1
|
Panghal A, Jena G. β-aminoisobutyric acid ameliorated type 1 diabetes-induced germ cell toxicity in rat: Studies on the role of oxidative stress and IGF-1/AMPK/SIRT-1 signaling pathway. MUTATION RESEARCH. GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2024; 899:503820. [PMID: 39326943 DOI: 10.1016/j.mrgentox.2024.503820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 07/10/2024] [Accepted: 08/11/2024] [Indexed: 09/28/2024]
Abstract
Diabetes mellitus is known as the "epidemic of the century" due to its global prevalence. Several pre-clinical and clinical studies have shown that male germ cell toxicity is one of the major consequences of diabetes mellitus. Although β-aminoisobutyric acid (BAIBA) has been shown to be advantageous in the diabetic nephropathy and cardiomyopathy, its specific role in the diabetes-induced testicular toxicity remains unknown. In this study, an attempt was made to elucidate the molecular mechanisms of BAIBA-mediated germ cell protection in diabetic rats. Adult male Sprague-dawley rats were subjected to either no treatment (control) or BAIBA (100 mg/kg; BAIBA control) or Streptozotocin (50 mg/kg; diabetic control) or low (25 mg/kg), medium (50 mg/kg) and high (100 mg/kg) doses of BAIBA in diabetic conditions. Significant alterations in sperm related parameters, oxidative stress and apoptotic biomarkers, pancreatic and testicular histology, DNA damage and changes in expression of proteins in testes were found in the diabetic rats. 100 mg/kg of BAIBA significantly reduced the elevated blood glucose levels (P ≤ 0.05), increased body weight (P ≤ 0.01 in the 4th week), lowered malondialdehyde (P ≤ 0.05) and nitrite levels (P ≤ 0.01), elevated testosterone (P ≤ 0.05) and FSH levels (P ≤ 0.05), increased sperm count and motility (P ≤ 0.01), decreased testicular DNA damage (P ≤ 0.001), improved histological features of pancreas and testes, decreased TUNEL positive cells (P ≤ 0.01), decreased RAGE (P ≤ 0.01) and Bax (P ≤ 0.05) expressions and increased SIRT1 (P ≤ 0.05) and Atg 12 (P ≤ 0.05) expressions in the testes. 50 mg/kg of BAIBA partially restored the above-mentioned parameters whereas 25 mg/kg of BAIBA was found to be insignificant in counteracting the toxicity. It is interesting to note that BAIBA protects male germ cell damage in diabetic rats by regulating the IGF-1/AMPK/SIRT-1 signaling pathway.
Collapse
Affiliation(s)
- Archna Panghal
- Facility for Risk Assessment and Intervention Studies, Dept. of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, S.A.S Nagar, Punjab 160062, India.
| | - Gopabandhu Jena
- Facility for Risk Assessment and Intervention Studies, Dept. of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, S.A.S Nagar, Punjab 160062, India.
| |
Collapse
|
2
|
Conti D, Calamai C, Muratori M. Sperm DNA Fragmentation in Male Infertility: Tests, Mechanisms, Meaning and Sperm Population to Be Tested. J Clin Med 2024; 13:5309. [PMID: 39274522 PMCID: PMC11396444 DOI: 10.3390/jcm13175309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 08/25/2024] [Accepted: 09/04/2024] [Indexed: 09/16/2024] Open
Abstract
Sperm DNA fragmentation (sDF) is a DNA damage able to predict natural conception. Thus, many laboratories added tests for the detection of sDF as an adjunct to routine semen analysis with specific indications. However, some points related to sDF are still open. The available tests are very different each from other, and a direct comparison, in terms of the prediction of reproductive outcomes, is mandatory. The proposed mechanisms responsible for sDF generation have not yielded treatments for men with high levels of sDF that have gained the general consent in clinical practice, thus requiring further research. Another relevant point is the biological meaning to attribute to sDF and, thus, what we can expect from tests detecting sDF for the diagnosis of male infertility. SDF can represent the "tip of iceberg" of a more extended and undetected sperm abnormality somehow impacting upon reproduction. Investigating the nature of such a sperm abnormality might provide novel insights into the link between sDF and reproduction. Finally, several studies reported an impact of native sDF on assisted reproduction technique outcomes. However, to fertilise the oocyte, selected spermatozoa are used where sDF, if present, associates with highly motile spermatozoa, which is the opposite situation to native semen, where most sDF associates with non-viable spermatozoa. Studies comparing the impact of sDF, as assessed in both native and selected spermatozoa, are needed.
Collapse
Affiliation(s)
- Donata Conti
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, 50139 Florence, Italy
| | - Costanza Calamai
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, 50139 Florence, Italy
| | - Monica Muratori
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, 50139 Florence, Italy
| |
Collapse
|
3
|
Sahu C, Jena G. Combination treatment of zinc and selenium intervention ameliorated BPA-exposed germ cell damage in SD rats: elucidation of molecular mechanisms. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:6685-6704. [PMID: 38498059 DOI: 10.1007/s00210-024-03044-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 03/06/2024] [Indexed: 03/19/2024]
Abstract
Bisphenol A (BPA) is a commonly used environmental toxicant, is easily exposed to the human body and causes testicular damage, sperm abnormalities, DNA damage and apoptosis, and interferes in the process spermatogenesis and steroidal hormone production along with obstruction in testes and epididymis development. Zinc (Zn), a potent regulator of antioxidant balance, is responsible for cellular homeostasis, enzymes and proteins activities during spermatogenesis for cell defence mechanisms in the testes. Selenium (Se) is required for spermatogenesis, antioxidant action and in the activities of different selenoproteins. Both Zn and Se are essential simultaneously for the proper regulation of spermatogenesis and sperm maturation as well as protection against chemical and disease-associated germ cell toxicity. Thus, the study aimed to understand the importance and beneficial effect of Zn and Se co-treatment against BPA-exposed testicular damage in rats. BPA 100 and 200 mg/kg/day was exposed through an oral gavage. Zn (3 mg/kg/day) i.p. and Se (0.5 mg/kg/day) i.p. were injected for 8 weeks. The testicular toxicity was evaluated by measuring body and organs weight, biochemical investigations, sperm parameters, testicular and epididymal histopathology, quantification DNA damage by halo assay, DNA breaks (TUNEL assay), immunohistochemistry and western blot. Results revealed that Zn and Se co-treatment ameliorated BPA-associated male gonadal toxicity in rat as revealed by decreased SGPT, SGOT and BUN levels in serum, reduced testes and epididymis tissue injury, DNA breaks, apoptosis, expressions of 8-OHdG, γ-H2AX and NFκB with an increased serum testosterone and catalase levels. These findings suggest that Zn and Se co-treatment could be a beneficial and protective option against BPA-exposed testicular and epididymal toxicity.
Collapse
Affiliation(s)
- Chittaranjan Sahu
- Facility for Risk Assessment and Intervention Studies, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), S.A.S., Nagar, Punjab, 160062, India
| | - Gopabandhu Jena
- Facility for Risk Assessment and Intervention Studies, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), S.A.S., Nagar, Punjab, 160062, India.
| |
Collapse
|
4
|
Sriram S, Macedo T, Mavinkurve‐Groothuis A, van de Wetering M, Looijenga LHJ. Alkylating agents-induced gonadotoxicity in prepubertal males: Insights on the clinical and preclinical front. Clin Transl Sci 2024; 17:e13866. [PMID: 38965809 PMCID: PMC11224131 DOI: 10.1111/cts.13866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 05/26/2024] [Accepted: 06/06/2024] [Indexed: 07/06/2024] Open
Abstract
Rising cure rates in pediatric cancer patients warrants an increased attention toward the long-term consequences of the diagnosis and treatment in survivors. Chemotherapeutic agents can be gonadotoxic, rendering them at risk for infertility post-survival. While semen cryopreservation is an option that can be provided for most (post)pubertal boys before treatment, this is unfortunately not an option prepubertal in age, simply due to the lack of spermatogenesis. Over the last couple of years, studies have thus focused on better understanding the testis niche in response to various chemotherapeutic agents that are commonly administered and their direct and indirect impact on the germ cell populations. These are generally compounds that have a high risk of infertility and have been classified into risk categories in curated fertility guidelines. However, with it comes the lack of evidence and the challenge of using informative models and conditions most reflective of the physiological scenario, in short, the appropriate study designs for clinically relevant outcomes. Besides, the exact mechanism(s) of action for many of these "risk" compounds as well as other agents is unclear. Understanding their behavior and effect on the testis niche will pave the way for incorporating new strategies to ultimately combat infertility. Of the various drug classes, alkylating agents pose the highest risk of gonadotoxicity as per previously established studies as well as risk stratification guidelines. Therefore, this review will summarize the findings in the field of male fertility concerning gonadotoxicity of akylating agents as a result of chemotherapy exposure.
Collapse
Affiliation(s)
- Sruthi Sriram
- Princess Máxima Center for Pediatric OncologyUtrechtThe Netherlands
| | - Tiago Macedo
- Princess Máxima Center for Pediatric OncologyUtrechtThe Netherlands
| | | | | | | |
Collapse
|
5
|
Panghal A, Jena G. Single versus intermittent cycle exposure effect of 6-mercaptopurine in juvenile Sprague-Dawley rat: a germ cell-specific mechanistic study. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:3155-3168. [PMID: 37891257 DOI: 10.1007/s00210-023-02797-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 10/13/2023] [Indexed: 10/29/2023]
Abstract
Infertility is a frequent long-term adverse effect of cancer therapy for children. Compromised testicular functions in adolescence are frequent observations after chemotherapy and there are currently no well-established alternatives to avoid this damage. Antimetabolites such as 6-mercaptopurine (6-MP) are used to treat a variety of cancer; however, its treatment-associated adverse effects on the male reproductive functions are overlooked. Here, the molecular processes underlying 6-MP-induced male germ cell damage in juvenile Sprague-Dawley (SD) rats (3 weeks) have been investigated. Rats were administered with low (5 mg/kg), medium (10 mg/kg), and high (20 mg/kg) doses of 6-MP per orally either singly (1 week × 1 cycle) or intermittently (1 week treatment followed by 1 week remission period × 3 cycles). The toxicity was evaluated in terms of genotoxicity and testes- and sperm-related cellular and molecular parameters. Single cycle of exposure either produced mild or no toxic manifestations at the end of the 6th week. Intermittent cycles of exposure, particularly at the 10 and 20 mg/kg, decreased body and organ weights, increased micronucleated cells in the peripheral blood, induced oxidative/nitrosative stress, altered sperm chromatin quality, reduced serum testosterone and follicle stimulating hormone (FSH) levels, increased testicular structural aberrations, DNA damage, and apoptosis, and upregulated TNF-α expression and downregulated p-AMPK and β-catenin expressions. Conclusively, intermittent cycles of exposure at 10 and 20 mg/kg doses to the juvenile rats significantly induced oxidative stress, genotoxicity, and cellular and molecular perturbations in the testes and sperm of adult rats.
Collapse
Affiliation(s)
- Archna Panghal
- Facility for Risk Assessment and Intervention Studies, Dept. of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Mohali, Punjab, 160062, India
| | - Gopabandhu Jena
- Facility for Risk Assessment and Intervention Studies, Dept. of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Mohali, Punjab, 160062, India.
| |
Collapse
|
6
|
Valvaikar S, Vaidya B, Sharma S, Bishnoi M, Kondepudi KK, Sharma SS. Supplementation of probiotic Bifidobacterium breve Bif11 reverses neurobehavioural deficits, inflammatory changes and oxidative stress in Parkinson's disease model. Neurochem Int 2024; 174:105691. [PMID: 38311217 DOI: 10.1016/j.neuint.2024.105691] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 01/31/2024] [Accepted: 02/01/2024] [Indexed: 02/10/2024]
Abstract
Human gut microbiota are thought to affect different physiological processes in the body, including brain functions. Gut dysbiosis has been linked to the progression of Parkinson's disease (PD) and thus, restoring the healthy gut microbiota with supplementation of putative probiotic strains can confer some benefits in PD. In the current study, we explored the neuroprotective potential of Bifidobacterium breve Bif11 supplementation in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine hydrochloride (MPTP) treated female Sprague Dawley rats. This study investigated the behavioural, molecular and biochemical parameters in the MPTP rat model. A pharmacological intervention of Bif11 at doses of 1 × 1010 CFU and 2 × 1010 CFU for 21 days was found to attenuate the cognitive and motor changes in the MPTP rat model. Furthermore, it also increased the tyrosine hydroxylase levels, reduced pro-inflammatory markers and decreased oxidative and nitrosative stress in the mid brain of MPTP-lesioned rats. Bif11 supplementation even restored the levels of short-chain fatty acids and decreased intestinal epithelial permeability in MPTP-induced PD model rats. In summary, these findings demonstrate that B. breve Bif11 has the potential to ameliorate symptoms of PD. However, this therapy needs to be further investigated with in-depth mechanistic insights in the future for the treatment of PD.
Collapse
Affiliation(s)
- Sonali Valvaikar
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S.A.S. Nagar, Punjab, India
| | - Bhupesh Vaidya
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S.A.S. Nagar, Punjab, India
| | - Shikha Sharma
- Centre for Excellence in Functional Foods, Division of Food and Nutritional Biotechnology, National Agri-Food Biotechnology Institute (NABI), Knowledge City-Sector 81, SAS Nagar, Punjab, 140306, India
| | - Mahendra Bishnoi
- Centre for Excellence in Functional Foods, Division of Food and Nutritional Biotechnology, National Agri-Food Biotechnology Institute (NABI), Knowledge City-Sector 81, SAS Nagar, Punjab, 140306, India
| | - Kanthi Kiran Kondepudi
- Centre for Excellence in Functional Foods, Division of Food and Nutritional Biotechnology, National Agri-Food Biotechnology Institute (NABI), Knowledge City-Sector 81, SAS Nagar, Punjab, 140306, India.
| | - Shyam S Sharma
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S.A.S. Nagar, Punjab, India.
| |
Collapse
|
7
|
Panghal A, Jena G. Gut-Gonad Perturbations in Type-1 Diabetes Mellitus: Role of Dysbiosis, Oxidative Stress, Inflammation and Energy-Dysbalance. Curr Diabetes Rev 2024; 20:e220823220204. [PMID: 37608613 DOI: 10.2174/1573399820666230822151740] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 06/24/2023] [Accepted: 07/03/2023] [Indexed: 08/24/2023]
Abstract
Type 1 diabetes mellitus is a major metabolic disorder that affects people of all age groups throughout the world. It is responsible for the alterations in male gonadal physiology in experimental models as well as in clinical cases. On the other side, diabetes mellitus has also been associated with perturbations in the gut physiology and microbiota dysbiosis. The accumulating evidence suggests a link between the gut and gonad as evident from the i) experimental data providing insights into type 1 diabetes mellitus induced gut perturbations, ii) link of gut physiology with alterations of testicular health, iii) role of gut microbiota in androgen metabolism in the intestine, and iv) epidemiological evidence linking type 1 diabetes mellitus with inflammatory bowel disease and male infertility. Considering all the pieces of evidence, it is summarized that gut dysbiosis, oxidative stress, inflammation and energy dys-balance are the prime factors involved in the gonadal damage under type 1 diabetes mellitus, in which the gut contributes significantly. Identification of novel biomarkers and intervention of suitable agents targeting these prime factors may be a step forward to restore the gonadal damage in diabetic conditions.
Collapse
Affiliation(s)
- Archna Panghal
- Facility for Risk Assessment and Intervention Studies, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, S.A.S Nagar, Punjab 160062, India
| | - Gopabandhu Jena
- Facility for Risk Assessment and Intervention Studies, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, S.A.S Nagar, Punjab 160062, India
| |
Collapse
|
8
|
Aitken RJ, Lewis SEM. DNA damage in testicular germ cells and spermatozoa. When and how is it induced? How should we measure it? What does it mean? Andrology 2023; 11:1545-1557. [PMID: 36604857 DOI: 10.1111/andr.13375] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 12/09/2022] [Accepted: 12/24/2022] [Indexed: 01/07/2023]
Abstract
This review surveys the causes and consequences of DNA damage in the male germ line from spermatogonial stem cells to fully differentiated spermatozoa. Within the stem cell population, DNA integrity is well maintained as a result of excellent DNA surveillance and repair; however, a progressive increase in background mutation rates does occur with paternal age possibly as a result of aberrant DNA repair as well as replication error. Once a germ cell has committed to spermatogenesis, it responds to genetic damage via a range of DNA repair pathways or, if this process fails, by the induction of apoptosis. When fully-differentiated spermatozoa are stressed, they also activate a truncated intrinsic apoptotic pathway which results in the activation of nucleases in the mitochondria and cytoplasm; however, the physical architecture of these cells prevents these enzymes from translocating to the nucleus to induce DNA fragmentation. Conversely, hydrogen peroxide released from the sperm midpiece during apoptosis is able to penetrate the nucleus and induce DNA damage. The base excision repair pathway responds to such damage by cleaving oxidized bases from the DNA, leaving abasic sites that are alkali-labile and readily detected with the comet assay. As levels of oxidative stress increase and these cells enter the perimortem, topoisomerase integrated into the sperm chromatin becomes activated by SUMOylation. Such activation may initially facilitate DNA repair by reannealing double strand breaks but ultimately prepares the DNA for destruction by nucleases released from the male reproductive tract. The abasic sites and oxidized base lesions found in live spermatozoa are mutagenic and may increase the mutational load carried by the offspring, particularly in the context of assisted conception. A variety of strategies are described for managing patients expressing high levels of DNA damage in their spermatozoa, to reduce the risks such lesions might pose to offspring health.
Collapse
Affiliation(s)
- Robert John Aitken
- Priority Research Centre for Reproductive, Science, College of Engineering, Science and Environment, University of Newcastle, Callaghan, New South Wales, Australia
- Hunter Medical Research Institute (HMRI), New Lambton, New South Wales, Australia
| | - Sheena E M Lewis
- Queens University Belfast, Belfast, UK
- Examen Ltd., Weavers Court, Belfast, UK
| |
Collapse
|
9
|
Panghal A, Kumar V, Jena G. Melphalan induced germ cell toxicity and dose-dependent effects of β-aminoisobutyric acid in experimental rat model: Role of oxidative stress, inflammation and apoptosis. J Biochem Mol Toxicol 2023; 37:e23374. [PMID: 37086025 DOI: 10.1002/jbt.23374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 02/28/2023] [Accepted: 04/14/2023] [Indexed: 04/23/2023]
Abstract
The success of chemotherapy regimens has led to an increase in cancer survival rate over the last decades. Melphalan has been widely used for the treatment of several types of cancers despite its gonadotoxic effects. Due to its ability to cause mutations in the spermatogonial stem cells and spermatids, melphalan can exert a negative impact on male reproductive health in young cancer survivors. β-aminoisobutyric acid (BAIBA), a myokine released by skeletal muscles, has been reported to have beneficial effects in diabetic nephropathy, cardiomyopathy and hepatic toxicity. However, the exact role of BAIBA in chemotherapy-induced germ cell toxicity is still unexplored. The present study aims to determine the dose-dependent (25, 50, and 100 mg/kg) effects of BAIBA on melphalan-induced (1.5 mg/kg) germ cell toxicity in sprague-dawley (SD) rats. The evaluation parameters included quantification of oxidative stress biomarkers, sperm count, sperm motility and head morphology, sperm and testicular DNA damage, sperm mitochondrial membrane potential, ultrastructural changes in sperms, histological and protein expression studies in testes. Melphalan treatment significantly altered all the above-mentioned parameters and the high dose (100 mg/kg) of BAIBA restored melphalan-induced toxicity in a significant manner by exerting antioxidant, anti-inflammatory and antiapoptotic effects. However, the medium dose (50 mg/kg) of BAIBA decreased the toxicity of melphalan and the low dose (25 mg/kg) of BAIBA failed to counteract the melphalan-induced male germ cell toxicity as well as the peripheral blood micronucleus induction. The antioxidant, anti-inflammatory and antiapoptotic role of BAIBA in melphalan-induced gonadal damage is a novel finding in an experimental rat model.
Collapse
Affiliation(s)
- Archna Panghal
- Dept. of Pharmacology and Toxicology, Facility for Risk Assessment and Intervention Studies, National Institute of Pharmaceutical Education and Research, S.A.S Nagar, Punjab, India
| | - Vinod Kumar
- Dept. of Pharmacology and Toxicology, Facility for Risk Assessment and Intervention Studies, National Institute of Pharmaceutical Education and Research, S.A.S Nagar, Punjab, India
- Dept. of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, S.A.S Nagar, Punjab, India
| | - Gopabandhu Jena
- Dept. of Pharmacology and Toxicology, Facility for Risk Assessment and Intervention Studies, National Institute of Pharmaceutical Education and Research, S.A.S Nagar, Punjab, India
| |
Collapse
|