1
|
van der Does C, Braun F, Ren H, Albers SV. Putative nucleotide-based second messengers in archaea. MICROLIFE 2023; 4:uqad027. [PMID: 37305433 PMCID: PMC10249747 DOI: 10.1093/femsml/uqad027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 05/07/2023] [Accepted: 06/02/2023] [Indexed: 06/13/2023]
Abstract
Second messengers transfer signals from changing intra- and extracellular conditions to a cellular response. Over the last few decades, several nucleotide-based second messengers have been identified and characterized in especially bacteria and eukaryotes. Also in archaea, several nucleotide-based second messengers have been identified. This review will summarize our understanding of nucleotide-based second messengers in archaea. For some of the nucleotide-based second messengers, like cyclic di-AMP and cyclic oligoadenylates, their roles in archaea have become clear. Cyclic di-AMP plays a similar role in osmoregulation in euryarchaea as in bacteria, and cyclic oligoadenylates are important in the Type III CRISPR-Cas response to activate CRISPR ancillary proteins involved in antiviral defense. Other putative nucleotide-based second messengers, like 3',5'- and 2',3'-cyclic mononucleotides and adenine dinucleotides, have been identified in archaea, but their synthesis and degradation pathways, as well as their functions as secondary messengers, still remain to be demonstrated. In contrast, 3'-3'-cGAMP has not yet been identified in archaea, but the enzymes required to synthesize 3'-3'-cGAMP have been found in several euryarchaeotes. Finally, the widely distributed bacterial second messengers, cyclic diguanosine monophosphate and guanosine (penta-)/tetraphosphate, do not appear to be present in archaea.
Collapse
Affiliation(s)
- Chris van der Does
- Molecular Biology of Archaea, Institute of Biology, University of Freiburg, 79104 Freiburg, Germany
| | - Frank Braun
- Molecular Biology of Archaea, Institute of Biology, University of Freiburg, 79104 Freiburg, Germany
| | - Hongcheng Ren
- Molecular Biology of Archaea, Institute of Biology, University of Freiburg, 79104 Freiburg, Germany
| | - Sonja-Verena Albers
- Molecular Biology of Archaea, Institute of Biology, University of Freiburg, 79104 Freiburg, Germany
| |
Collapse
|
2
|
Protein-Ligand Interactions in Scarcity: The Stringent Response from Bacteria to Metazoa, and the Unanswered Questions. Int J Mol Sci 2023; 24:ijms24043999. [PMID: 36835415 PMCID: PMC9965611 DOI: 10.3390/ijms24043999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 02/06/2023] [Accepted: 02/14/2023] [Indexed: 02/18/2023] Open
Abstract
The stringent response, originally identified in Escherichia coli as a signal that leads to reprogramming of gene expression under starvation or nutrient deprivation, is now recognized as ubiquitous in all bacteria, and also as part of a broader survival strategy in diverse, other stress conditions. Much of our insight into this phenomenon derives from the role of hyperphosphorylated guanosine derivatives (pppGpp, ppGpp, pGpp; guanosine penta-, tetra- and tri-phosphate, respectively) that are synthesized on starvation cues and act as messengers or alarmones. These molecules, collectively referred to here as (p)ppGpp, orchestrate a complex network of biochemical steps that eventually lead to the repression of stable RNA synthesis, growth, and cell division, while promoting amino acid biosynthesis, survival, persistence, and virulence. In this analytical review, we summarize the mechanism of the major signaling pathways in the stringent response, consisting of the synthesis of the (p)ppGpp, their interaction with RNA polymerase, and diverse factors of macromolecular biosynthesis, leading to differential inhibition and activation of specific promoters. We also briefly touch upon the recently reported stringent-like response in a few eukaryotes, which is a very disparate mechanism involving MESH1 (Metazoan SpoT Homolog 1), a cytosolic NADPH phosphatase. Lastly, using ppGpp as an example, we speculate on possible pathways of simultaneous evolution of alarmones and their multiple targets.
Collapse
|
3
|
Braun F, Recalde A, Bähre H, Seifert R, Albers SV. Putative Nucleotide-Based Second Messengers in the Archaeal Model Organisms Haloferax volcanii and Sulfolobus acidocaldarius. Front Microbiol 2021; 12:779012. [PMID: 34880846 PMCID: PMC8646023 DOI: 10.3389/fmicb.2021.779012] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 11/01/2021] [Indexed: 12/16/2022] Open
Abstract
Research on nucleotide-based second messengers began in 1956 with the discovery of cyclic adenosine monophosphate (3',5'-cAMP) by Earl Wilbur Sutherland and his co-workers. Since then, a broad variety of different signaling molecules composed of nucleotides has been discovered. These molecules fulfill crucial tasks in the context of intracellular signal transduction. The vast majority of the currently available knowledge about nucleotide-based second messengers originates from model organisms belonging either to the domain of eukaryotes or to the domain of bacteria, while the archaeal domain is significantly underrepresented in the field of nucleotide-based second messenger research. For several well-stablished eukaryotic and/or bacterial nucleotide-based second messengers, it is currently not clear whether these signaling molecules are present in archaea. In order to shed some light on this issue, this study analyzed cell extracts of two major archaeal model organisms, the euryarchaeon Haloferax volcanii and the crenarchaeon Sulfolobus acidocaldarius, using a modern mass spectrometry method to detect a broad variety of currently known nucleotide-based second messengers. The nucleotides 3',5'-cAMP, cyclic guanosine monophosphate (3',5'-cGMP), 5'-phosphoadenylyl-3',5'-adenosine (5'-pApA), diadenosine tetraphosphate (Ap4A) as well as the 2',3'-cyclic isomers of all four RNA building blocks (2',3'-cNMPs) were present in both species. In addition, H. volcanii cell extracts also contain cyclic cytosine monophosphate (3',5'-cCMP), cyclic uridine monophosphate (3',5'-cUMP) and cyclic diadenosine monophosphate (3',5'-c-di-AMP). The widely distributed bacterial second messengers cyclic diguanosine monophosphate (3',5'-c-di-GMP) and guanosine (penta-)/tetraphosphate [(p)ppGpp] could not be detected. In summary, this study gives a comprehensive overview on the presence of a large set of currently established or putative nucleotide-based second messengers in an eury- and a crenarchaeal model organism.
Collapse
Affiliation(s)
- Frank Braun
- Molecular Biology of Archaea, Institute of Biology, University of Freiburg, Freiburg, Germany
| | - Alejandra Recalde
- Molecular Biology of Archaea, Institute of Biology, University of Freiburg, Freiburg, Germany
| | - Heike Bähre
- Research Core Unit Metabolomics, Hannover Medical School, Hanover, Germany
| | - Roland Seifert
- Research Core Unit Metabolomics, Hannover Medical School, Hanover, Germany
| | - Sonja-Verena Albers
- Molecular Biology of Archaea, Institute of Biology, University of Freiburg, Freiburg, Germany
| |
Collapse
|
4
|
An alternative resource allocation strategy in the chemolithoautotrophic archaeon Methanococcus maripaludis. Proc Natl Acad Sci U S A 2021; 118:2025854118. [PMID: 33879571 DOI: 10.1073/pnas.2025854118] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Most microorganisms in nature spend the majority of time in a state of slow or zero growth and slow metabolism under limited energy or nutrient flux rather than growing at maximum rates. Yet, most of our knowledge has been derived from studies on fast-growing bacteria. Here, we systematically characterized the physiology of the methanogenic archaeon Methanococcus maripaludis during slow growth. M. maripaludis was grown in continuous culture under energy (formate)-limiting conditions at different dilution rates ranging from 0.09 to 0.002 h-1, the latter corresponding to 1% of its maximum growth rate under laboratory conditions (0.23 h-1). While the specific rate of methanogenesis correlated with growth rate as expected, the fraction of cellular energy used for maintenance increased and the maintenance energy per biomass decreased at slower growth. Notably, proteome allocation between catabolic and anabolic pathways was invariant with growth rate. Unexpectedly, cells maintained their maximum methanogenesis capacity over a wide range of growth rates, except for the lowest rates tested. Cell size, cellular DNA, RNA, and protein content as well as ribosome numbers also were largely invariant with growth rate. A reduced protein synthesis rate during slow growth was achieved by a reduction in ribosome activity rather than via the number of cellular ribosomes. Our data revealed a resource allocation strategy of a methanogenic archaeon during energy limitation that is fundamentally different from commonly studied versatile chemoheterotrophic bacteria such as E. coli.
Collapse
|
5
|
Paula FS, Chin JP, Schnürer A, Müller B, Manesiotis P, Waters N, Macintosh KA, Quinn JP, Connolly J, Abram F, McGrath JW, O'Flaherty V. The potential for polyphosphate metabolism in Archaea and anaerobic polyphosphate formation in Methanosarcina mazei. Sci Rep 2019; 9:17101. [PMID: 31745137 PMCID: PMC6864096 DOI: 10.1038/s41598-019-53168-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Accepted: 10/24/2019] [Indexed: 12/12/2022] Open
Abstract
Inorganic polyphosphate (polyP) is ubiquitous across all forms of life, but the study of its metabolism has been mainly confined to bacteria and yeasts. Few reports detail the presence and accumulation of polyP in Archaea, and little information is available on its functions and regulation. Here, we report that homologs of bacterial polyP metabolism proteins are present across the major taxa in the Archaea, suggesting that archaeal populations may have a greater contribution to global phosphorus cycling than has previously been recognised. We also demonstrate that polyP accumulation can be induced under strictly anaerobic conditions, in response to changes in phosphate (Pi) availability, i.e. Pi starvation, followed by incubation in Pi replete media (overplus), in cells of the methanogenic archaeon Methanosarcina mazei. Pi-starved M. mazei cells increased transcript abundance of the alkaline phosphatase (phoA) gene and of the high-affinity phosphate transport (pstSCAB-phoU) operon: no increase in polyphosphate kinase 1 (ppk1) transcript abundance was observed. Subsequent incubation of Pi-starved M. mazei cells under Pi replete conditions, led to a 237% increase in intracellular polyphosphate content and a > 5.7-fold increase in ppk1 gene transcripts. Ppk1 expression in M. mazei thus appears not to be under classical phosphate starvation control.
Collapse
Affiliation(s)
- Fabiana S Paula
- Microbiology, School of Natural Sciences and Ryan Institute, National University of Ireland Galway, Galway, Republic of Ireland.
- Department of Molecular Sciences, Biocenter, Swedish University of Agricultural Sciences, Uppsala, Sweden.
| | - Jason P Chin
- School of Biological Sciences and the Institute for Global Food Security, The Queen's University of Belfast, Belfast, UK
| | - Anna Schnürer
- Department of Molecular Sciences, Biocenter, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Bettina Müller
- Department of Molecular Sciences, Biocenter, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Panagiotis Manesiotis
- School of Chemistry and Chemical Engineering, The Queen's University of Belfast, Belfast, UK
| | - Nicholas Waters
- Microbiology, School of Natural Sciences and Ryan Institute, National University of Ireland Galway, Galway, Republic of Ireland
- Information and Computational Sciences, James Hutton Institute, Dundee, UK
| | - Katrina A Macintosh
- School of Biological Sciences and the Institute for Global Food Security, The Queen's University of Belfast, Belfast, UK
| | - John P Quinn
- School of Biological Sciences and the Institute for Global Food Security, The Queen's University of Belfast, Belfast, UK
| | - Jasmine Connolly
- Microbiology, School of Natural Sciences and Ryan Institute, National University of Ireland Galway, Galway, Republic of Ireland
| | - Florence Abram
- Microbiology, School of Natural Sciences and Ryan Institute, National University of Ireland Galway, Galway, Republic of Ireland
| | - John W McGrath
- School of Biological Sciences and the Institute for Global Food Security, The Queen's University of Belfast, Belfast, UK
| | - Vincent O'Flaherty
- Microbiology, School of Natural Sciences and Ryan Institute, National University of Ireland Galway, Galway, Republic of Ireland.
| |
Collapse
|
6
|
Bischof LF, Haurat MF, Hoffmann L, Albersmeier A, Wolf J, Neu A, Pham TK, Albaum SP, Jakobi T, Schouten S, Neumann-Schaal M, Wright PC, Kalinowski J, Siebers B, Albers SV. Early Response of Sulfolobus acidocaldarius to Nutrient Limitation. Front Microbiol 2019; 9:3201. [PMID: 30687244 PMCID: PMC6335949 DOI: 10.3389/fmicb.2018.03201] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Accepted: 12/10/2018] [Indexed: 01/13/2023] Open
Abstract
In natural environments microorganisms encounter extreme changes in temperature, pH, osmolarities and nutrient availability. The stress response of many bacterial species has been described in detail, however, knowledge in Archaea is limited. Here, we describe the cellular response triggered by nutrient limitation in the thermoacidophilic crenarchaeon Sulfolobus acidocaldarius. We measured changes in gene transcription and protein abundance upon nutrient depletion up to 4 h after initiation of nutrient depletion. Transcript levels of 1118 of 2223 protein coding genes and abundance of approximately 500 proteins with functions in almost all cellular processes were affected by nutrient depletion. Our study reveals a significant rerouting of the metabolism with respect to degradation of internal as well as extracellular-bound organic carbon and degradation of proteins. Moreover, changes in membrane lipid composition were observed in order to access alternative sources of energy and to maintain pH homeostasis. At transcript level, the cellular response to nutrient depletion in S. acidocaldarius seems to be controlled by the general transcription factors TFB2 and TFEβ. In addition, ribosome biogenesis is reduced, while an increased protein degradation is accompanied with a loss of protein quality control. This study provides first insights into the early cellular response of Sulfolobus to organic carbon and organic nitrogen depletion.
Collapse
Affiliation(s)
- Lisa F Bischof
- Molecular Biology of Archaea, Institute of Biology II, University of Freiburg, Freiburg, Germany.,Spemann Graduate School of Biology and Medicine (SGBM), University of Freiburg, Freiburg, Germany
| | - M Florencia Haurat
- Molecular Biology of Archaea, Institute of Biology II, University of Freiburg, Freiburg, Germany
| | - Lena Hoffmann
- Molecular Biology of Archaea, Institute of Biology II, University of Freiburg, Freiburg, Germany
| | - Andreas Albersmeier
- Center for Biotechnology (CeBiTec), Bielefeld University, Bielefeld, Germany
| | - Jacqueline Wolf
- Department of Bioinformatics and Biochemistry, Braunschweig University of Technology, Braunschweig, Germany
| | - Astrid Neu
- Molecular Enzyme Technology and Biochemistry (MEB), Biofilm Centre, Centre for Water and Environmental Research (CWE), University of Duisburg-Essen, Essen, Germany
| | - Trong Khoa Pham
- Department of Chemical and Biological Engineering, The University of Sheffield, Sheffield, United Kingdom
| | - Stefan P Albaum
- Center for Biotechnology (CeBiTec), Bielefeld University, Bielefeld, Germany
| | - Tobias Jakobi
- Center for Biotechnology (CeBiTec), Bielefeld University, Bielefeld, Germany
| | - Stefan Schouten
- Department of Marine Microbiology and Biogeochemistry, NIOZ Royal Netherlands Institute of Sea Research, Den Burg, Netherlands.,Department of Earth Sciences, Faculty of Geosciences, Utrecht University, Utrecht, Netherlands
| | - Meina Neumann-Schaal
- Department of Bioinformatics and Biochemistry, Braunschweig University of Technology, Braunschweig, Germany
| | - Phillip C Wright
- Department of Chemical and Biological Engineering, The University of Sheffield, Sheffield, United Kingdom
| | - Jörn Kalinowski
- Center for Biotechnology (CeBiTec), Bielefeld University, Bielefeld, Germany
| | - Bettina Siebers
- Molecular Enzyme Technology and Biochemistry (MEB), Biofilm Centre, Centre for Water and Environmental Research (CWE), University of Duisburg-Essen, Essen, Germany
| | - Sonja-Verena Albers
- Molecular Biology of Archaea, Institute of Biology II, University of Freiburg, Freiburg, Germany
| |
Collapse
|
7
|
Castelle CJ, Wrighton KC, Thomas BC, Hug LA, Brown CT, Wilkins MJ, Frischkorn KR, Tringe SG, Singh A, Markillie LM, Taylor RC, Williams KH, Banfield JF. Genomic expansion of domain archaea highlights roles for organisms from new phyla in anaerobic carbon cycling. Curr Biol 2015; 25:690-701. [PMID: 25702576 DOI: 10.1016/j.cub.2015.01.014] [Citation(s) in RCA: 350] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2014] [Revised: 12/30/2014] [Accepted: 01/06/2015] [Indexed: 01/23/2023]
Abstract
BACKGROUND Archaea represent a significant fraction of Earth's biodiversity, yet they remain much less well understood than Bacteria. Gene surveys, a few metagenomic studies, and some single-cell sequencing projects have revealed numerous little-studied archaeal phyla. Certain lineages appear to branch deeply and may be part of a major phylum radiation. The structure of this radiation and the physiology of the organisms remain almost unknown. RESULTS We used genome-resolved metagenomic analyses to investigate the diversity, genomes sizes, metabolic capacities, and potential roles of Archaea in terrestrial subsurface biogeochemical cycles. We sequenced DNA from complex sediment and planktonic consortia from an aquifer adjacent to the Colorado River (USA) and reconstructed the first complete genomes for Archaea using cultivation-independent methods. To provide taxonomic context, we analyzed an additional 151 newly sampled archaeal sequences. We resolved two new phyla within a major, apparently deep-branching group of phyla (a superphylum). The organisms have small genomes, and metabolic predictions indicate that their primary contributions to Earth's biogeochemical cycles involve carbon and hydrogen metabolism, probably associated with symbiotic and/or fermentation-based lifestyles. CONCLUSIONS The results dramatically expand genomic sampling of the domain Archaea and clarify taxonomic designations within a major superphylum. This study, in combination with recently published work on bacterial phyla lacking cultivated representatives, reveals a fascinating phenomenon of major radiations of organisms with small genomes, novel proteome composition, and strong interdependence in both domains.
Collapse
Affiliation(s)
- Cindy J Castelle
- Department of Earth and Planetary Science, University of California, Berkeley, Berkeley, CA 94720 USA
| | - Kelly C Wrighton
- Department of Microbiology, The Ohio State University, Columbus, OH 43210 USA
| | - Brian C Thomas
- Department of Earth and Planetary Science, University of California, Berkeley, Berkeley, CA 94720 USA
| | - Laura A Hug
- Department of Earth and Planetary Science, University of California, Berkeley, Berkeley, CA 94720 USA
| | - Christopher T Brown
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, CA 94720 USA
| | - Michael J Wilkins
- Department of Microbiology, The Ohio State University, Columbus, OH 43210 USA; School of Earth Sciences, The Ohio State University, Columbus, OH 43210 USA
| | - Kyle R Frischkorn
- Department of Earth and Environmental Sciences and the Lamont-Doherty Earth Observatory, Columbia University, Palisades, New York, NY 10964 USA
| | - Susannah G Tringe
- Metagenome Program, DOE Joint Genome Institute, Walnut Creek, CA 94598 USA
| | - Andrea Singh
- Department of Earth and Planetary Science, University of California, Berkeley, Berkeley, CA 94720 USA
| | - Lye Meng Markillie
- Environmental Molecular Sciences Laboratory, Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352 USA
| | - Ronald C Taylor
- Environmental Molecular Sciences Laboratory, Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352 USA
| | - Kenneth H Williams
- Earth Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Jillian F Banfield
- Department of Earth and Planetary Science, University of California, Berkeley, Berkeley, CA 94720 USA; Department of Environmental Science, Policy, and Management, University of California, Berkeley, CA 94720 USA.
| |
Collapse
|
8
|
Märtens B, Manoharadas S, Hasenöhrl D, Zeichen L, Bläsi U. Back to translation: removal of aIF2 from the 5'-end of mRNAs by translation recovery factor in the crenarchaeon Sulfolobus solfataricus. Nucleic Acids Res 2014; 42:2505-11. [PMID: 24271401 PMCID: PMC3936769 DOI: 10.1093/nar/gkt1169] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2013] [Revised: 10/29/2013] [Accepted: 10/30/2013] [Indexed: 11/13/2022] Open
Abstract
The translation initiation factor aIF2 of the crenarchaeon Sulfolobus solfataricus (Sso) recruits initiator tRNA to the ribosome and stabilizes mRNAs by binding via the γ-subunit to their 5'-triphosphate end. It has been hypothesized that the latter occurs predominantly during unfavorable growth conditions, and that aIF2 or aIF2-γ is released on relief of nutrient stress to enable in particular anew translation of leaderless mRNAs. As leaderless mRNAs are prevalent in Sso and aIF2-γ bound to the 5'-end of a leaderless RNA inhibited ribosome binding in vitro, we aimed at elucidating the mechanism underlying aIF2/aIF2-γ recycling from mRNAs. We have identified a protein termed Trf (translation recovery factor) that co-purified with trimeric aIF2 during outgrowth of cells from prolonged stationary phase. Subsequent in vitro studies revealed that Trf triggers the release of trimeric aIF2 from RNA, and that Trf directly interacts with the aIF2-γ subunit. The importance of Trf is further underscored by an impaired protein synthesis during outgrowth from stationary phase in a Sso trf deletion mutant.
Collapse
Affiliation(s)
- Birgit Märtens
- Department of Microbiology, Immunobiology and Genetics, Max F. Perutz Laboratories, Center of Molecular Biology, University of Vienna, Dr. Bohrgasse 9, 1030 Vienna, Austria
| | - Salim Manoharadas
- Department of Microbiology, Immunobiology and Genetics, Max F. Perutz Laboratories, Center of Molecular Biology, University of Vienna, Dr. Bohrgasse 9, 1030 Vienna, Austria
| | - David Hasenöhrl
- Department of Microbiology, Immunobiology and Genetics, Max F. Perutz Laboratories, Center of Molecular Biology, University of Vienna, Dr. Bohrgasse 9, 1030 Vienna, Austria
| | - Lukas Zeichen
- Department of Microbiology, Immunobiology and Genetics, Max F. Perutz Laboratories, Center of Molecular Biology, University of Vienna, Dr. Bohrgasse 9, 1030 Vienna, Austria
| | - Udo Bläsi
- Department of Microbiology, Immunobiology and Genetics, Max F. Perutz Laboratories, Center of Molecular Biology, University of Vienna, Dr. Bohrgasse 9, 1030 Vienna, Austria
| |
Collapse
|
9
|
Martucci NM, Lamberti A, Vitagliano L, Cantiello P, Ruggiero I, Arcari P, Masullo M. The magic spot ppGpp influences in vitro the molecular and functional properties of the elongation factor 1α from the archaeon Sulfolobus solfataricus. Extremophiles 2012; 16:743-9. [PMID: 22772751 DOI: 10.1007/s00792-012-0470-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2012] [Accepted: 06/21/2012] [Indexed: 12/01/2022]
Abstract
Guanosine tetra-phosphate (ppGpp), also known as "magic spot I", is a key molecule in the stringent control of most eubacteria and some eukarya. Here, we show that ppGpp affects the functional and molecular properties of the archaeal elongation factor 1α from Sulfolobus solfataricus (SsEF-1α). Indeed, ppGpp inhibited archaeal protein synthesis in vitro, even though the concentration required to get inhibition was higher than that required for the eubacterial and eukaryal systems. Regarding the partial reactions catalysed by SsEF-1α the effect produced by ppGpp on the affinity for aa-tRNA was lower than that measured in the presence of GTP but higher than that for GDP. Magic spot I was also able to bind SsEF-1α with an intermediate affinity in comparison to that displayed by GDP and GTP. Furthermore, ppGpp inhibited the intrinsic GTPase of SsEF-1α with a competitive behaviour. Finally, the binding of ppGpp to SsEF-1α rendered the elongation factor more resistant to heat treatment and the analysis of the molecular model of the complex between SsEF-1α and ppGpp suggests that this stabilisation arises from the charge optimisation on the surface of the protein.
Collapse
Affiliation(s)
- Nicola M Martucci
- Dipartimento di Studi delle Istituzioni e dei Sistemi Territoriali, Università degli Studi di Napoli Parthenope, Via Medina 40, 80133 Naples, Italy
| | | | | | | | | | | | | |
Collapse
|
10
|
Blombach F, Launay H, Zorraquino V, Swarts DC, Cabrita LD, Benelli D, Christodoulou J, Londei P, van der Oost J. An HflX-type GTPase from Sulfolobus solfataricus binds to the 50S ribosomal subunit in all nucleotide-bound states. J Bacteriol 2011; 193:2861-7. [PMID: 21478358 PMCID: PMC3133125 DOI: 10.1128/jb.01552-10] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2010] [Accepted: 03/26/2011] [Indexed: 02/06/2023] Open
Abstract
HflX GTPases are found in all three domains of life, the Bacteria, Archaea, and Eukarya. HflX from Escherichia coli has been shown to bind to the 50S ribosomal subunit in a nucleotide-dependent manner, and this interaction strongly stimulates its GTPase activity. We recently determined the structure of an HflX ortholog from the archaeon Sulfolobus solfataricus (SsoHflX). It revealed the presence of a novel HflX domain that might function in RNA binding and is linked to a canonical G domain. This domain arrangement is common to all archaeal, bacterial, and eukaryotic HflX GTPases. This paper shows that the archaeal SsoHflX, like its bacterial orthologs, binds to the 50S ribosomal subunit. This interaction does not depend on the presence of guanine nucleotides. The HflX domain is sufficient for ribosome interaction. Binding appears to be restricted to free 50S ribosomal subunits and does not occur with 70S ribosomes engaged in translation. The fingerprint (1)H-(15)N heteronuclear correlation nuclear magnetic resonance (NMR) spectrum of SsoHflX reveals a large number of well-resolved resonances that are broadened upon binding to the 50S ribosomal subunit. The GTPase activity of SsoHflX is stimulated by crude fractions of 50S ribosomal subunits, but this effect is lost with further high-salt purification of the 50S ribosomal subunits, suggesting that the stimulation depends on an extrinsic factor bound to the 50S ribosomal subunit. Our results reveal common properties but also marked differences between archaeal and bacterial HflX proteins.
Collapse
Affiliation(s)
- Fabian Blombach
- Laboratory of Microbiology, Wageningen University, Dreijenplein 10, 6703 HB Wageningen, Netherlands.
| | | | | | | | | | | | | | | | | |
Collapse
|
11
|
DeYoung M, Thayer M, van der Oost J, Stedman KM. Growth phase-dependent gene regulation in vivo in Sulfolobus solfataricus. FEMS Microbiol Lett 2011; 321:92-9. [PMID: 21595744 DOI: 10.1111/j.1574-6968.2011.02313.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Ribosomal genes are strongly regulated dependent on growth phase in all organisms, but this regulation is poorly understood in Archaea. Moreover, very little is known about growth phase-dependent gene regulation in Archaea. SSV1-based lacS reporter gene constructs containing the Sulfolobus 16S/23S rRNA gene core promoter, the TF55α core promoter, or the native lacS promoter were tested in Sulfolobus solfataricus cells lacking the lacS gene. The 42-bp 16S/23S rRNA gene and 39-bp TF55α core promoters are sufficient for gene expression in S. solfataricus. However, only gene expression driven by the 16S/23S rRNA gene core promoter is dependent on the culture growth phase. This is the smallest known regulated promoter in Sulfolobus. To our knowledge, this is the first study to show growth phase-dependent rRNA gene regulation in Archaea.
Collapse
Affiliation(s)
- Melissa DeYoung
- Biology Department and Center for Life in Extreme Environments, Portland State University, Portland, OR 97207, USA
| | | | | | | |
Collapse
|
12
|
Assembling the archaeal ribosome: roles for translation-factor-related GTPases. Biochem Soc Trans 2011; 39:45-50. [PMID: 21265745 DOI: 10.1042/bst0390045] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The assembly of ribosomal subunits from their individual components (rRNA and ribosomal proteins) requires the assistance of a multitude of factors in order to control and increase the efficiency of the assembly process. GTPases of the TRAFAC (translation-factor-related) class constitute a major type of ribosome-assembly factor in Eukaryota and Bacteria. They are thought to aid the stepwise assembly of ribosomal subunits through a 'molecular switch' mechanism that involves conformational changes in response to GTP hydrolysis. Most conserved TRAFAC GTPases are involved in ribosome assembly or other translation-associated processes. They typically interact with ribosomal subunits, but in many cases, the exact role that these GTPases play remains unclear. Previous studies almost exclusively focused on the systems of Bacteria and Eukaryota. Archaea possess several conserved TRAFAC GTPases as well, with some GTPase families being present only in the archaeo-eukaryotic lineage. In the present paper, we review the occurrence of TRAFAC GTPases with translation-associated functions in Archaea.
Collapse
|
13
|
Payoe R, Fahlman RP. Dependence of RelA-mediated (p)ppGpp formation on tRNA identity. Biochemistry 2011; 50:3075-83. [PMID: 21410133 DOI: 10.1021/bi1015309] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
The bacterial stringent response is a cellular response to amino acid limitations and is characterized by the accumulation of the alarmone polyphosphate guanosine ((p)ppGpp). A key molecular event leading to (p)ppGpp synthesis is the binding of a deacylated tRNA to the vacant A-Site of a ribosome. The resulting ribosomal complex is recognized by and activates RelA, the (p)ppGpp synthetase. Activated RelA catalyzes (p)ppGpp formation until the deacylated tRNA passively dissociates from the ribosomal A-Site. In this report, we have investigated a novel role for the identity of A-Site bound tRNA in RelA-mediated (p)ppGpp synthesis. A comparison in the stimulation of RelA activity was made using ribosome complexes with either a tightly or weakly binding deacylated tRNA occupying the A-Site. In vitro analysis reveals that ribosome complexes formed with tight binding tRNA(Val) stimulate RelA activity at lower concentrations than that required for ribosome complexes formed with the weaker binding tRNA(Phe). The data suggest that the recovery from the stringent response may be dependent on the identity of the amino acid that was initially limiting for the bacteria.
Collapse
Affiliation(s)
- Roshani Payoe
- Department of Biochemistry, School of Molecular and Systems Medicine, University of Alberta, Edmonton, Alberta T6G 2H7, Canada
| | | |
Collapse
|
14
|
When DNA replication and protein synthesis come together. Trends Biochem Sci 2009; 34:429-34. [PMID: 19729310 DOI: 10.1016/j.tibs.2009.05.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2009] [Revised: 05/25/2009] [Accepted: 05/28/2009] [Indexed: 11/20/2022]
Abstract
In all organisms, DNA and protein are synthesized by dedicated, but unrelated, machineries that move along distinct templates with no apparent coordination. Therefore, connections between DNA replication and translation are a priori unexpected. However, recent findings support the existence of such connections throughout the three domains of life. In particular, we recently identified in archaeal genomes a conserved association between genes encoding DNA replication and ribosome-related proteins which all have eukaryotic homologs. We believe that this gene organization is biologically relevant and, moreover, that it suggests the existence of a mechanism coupling DNA replication and translation in Archaea and Eukarya.
Collapse
|
15
|
Translation initiation factor a/eIF2(-gamma) counteracts 5' to 3' mRNA decay in the archaeon Sulfolobus solfataricus. Proc Natl Acad Sci U S A 2008; 105:2146-50. [PMID: 18245385 DOI: 10.1073/pnas.0708894105] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The trimeric translation initiation factor a/eIF2 of the crenarchaeon Sulfolobus solfataricus is pivotal for binding of initiator tRNA to the ribosome. Here, we present in vitro and in vivo evidence that the a/eIF2 gamma-subunit exhibits an additional function with resemblance to the eukaryotic cap-complex. It binds to the 5'-triphosphate end of mRNA and protects the 5' part from degradation. This unprecedented capacity of the archaeal initiation factor further indicates that 5' --> 3' directional mRNA decay is a pathway common to all domains of life.
Collapse
|
16
|
Global responses of Methanococcus maripaludis to specific nutrient limitations and growth rate. J Bacteriol 2008; 190:2198-205. [PMID: 18203827 DOI: 10.1128/jb.01805-07] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Continuous culture, transcriptome arrays, and measurements of cellular amino acid pools and tRNA charging levels were used to determine the response of Methanococcus maripaludis to leucine limitation. For comparison, the responses to phosphate and H2 limitations were measured as well. In addition, the effect of growth rate was determined. Leucine limitation resulted in a broad response. tRNA(Leu) charging decreased, but only small increases in mRNA were seen for amino acid biosynthesis genes. However, the cellular levels of free isoleucine and valine showed significant increases, indicating a coordinate regulation of branched-chain amino acids at a post-mRNA level. Leucine limitation also resulted in increased mRNA abundance for ribosomal protein genes, increased rRNA abundance, and decreased mRNA abundance for genes of methanogenesis. In contrast, phosphate limitation induced a specific response, a marked increase in mRNA levels for a phosphate transporter. Some mRNA levels responded to more than one factor; for example, transcripts for flagellum synthesis genes decreased under conditions of leucine limitation and increased under H2 limitation. Increased growth rate resulted in increased mRNA levels for ribosomal protein genes, increased rRNA abundance, and increased mRNA for a gene encoding an S-layer protein.
Collapse
|
17
|
Bartlett MS. Determinants of transcription initiation by archaeal RNA polymerase. Curr Opin Microbiol 2005; 8:677-84. [PMID: 16249119 DOI: 10.1016/j.mib.2005.10.016] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2005] [Accepted: 10/13/2005] [Indexed: 12/27/2022]
Abstract
Transcription in Archaea is catalyzed by an RNA polymerase that is most similar to eukaryotic RNA polymerases both in subunit composition and in transcription initiation factor requirements. Recent studies on archaeal transcription in diverse members of this domain have contributed new details concerning the functions of promoters and transcription factors in guiding initiation by RNA polymerase, and phylogenetic arguments have allowed modeling of archaeal transcription initiation complexes by comparison with recently described models of eukaryotic and bacterial transcription initiation complexes. Important new advances in reconstitution of archaeal transcription complexes from fully recombinant components is permitting testing of hypotheses derived from and informed by these structural models, and will help bring the study of archaeal transcription to the levels of understanding currently enjoyed by bacterial and eukaryotic RNA polymerase II transcription.
Collapse
Affiliation(s)
- Michael S Bartlett
- Department of Biology, Portland State University, SB2 Room 246, 1719 SW 10th Avenue, Portland, OR 97201, USA.
| |
Collapse
|