laboratório de Bioquímica Farmacológica, Centro de Pesquisa Experimental (CPE), Hospital de Clínicas de Porto Alegre (HCPA-UFRGS), Porto Alegre, RS, Brazil; Programa de Pós-Graduação em Ciências de Saúde: Ginecologia e Obstetrícia (PPGGO), Faculdade de Medicina, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Cristiana Palma Kuhl
- Programa de Pós-Graduação em Ciências de Saúde: Ginecologia e Obstetrícia (PPGGO), Faculdade de Medicina, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil; Grupo de Reprodução e Farmacologia Celular, Laboratório de Embriologia e Diferenciação Celular, Centro de Pesquisa Experimental (CPE), Hospital de Clínicas de Porto Alegre (HCPA-UFRGS), Porto Alegre, RS, Brazil
| | - Eduardo Pandolfi Passos
- Programa de Pós-Graduação em Ciências de Saúde: Ginecologia e Obstetrícia (PPGGO), Faculdade de Medicina, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil; Grupo de Reprodução e Farmacologia Celular, Laboratório de Embriologia e Diferenciação Celular, Centro de Pesquisa Experimental (CPE), Hospital de Clínicas de Porto Alegre (HCPA-UFRGS), Porto Alegre, RS, Brazil; Departamento de Ginecologia e Obstetrícia, Faculdade de Medicina, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil; Centro de Fertilidade, Hospital Moinhos de Vento, Porto Alegre, RS, Brazil
| | - Markus Berger
- Grupo de Reprodução e Farmacologia Celular, Laboratório de Bioquímica Farmacológica, Centro de Pesquisa Experimental (CPE), Hospital de Clínicas de Porto Alegre (HCPA-UFRGS), Porto Alegre, RS, Brazil; Programa de Pós-Graduação em Ciências de Saúde: Ginecologia e Obstetrícia (PPGGO), Faculdade de Medicina, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil.
| |
Collapse
|
3
|
Markowska A, Antoszczak M, Markowska J, Huczyński A. Gynotoxic Effects of Chemotherapy and Potential Protective Mechanisms. Cancers (Basel) 2024; 16:2288. [PMID: 38927992 PMCID: PMC11202309 DOI: 10.3390/cancers16122288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 06/16/2024] [Accepted: 06/18/2024] [Indexed: 06/28/2024] Open
Abstract
Chemotherapy is one of the leading cancer treatments. Unfortunately, its use can contribute to several side effects, including gynotoxic effects in women. Ovarian reserve suppression and estrogen deficiency result in reduced quality of life for cancer patients and are frequently the cause of infertility and early menopause. Classic alkylating cytostatics are among the most toxic chemotherapeutics in this regard. They cause DNA damage in ovarian follicles and the cells they contain, and they can also induce oxidative stress or affect numerous signaling pathways. In vitro tests, animal models, and a few studies among women have investigated the effects of various agents on the protection of the ovarian reserve during classic chemotherapy. In this review article, we focused on the possible beneficial effects of selected hormones (anti-Müllerian hormone, ghrelin, luteinizing hormone, melatonin), agents affecting the activity of apoptotic pathways and modulating gene expression (C1P, S1P, microRNA), and several natural (quercetin, rapamycin, resveratrol) and synthetic compounds (bortezomib, dexrazoxane, goserelin, gonadoliberin analogs, imatinib, metformin, tamoxifen) in preventing gynotoxic effects induced by commonly used cytostatics. The presented line of research appears to provide a promising strategy for protecting and/or improving the ovarian reserve in the studied group of cancer patients. However, well-designed clinical trials are needed to unequivocally assess the effects of these agents on improving hormonal function and fertility in women treated with ovotoxic anticancer drugs.
Collapse
Affiliation(s)
- Anna Markowska
- Department of Perinatology and Women’s Health, Poznań University of Medical Sciences, 60-535 Poznań, Poland
| | - Michał Antoszczak
- Department of Medical Chemistry, Faculty of Chemistry, Adam Mickiewicz University, 61-614 Poznań, Poland
| | - Janina Markowska
- Gynecological Oncology Center, Poznańska 58A, 60-850 Poznań, Poland;
| | - Adam Huczyński
- Department of Medical Chemistry, Faculty of Chemistry, Adam Mickiewicz University, 61-614 Poznań, Poland
| |
Collapse
|
4
|
Wang B, Li J, Zhang Q, Li Y, Ren W, He D. WITHDRAWN: Metformin mitigates cisplatin-induced ovarian damage through inhibiting the pyroptosis of granulosa cells via ROS/TXNIP/NLRP3 signaling pathway. Aging (Albany NY) 2024; 16:205659. [PMID: 38484380 DOI: 10.18632/aging.205659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 01/29/2024] [Indexed: 03/26/2024]
Abstract
This paper was originally published in Aging Advance Online Publications on March 14, 2024. In compliance with Aging's withdrawal policy, the paper was withdrawn in its entirety. It will not appear in Aging internal or any external indexes or archives.
Collapse
Affiliation(s)
- Bo Wang
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- National Clinical Research Center for Obstetrical and Gynecological Diseases, Wuhan 430030, China
- Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Wuhan 430030, China
| | - Jian Li
- Department of Hepatobiliary Surgery, Renmin Hospital of Wuhan University, Wuhan 430030, China
| | - Qianyu Zhang
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- National Clinical Research Center for Obstetrical and Gynecological Diseases, Wuhan 430030, China
- Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Wuhan 430030, China
| | - Yuting Li
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- National Clinical Research Center for Obstetrical and Gynecological Diseases, Wuhan 430030, China
- Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Wuhan 430030, China
| | - Wu Ren
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- National Clinical Research Center for Obstetrical and Gynecological Diseases, Wuhan 430030, China
- Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Wuhan 430030, China
| | - Du He
- Department of Medical Oncology, The Central Hospital of Enshi Tujia and Miao Autonomous Prefecture, Enshi 445000, China
| |
Collapse
|
5
|
Jin Z, Zhao-Xia L, Fan-Ke P, Wen-Juan Z, Min-Li W, Han-Yi Z. Progress in the study of reproductive toxicity of platinum-based antitumor drugs and their means of prevention. Front Pharmacol 2024; 15:1327502. [PMID: 38414732 PMCID: PMC10896984 DOI: 10.3389/fphar.2024.1327502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 01/31/2024] [Indexed: 02/29/2024] Open
Abstract
Platinum-based antitumor drugs are broad-spectrum agents with unique mechanisms of action. Combination chemotherapy regimens based on platinum drugs are commonly used in cancer treatment. However, these drugs can cause various adverse reactions in the human body through different routes of administration, including reproductive toxicity, genetic toxicity, and embryonic developmental toxicity. Preventing adverse effects is crucial to enhance patients' quality of life and reduce healthcare costs. This article discusses the types and developmental history of antitumor active platinum compounds, their mechanisms of action, routes of administration, and their potential reproductive, genetic, and embryonic developmental toxicity. This text explores preventive measures based on animal experimental results. Its aim is to provide references for personalized treatment and occupational protection when using platinum drugs. The continuous progress of science and technology, along with the deepening of medical research, suggests that the application of platinum drugs will broaden. Therefore, the development of new platinum drugs will be an important direction for future research.
Collapse
Affiliation(s)
- Zhan Jin
- Gannan Medical University, Ganzhou, China
| | - Liu Zhao-Xia
- Department of Reproductive Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | | | | | - Wei Min-Li
- Department of Reproductive Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Zeng Han-Yi
- Department of Reproductive Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
- Department of Genetics at the School of Basic Medicine, Gannan Medical University, Ganzhou, China
| |
Collapse
|
6
|
Trujillo M, Odle AK, Aykin-Burns N, Allen AR. Chemotherapy induced oxidative stress in the ovary: drug-dependent mechanisms and potential interventions†. Biol Reprod 2023; 108:522-537. [PMID: 36539327 PMCID: PMC10106837 DOI: 10.1093/biolre/ioac222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 12/07/2022] [Accepted: 12/14/2022] [Indexed: 01/19/2023] Open
Abstract
Cancer incidence and relative survival are expected to increase over the next few decades. With the majority of patients receiving combinatorial chemotherapy, an increasing proportion of patients experience long-term side effects from treatment-including reproductive disorders and infertility. A limited number of studies have examined mechanisms of single-agent chemotherapy-induced gonadotoxicity, with chemotherapy-induced oxidative stress being implicated in the loss of reproductive functions. Current methods of female fertility preservation are costly, invasive, only moderately successful, and seldom presented to cancer patients. The potential of antioxidants to alleviate chemotherapy has been overlooked at a time when it is becoming increasingly important to develop strategies to protect reproductive functions during chemotherapy. This review will summarize the importance of reactive oxygen species homeostasis in reproduction, chemotherapy-induced mitochondrial dysfunction in oocytes, chemotherapy-induced oxidative stress, and several promising natural adjuvants.
Collapse
Affiliation(s)
- Madison Trujillo
- Division of Radiation Health, University of Arkansas for Medical Sciences, Little Rock, AR, USA
- Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, AR, USA
- Department of Neurobiology and Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Angela K Odle
- Department of Neurobiology and Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Nukhet Aykin-Burns
- Division of Radiation Health, University of Arkansas for Medical Sciences, Little Rock, AR, USA
- Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Antiño R Allen
- Division of Radiation Health, University of Arkansas for Medical Sciences, Little Rock, AR, USA
- Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, AR, USA
- Department of Neurobiology and Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| |
Collapse
|
7
|
Al-Shahat A, Hulail MAE, Soliman NMM, Khamis T, Fericean LM, Arisha AH, Moawad RS. Melatonin Mitigates Cisplatin-Induced Ovarian Dysfunction via Altering Steroidogenesis, Inflammation, Apoptosis, Oxidative Stress, and PTEN/PI3K/Akt/mTOR/AMPK Signaling Pathway in Female Rats. Pharmaceutics 2022; 14:2769. [PMID: 36559263 PMCID: PMC9786155 DOI: 10.3390/pharmaceutics14122769] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/08/2022] [Accepted: 12/09/2022] [Indexed: 12/14/2022] Open
Abstract
Ovarian damage and fertility impairment are major side effects of chemotherapy in pre-menopausal cancer patients. Cisplatin is a widely used chemotherapeutic drug. The present study was designed to assess the ameliorative effects of melatonin as an adjuvant for fertility preservation. Thirty-two adult female Wistar rats were divided randomly into four equal groups: Control, Melatonin, Cisplatin (CP) treated, and CP + Melatonin treated. The cisplatin-treated group showed decreased body and ovarian weights, decreased serum E2 and AMH, increased serum LH and FSH, reduced ovarian levels of SOD, CAT, GSH, and TAC, and increased ovarian MDA. The histopathological examination of the cisplatin-treated group showed deleterious changes within ovarian tissue in the form of damaged follicles and corpus luteum, hemorrhage, and inflammatory infiltrates with faint PAS reaction in zona pellucida, increased ovarian collagen deposition, and marked expression of caspase-3 immune reaction in granulosa and theca cells, stroma, and oocytes. Alongside, there was a significant downregulation in the mRNA expression of steroidogenic enzymes, IL10, AMPK, PI3K, AKT, mTOR, and PTEN, while TGF-β1, IL1β, IL6, TNF-α, NF-Kβ, P53, p38-MAPK, JNK, and FOXO3 mRNA expressions were upregulated in cisplatin-treated rats' ovarian tissue. Coadministration of cisplatin-treated rats with melatonin reversed these changes significantly. In conclusion, melatonin's antioxidant, anti-inflammatory, and anti-apoptotic activities could modulate ovarian disturbances induced by cisplatin and preserve fertility.
Collapse
Affiliation(s)
- Amal Al-Shahat
- Human Anatomy & Embryology Department, Faculty of Medicine, Zagazig University, Zagazig 44519, Egypt
| | - Mohey A. E. Hulail
- Human Anatomy & Embryology Department, Faculty of Medicine, Zagazig University, Zagazig 44519, Egypt
| | - Nada M. M. Soliman
- Human Anatomy & Embryology Department, Faculty of Medicine, Zagazig University, Zagazig 44519, Egypt
| | - Tarek Khamis
- Department of Pharmacology, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44519, Egypt
- Laboratory of Biotechnology, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44519, Egypt
| | - Liana Mihaela Fericean
- Biology Department, Faculty of Agriculture, University of Life Sciences “King Michael I of Romania” from Timisoara, Aradului St. 119, 300645 Timisoara, Romania
| | - Ahmed Hamed Arisha
- Department of Animal Physiology and Biochemistry, Faculty of Veterinary Medicine, Badr University in Cairo (BUC), Badr City 11829, Egypt
- Department of Physiology, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44511, Egypt
| | - Rania S. Moawad
- Human Anatomy & Embryology Department, Faculty of Medicine, Zagazig University, Zagazig 44519, Egypt
| |
Collapse
|
8
|
Zhu XZ, Xiong ZP, Zhou SP, Xie SD, Li HJ, Li QS, Yang GB. Analysis of reproductive damage in earthworms (Amynthas corticis) exposed to cypermethrin. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 244:114038. [PMID: 36075120 DOI: 10.1016/j.ecoenv.2022.114038] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 08/25/2022] [Accepted: 08/27/2022] [Indexed: 06/15/2023]
Abstract
Cypermethrin contamination was a potential threat to soil organisms. In the present work, reproductive damage in earthworms (Amynthas corticis) exposed to cypermethrin was investigated. It was found that earthworms could absorb and accumulate residual cypermethrin in soil, and also earthworm activities helped accelerate the degradation of cypermethrin in soil. The accumulation of cypermethrin in earthworms induced sperm damage, and cypermethrin not only caused the imbalance of calcium homeostasis in earthworm sperm cells by inhibiting earthworm sperm Ca2+-ATP and Ca2+-Mg2+-ATP enzyme activities but also caused barriers in acrosome reaction. It also affected sperm energy supply of earthworms by inhibiting the activity of Na+-K+-ATPase and Mg2+-ATPase of earthworm sperm. Meanwhile, the inhibition of acrosome enzyme activity of earthworm sperm by cypermethrin led to hinder fertilization and reduced cocoon production of earthworms, and the damage of cypermethrin to sperm of earthworm was a significant cause of its reproductive toxicity. The results of the evaluation of IBR index showed that reproductive toxicity of cypermethrin to earthworms reduced with the increasing time. The decreased reproductive toxicity of cypermethrin to earthworms at the later stage of exposure (42-56 d) might be due to a combination of reduced absorption of cypermethrin in soil by earthworms, decreased accumulation of cypermethrin in the body, and improved sperm capacitation.
Collapse
Affiliation(s)
- X Z Zhu
- Key Laboratory of State Forestry Administration on Highly-Efficient Utilization of Forestry Biomass Resources in Southwest China ( Southwest Forestry University), Kunming 650224, China
| | - Z P Xiong
- Key Laboratory of State Forestry Administration on Highly-Efficient Utilization of Forestry Biomass Resources in Southwest China ( Southwest Forestry University), Kunming 650224, China
| | - S P Zhou
- Key Laboratory of State Forestry Administration on Highly-Efficient Utilization of Forestry Biomass Resources in Southwest China ( Southwest Forestry University), Kunming 650224, China.
| | - S D Xie
- Key Laboratory of State Forestry Administration on Highly-Efficient Utilization of Forestry Biomass Resources in Southwest China ( Southwest Forestry University), Kunming 650224, China
| | - H J Li
- Key Laboratory of State Forestry Administration on Highly-Efficient Utilization of Forestry Biomass Resources in Southwest China ( Southwest Forestry University), Kunming 650224, China
| | - Q S Li
- Key Laboratory of State Forestry Administration on Highly-Efficient Utilization of Forestry Biomass Resources in Southwest China ( Southwest Forestry University), Kunming 650224, China
| | - G B Yang
- Key Laboratory of State Forestry Administration on Highly-Efficient Utilization of Forestry Biomass Resources in Southwest China ( Southwest Forestry University), Kunming 650224, China
| |
Collapse
|
9
|
Senotherapy Protects against Cisplatin-Induced Ovarian Injury by Removing Senescent Cells and Alleviating DNA Damage. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:9144644. [PMID: 35693700 PMCID: PMC9187433 DOI: 10.1155/2022/9144644] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 05/02/2022] [Indexed: 11/26/2022]
Abstract
Ovarian damage induced by platinum-based chemotherapy seriously affects young women with cancer, manifesting as infertility, early menopause, and premature ovarian insufficiency. However, effective prevention strategies for such damage are lacking. Senescent cells may be induced by chemotherapeutic agents. We hypothesized that cisplatin can lead to senescence in ovarian cells during the therapeutic process, and senolytic drugs can protect animals against cisplatin-induced ovarian injury. Here, we demonstrated the existence of senescent cells in cisplatin-treated ovaries, identified the senescence-associated secretory phenotype, and observed significant improvement of ovarian function by treatment with metformin or dasatinib and quercetin (DQ) independently or in combination. These senotherapies improved both oocyte quality and fertility, increased the ovarian reserve, and enhanced hormone secretion in cisplatin-exposed mice. Additionally, attenuated fibrosis, reorganized subcellular structure, and mitigated DNA damage were observed in the ovaries of senotherapeutic mice. Moreover, RNA sequencing analysis revealed upregulation of the proliferation-related genes Ki, Prrx2, Sfrp4, and Megfl0; and the antioxidative gene H2-Q10 after metformin plus DQ treatment. Gene ontology analysis further revealed that combining senotherapies enhanced ovarian cell differentiation, development, and communication. In this study, we demonstrated that metformin plus DQ recovered ovarian function to a greater extent compared to metformin or DQ independently, with more follicular reserve, increased pups per litter, and reduced DNA damage. Collectively, our work indicates that senotherapies might prevent cisplatin-induced ovarian injury by removing senescent cells and reducing DNA damage, which represent a promising therapeutic avenue to prevent chemotherapy-induced ovarian damage.
Collapse
|
10
|
Bradykinin-target therapies in SARS-CoV-2 infection: current evidence and perspectives. Naunyn Schmiedebergs Arch Pharmacol 2022; 395:275-283. [PMID: 35089406 PMCID: PMC8795307 DOI: 10.1007/s00210-022-02206-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Accepted: 01/17/2022] [Indexed: 12/26/2022]
Abstract
Coronavirus disease 2019 (COVID-19) is a potentially fatal disease caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) that preferentially infects the respiratory tract. Bradykinin (BK) is a hypotensive substance that recently emerged as one of the mechanisms to explain COVID-19-related complications. Concerning this, in this review, we try to address the complex link between BK and pathophysiology of COVID-19, investigating the role of this peptide as a potential target for pharmacological modulation in the management of SARS-CoV-2. The pathology of COVID-19 may be more a result of the BK storm than the cytokine storm, and which BK imbalance is a relevant factor in the respiratory disorders caused by SARS-CoV-2 infection. Regarding this, an interesting point of intervention for this disease is to modulate BK signaling. Some drugs, such as icatibant, ecallantide, and noscapine, and even a human monoclonal antibody, lanadelumab, have been studied for their potential utility in COVID-19 by modulating BK signaling. The interaction of the BK pathway and the involvement of cytokines such as IL-6 and IL1 may be key to the use of blockers, even if only as adjuvants. In fact, reduction of BK, mainly DABK, is considered a relevant strategy to improve clinical conditions of COVID-19 patients. In this context, despite the current unproven clinical efficacy, drugs repurposing that block B1 or B2 receptor activation have gained prominence for the treatment of COVID-19 in the world.
Collapse
|
11
|
Zeng ZF, Huang QP, Cai JH, Zheng GJ, Huang QC, Liu ZL, Chen ZL, Wei YH. Synthesis, Characterization, DNA/HSA Interactions, and Anticancer Activity of Two Novel Copper(II) Complexes with 4-Chloro-3-Nitrobenzoic Acid Ligand. Molecules 2021; 26:molecules26134028. [PMID: 34279368 PMCID: PMC8271622 DOI: 10.3390/molecules26134028] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 06/24/2021] [Accepted: 06/25/2021] [Indexed: 02/07/2023] Open
Abstract
The purpose of this study was to identify new metal-based anticancer drugs; to this end, we synthesized two new copper(II) complexes, namely [Cu(ncba)4(phen)] (1) and [Cu(ncba)4(bpy)] (2), comprised 4-chloro-3-nitrobenzoic acid as the main ligand. The single-crystal XRD approach was employed to determine the copper(II) complex structures. Binding between these complexes and calf thymus DNA (CT-DNA) and human serum albumin (HSA) was explored by electronic absorption, fluorescence spectroscopy, and viscometry. Both complexes intercalatively bound CT-DNA and statically and spontaneously quenched DNA/HSA fluorescence. A CCK-8 assay revealed that complex 1 and complex 2 had substantial antiproliferative influences against human cancer cell lines. Moreover, complex 1 had greater antitumor efficacy than the positive control cisplatin. Flow cytometry assessment of the cell cycle demonstrated that these complexes arrested the HepG2 cell cycle and caused the accumulation of G0/G1-phase cells. The mechanism of cell death was elucidated by flow cytometry-based apoptosis assays. Western blotting revealed that both copper(II) complexes induced apoptosis by regulating the expression of the Bcl-2(Bcl-2, B cell lymphoma 2) protein family.
Collapse
Affiliation(s)
- Zhen-Fang Zeng
- School of Chemical and Biological Engineering, Guangxi Normal University for Nationalities, 23 Fozi Road, Chongzuo 532200, China; (Q.-P.H.); (J.-H.C.); (G.-J.Z.); (Q.-C.H.); (Z.-L.L.)
- Correspondence: (Z.-F.Z.); (Z.-L.C.); (Y.-H.W.); Tel./Fax: +86-771-787-0799 (Z.-F.Z.)
| | - Qiu-Ping Huang
- School of Chemical and Biological Engineering, Guangxi Normal University for Nationalities, 23 Fozi Road, Chongzuo 532200, China; (Q.-P.H.); (J.-H.C.); (G.-J.Z.); (Q.-C.H.); (Z.-L.L.)
| | - Jie-Hui Cai
- School of Chemical and Biological Engineering, Guangxi Normal University for Nationalities, 23 Fozi Road, Chongzuo 532200, China; (Q.-P.H.); (J.-H.C.); (G.-J.Z.); (Q.-C.H.); (Z.-L.L.)
| | - Guang-Jin Zheng
- School of Chemical and Biological Engineering, Guangxi Normal University for Nationalities, 23 Fozi Road, Chongzuo 532200, China; (Q.-P.H.); (J.-H.C.); (G.-J.Z.); (Q.-C.H.); (Z.-L.L.)
| | - Qiu-Chan Huang
- School of Chemical and Biological Engineering, Guangxi Normal University for Nationalities, 23 Fozi Road, Chongzuo 532200, China; (Q.-P.H.); (J.-H.C.); (G.-J.Z.); (Q.-C.H.); (Z.-L.L.)
| | - Zi-Lu Liu
- School of Chemical and Biological Engineering, Guangxi Normal University for Nationalities, 23 Fozi Road, Chongzuo 532200, China; (Q.-P.H.); (J.-H.C.); (G.-J.Z.); (Q.-C.H.); (Z.-L.L.)
| | - Zi-Lu Chen
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmacy, Guangxi Normal University, 15 Yucai Road, Guilin 541004, China
- Correspondence: (Z.-F.Z.); (Z.-L.C.); (Y.-H.W.); Tel./Fax: +86-771-787-0799 (Z.-F.Z.)
| | - You-Huan Wei
- School of Chemical and Biological Engineering, Guangxi Normal University for Nationalities, 23 Fozi Road, Chongzuo 532200, China; (Q.-P.H.); (J.-H.C.); (G.-J.Z.); (Q.-C.H.); (Z.-L.L.)
- Correspondence: (Z.-F.Z.); (Z.-L.C.); (Y.-H.W.); Tel./Fax: +86-771-787-0799 (Z.-F.Z.)
| |
Collapse
|
12
|
The role of microRNA-338-3p in cancer: growth, invasion, chemoresistance, and mediators. Life Sci 2021; 268:119005. [PMID: 33421526 DOI: 10.1016/j.lfs.2020.119005] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 12/25/2020] [Accepted: 12/29/2020] [Indexed: 12/14/2022]
Abstract
Cancer still remains as one of the leading causes of death worldwide. Metastasis and proliferation are abnormally increased in cancer cells that subsequently, mediate resistance of cancer cells to different therapies such as radio-, chemo- and immune-therapy. MicroRNAs (miRNAs) are endogenous short non-coding RNAs that can regulate expression of target genes at post-transcriptional level and capable of interaction with mRNA-coding genes. Vital biological mechanisms including apoptosis, migration and differentiation are modulated by these small molecules. MiRNAs are key players in regulating cancer proliferation and metastasis as well as cancer therapy response. MiRNAs can function as both tumor-suppressing and tumor-promoting factors. In the present review, regulatory impact of miRNA-338-3p on cancer growth and migration is discussed. This new emerging miRNA can regulate response of cancer cells to chemotherapy and radiotherapy. It seems that miRNA-338-3p has dual role in cancer chemotherapy, acting as tumor-promoting or tumor-suppressor factor. Experiments reveal anti-tumor activity of miRNA-338-3p in cancer. Hence, increasing miRNA-338-3p expression is of importance in effective cancer therapy. Long non-coding RNAs, circular RNAs and hypoxia are potential upstream mediators of miRNA-338-3p in cancer. Anti-tumor agents including baicalin and arbutin can promote expression of miRNA-338-3p in suppressing cancer progression. These topics are discussed to shed some light on function of miRNA-338-3p in cancer cells.
Collapse
|